Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетическое уравнение химического процесса. Порядок химической реакции

    Гетерогенные процессы, сопровождаемые химической реакцией, могут быть трех типов 1) когда реакция протекает на поверхности раздела фаз, этот тип характерен для процессов с участием твердой фазы Т — Ж Т—Г Г — Ж — Т и др. 2) когда реакции протекают в объеме одной из фаз после переноса в нее вещества из другой такие процессы наиболее распространены и могут идти с участием любых фаз в системах Г — Ж, Ж — Ж (несмешивающиеся), Т — Ж, Г — Ж—Т и др. 3) когда реакция происходит на поверхности вновь образующейся фазы этот тип возможен для процессов взаимодействия твердых фаз. Если гетерогенный процесс идет в кинетической области, то для первых двух указанных типов справедливы законы кинетики гомогенных процессов. При этом скорость процесса лимитируется скоростью химических реакций, описывается кинетическими уравнениями реакций, порядок которых зависит от числа и природы реагентов. Для кинетики гетерогенных процессов в диффузионной области характерны следующие особенности а) сравнительно малые величины условной энергии активации б) сравнительно малое влияние температуры на скорость процесса, что видно хотя бы из значений температурных коэффициентов диффузии, которые для жидкостей и газов колеблются в пределах 1,1—1,5 (если только повышение температуры не меняет фазового состояния реагентов) в) большое влияние турбулизации системы (перемещивания) на скорость процесса. [c.153]


    Оба эти метода дают возможность выявить основные различия в активности, связанные со значительными изменениями какого-либо одного параметра (химического состава, структурных свойств и т. д.), если остальные параметры остаются без изменения. Вместе с тем сложной взаимосвязи между процессами сорбции, диффузии и, химической реакцией они не отражают. Более надежным способом, позволяющим избежать неправильных выводов при сравнении катализаторов с нестабильной во времени активностью, является экстраполяция конверсии на нулевое время. Этот метод обычно используют в тех случаях, когда реакция проводится в дифференциальном, а не интегральном реакторе. Однако, как правило, применяется он значительно реже, хотя известно, к какой путанице может привести, например, определение влияния соотношения Si/Al на каталитические свойства деалюминированного морденита, если однозначный способ определения активности отсутствует. Еще меньше можно назвать работ, в которых были проведены кинетические определения зависимости констант скоростей от скорости подачи сырья или парциальных давлений исходных компонентов -й продуктов реакции. Между тем, сравнивая активности, часто дйпускают, что реакции имеют первый порядок, и пересчитывают измеренные степени превращения в константы скорости. Принято также определять температурную зависимость активности и подставлять данные по конверсии при различных температурах в уравнение Аррениуса. Такой расчет будет правильным, если используются только начальные конверсии, потому что в этом случае можно избежать неточностей из-за разной скорости дезактивации катализаторов при различных температурах. Но даже и тогда расчет энергии активации совсем не обязательно приведет к Д,, характерной для данной химической реакции, которая протекает на определенном типе активных центров. Полученная величина Еа может в значительной степени отражать ограничения, связанные с диффузией и массопередачей. [c.56]

    При изучении химической реакции на первое место при современном состоянии науки и технологии выступают вопросы принципиальной возможности прохождения процесса (Д ОсО, ЭДС>0 /С<1 и т. п.). Доказав принципиальную, термодинамическую возможность прохождения процесса, переходят к вопросам его кинетической осуществимости — реакция может проходить или крайне медленно, или неприемлемо быстро. Для решения проблемы изучают влияние на скорость реакции концентраций реагирующих веществ (кинетическое уравнение реакции, ее порядок), температуры (энергия активации), подбирают катализаторы или ингибиторы, варьируют pH и ионную силу раствора, изменяют размеры, форму, материал реактора и т. п. [c.307]


    Графический метод часто используется для определения различных характеристик процессов. Например, графически можно определить порядок химической реакции. В табл. 4 приведены кинетические уравнения реакций различных порядков и их решения. [c.67]

    Основные научные работы посвящены кинетике газовых химических реакций. Изучал (1893—1899) процессы получения и термической диссоциации иодистого водорода и состояние равновесия системы, что послужило исходным пунктом систематических исследований кинетики образования бромистого (1907—1908) и хлористого (1913) водорода из элементов. Установил (1899) условия проведения, молекулярный порядок и зависимость от материала реакционного сосуда кинетики термической диссоциации иодистого водорода. Вывел уравнение скорости образования бромистого водорода, показав ее зависи.мость от константы равновесия диссоциации молекулы брома. Выдвинул (1913) принцип стационарной концентрации промежуточных продуктов газовых реакций, согласно которому концентрация активных частиц в ходе реакции приобретает постоянное значение вследствие равенства скоростей их генерирования и расходования. Открыл (1913) фотохимические реакции с большим квантовым выходом, что положило начало представлениям о цепных процессах. Объяснил их закономерности передачей по кинетической цепи энергии возбуждения молекул. Объяснил падение активности твердых катализаторов блокировкой их по- [c.64]

    КИНЕТИЧЕСКОЕ УРАВНЕНИЕ ХИМИЧЕСКОГО ПРОЦЕССА. ПОРЯДОК ХИМИЧЕСКОЙ РЕАКЦИИ [c.44]

    Параметры (к, ,) в кинетическом уравнении химической реакции определяют расчетным методом при обработке кинетического эксперимента (кинетических кривых расходования реагентов и накопления промежуточных и конечных продуктов). Для простых реакций, когда реакция протекает в одну стадию (элементарный химический процесс), порядок по реагенту совпадает по величине со стехиометрическим коэффициентом при реагенте в уравнении (2.1.1.1). Для сложных реакций порядок реакции по реагенту, как правило, не равен стехиометрическому коэффициенту (и, Ф V,) и может быть целочисленным, дробным или отрицательным. Общий порядок реакции равен сумме показателей степени по всем реагентам п = Уи,. В сложных реакциях, когда химический процесс протекает через ряд промежуточных стадий, уравнение (2.1.1.2) является формальной записью скорости химического процесса, при этом порядок реакции может быть дробным и отрицательным. Если сложная реакция состоит из нескольких последовательных стадий, из которых медленная определяет скорость всего процесса, то порядок суммарной реакции обычно равен порядку этой определяющей скорость реакции. [c.332]

    Исследуя влияние давления на скорость реакции, нужно помнить о том, что стехиометрические уравнения большинства химических реакций не отражают их механизма и в действительности превращение проходит как несколько следующих одна за другой простых реакций разного порядка. В качестве примера можно использовать реакцию синтеза метанола СО + 2Нг = СН3ОН, которая протекает не как реакция третьего порядка, а, вероятно, как две последовательные реакции второго порядка. Поскольку влияние давления на скорость реакции меньше в случае реакций более низкого порядка, теоретическое предвидение такого влияния не может быть основано на стехиометрическом уравнении реакции. Если механизм процесса неизвестен, то обязательно нужно определить порядок кинетического уравнения экспериментальным путем. [c.235]

    Кинетика химических реакций в большей мере зависит от количества одновременно участвующих в них молекул. В соответствии с этим различают moho-, би- и, редко, тримолекулярные реакции (рис. 64), большего количества молекул, взаимодействующих в процессе реакции, практически не наблюдается. Многие химические процессы, описываемые различными громоздкими стехиометрическими уравнениями, обычно представляют собой совокупность нескольких последовательных, а иногда и параллельных элементарных реакций, каждая из которых принадлежит к одной из упомянутых кинетических групп. Вследствие такой миогостадийности макроскопически наблюдаемых процессов вводится понятие о порядке реакции. Он определяется суммой показателей степеней, в которых концентрации исходных веществ входят в кинетическое уравнение. В простейших случаях порядок реакции определяется наиболее медленной стадией сложного химического процесса. Порядок реакции может быть уменьшен, если одно или два вещества, участвующих в реакции, взяты с большим избытком и концентрация их практически не изменяется. Скорость необратимых реакций первого и второго порядков (dxldt) и соответствующие им константы [c.153]


    В главе II изложены основы математического описания и моделирования применительно к задачам масштабирования и автоматизации химических процессов и обосновывается возможность получения кинетических данных в ограниченной (локальной) области изменения параметров. В общем случае в качестве уравнений локальной кинетики рекомендуется использовать известные уравнения химической кинетики, введя в них зависимость от факторов, функционально связанных с текущей концентрацией реагирующих веществ. Если при этом под терминами константа скорости и порядок реакции понимать некоторые их формальные значения,.то эти уравнения можно распространить (см. ниже) в локальной области на гомогенные и гетерогенные реакции, протекающие в кинетической и диффузионной областях. Вместе с тем, па основании анализа ряда промышленных химических процессов и основных закономерностей химической кинетики, обращается внимание на то, что известное многообразие кинетических зависимостей и уравнений, отражающих скорость различных по характеру процессов, с достаточной для практических целей точностью можно в большинстве случаев представить уравнением, выражающим образование конечных продуктов реакций, протекающих как бы параллельно. [c.9]

    Формальная кинетика рассматривает процесс, не интересуясь механизмом реакции, чисто количественно описывает результат всех стадий, всех превращений, результат всей реакции в целом. Поэтому конечной задачей формальной кинетики является составление уравнения для расчету константы скорости данной реакции, т. е. уравнения, позволяющего в любой момент времени рассчитать скорость реакции как функцию концентрации. Для этого необходимо определить порядок реакции по отнощению к каждому из реагирующих веществ, составить дифференциальное уравнение для скорости реакции и проинтегрировать его. Составление дифференциального кинетического уравнения — задача физико-химическая, требующая знания порядка реакции. Интегрирование дифференциального уравнения — задач а чисто математическая. [c.14]

    Полученные с помощью описанных методов кинетические кривые используют для расчета таких параметров, как константы скорости, температурные коэффициенты и энергия активации процесса в соответствии с уравнениями формальной кинетики химических реакций. Долгое время считали, что большинство кинетических кривых описывается уравнением первого порядка. Было найдено, что температурный коэффициент процесса равен в среднем 2, а энергия активации меняется от 80 до 150 кДж/моль в зависимости от агента вулканизации и молекулярного строения каучука. Однако более точное определение кинетических кривых и их формально-кинетический анализ, проведенный В. Шееле [52], показал, что во многих случаях порядок реакции меньше 1 и равен 0,6—0,8, а реакции вулканизации являются сложными и многостадийными. [c.243]

    Основной теоретической задачей в химической кинетике является создание такой системы взглядов и уравнений, которая позволила бы, исходя из молекулярных параметров реагирующих компонентов и внешних условий протекания процесса, вычислить его скорость. К молекулярным параметрам относятся масса реагирующих молекул, геометрическая конфигурация, порядок связи отдельных атомов и атомных групп в молекуле, энергетическая характеристика отдельных связей, совокупность возможных энергетических состояний молекулы. Под внешними условиями понимается давление (или концентрации), температура, условия, в которых осуществляется процесс (например, проведение реакции в статических условиях или в потоке). В решении этой задачи важным этапом является интерпретация кинетических закономерностей при химических превращениях с позиций молекулярно-кинетической теории, поэтому настоящая глава и посвящается те.м основам молекулярно-кинетической теории, которые будут использованы далее при решении поставленной задачи. [c.84]

    Число молекул, вступающих в элементарный акт (отдельная ступень) химической реакции, происходящей за одно столкновение реагирующих молекул, называется молекулярностью реакции. Поэтому молекулярность реакции не может быть не-целочис ленной. Известны мономолекулярные, бимолекулярные и, как редкое исключение, тримолекулярные реакции. Порядок же реакции, будучи результатом взаимоналожения кинетических закономерностей (и молекулярностей) отдельных ее стадий, может быть и нецелочисленным и не совпадать ни с суммой стехиометрических коэффициентов химического уравнения реакций, ни с молекулярностью отдельных ее элементарных стадий. Порядок реакции отраясает суммарную кинетическую зависимость скорости всей многостадийной реакции от концентрации реагирующих веществ, а молекулярность — механизм элементарных стадий сложного процесса. Поэтому порядок и молекулярность совпадают лишь для простых по механизму реакций. [c.237]

    К реакциям простейшего типа (мономолекулярными бимолекулярным) относится лишь очень незначительное количество реакций из области горения и газификации. Большинство реакций горенпя и газификации сложные, имеющие самые различные механизмы, представляющие комбинацию различных параллельных и последовательных реакций. Вследствпе такой сложности процесса кинетическое уравнение реакции никогда не соответствует суммарному химическому уравнению процесса и не дает целочисленного порядка реакции. Порядок сложной реакции может быть дробным и, как правило, не совпадает с молекулярностью, определяемой по суммарному химическому уравнению. [c.41]

    Микрокинетические исследования позволяют определить маршруты реакций и выбрать наиболее достоверный и.з них, а также рассчитать порядок и константы скоростей реакций. Эти исследования проводят в лаборатории таким образом, чтобы изучить кинетику химической реакции в чистом виде , без влияния условий перемешивания реагентов, тепловых и диффузионных эффектов и дифференциальных, проточно-интегральных или циркуляционных реакторах. При постановке лабораторных микрокинетических исследований опыты осуществляют с использованием современных научных методов экспериментирования — направленного многофакторного эксперимента, при котором одновременно изменяют несколько наиболее существенных параметров и целенаправленно обеспечивают выход процесса в оптимальны11 режим . При проведении микрокинетических исследований обязательно применяют ЭВМ, на которой быстро просматривают все возможные решения кинетических уравнений и выбирают наиболее достоверный маршрут химической реакции при разных температурных условиях. Использование научного метода направленного многофакторного эксперимента ЭВМ резко сокращает число необходимых опытов и позволяет определить оптимальные условия течения химической реакции. В связи с этим обязательной составной частью оборудования химической лаборатории должна быть ЭВ1 [ (на рис. УН-18 аналоговая машина). - [c.483]

    Молекулярность химической реакции не всегда согласуется с зависимостями, которые выводятся на основании уравнения химической реакции. Например, если в бимолекулярной реакции одно из реагирующих веществ находится в большом избытке и концентрация его в процессе реакции меняется настолько несущественно, что этим изменением можно пренебречь, то скорость этой реакции формально подчиняется законам мономолекулярных реакций, а сама реакция называется псевдомономолекулярной . Такие случаи сюеобразных исключений встречаются очень часто. Поэтому в химической кинетике было введено также понятие порядок химической реакции, и этим понятием пользуются гораздо чаще, чем молекулярностью реакции. Под порядком химической реакции понимают сумму показателей степеней концентрации веществ, входящих в кинетическое уравнение. Например, кинетическое уравнение для реакции взаимодействия кислорода и водорода 2На + Ог = = 2НаО имеет вид [c.35]

    Если константа скорости подвода реагирующего вещества значительно больше константы скорости процесса химического взаимодействия, т. е. константа екорости диффузии во много раз больше константы скорости реакции, тогда скорость всего процесса в целом будет определяться исключительно скоростью химического превращения. Экспериментально определяемая скорость реакции будет подчиняться законам химической кинетики гетерогенных систем. Скорость реакции, так же как и в гомогенных системах, будет связана с концентрациями реагирующих веществ кинетическим уравнением реакции. Порядок реакции будет зависеть от природы реагирующих веществ. Однако действующей массой здесь будет концентрация реагирующих веществ не в объеме фазы, а на поверхности раздела. [c.106]

    Если гетерогенный процесс идет в кинетической области, то для первых двух указанных типов справедливы законы кинетики гомогенных процессов. В этом случае скорость процесса ли н тиpyeт я скоростью химических реакций, описывается кинетическими уравнениями реакций, порядок которых зависит от числа и природы реагентов. [c.159]

    Основные уравнения химической кинетики, а также закономерности тепло- и массообмена не имеют существенных различий для реакторов с фильтрующим, кипящим (КС) или движущимся слоем катализатора. В кинетических уравнениях, характеризующих реакторы кипящего слоя, изменяются лищь абсолютные величины составляющих этих уравнений по сравнению с неподвижным слоем. Так, значения k во взвешенном слое могут увеличиться в 3—10 раз за счет изотермического режима в реакторе КС по сравнению с адиабатическим в реакторе фильтрующего слоя, с одновременным увеличением эффективной (используемой) поверхности катализатора. Величина движущей силы процесса АС за счет перемешивания в реакторе КС может значительно понижаться по сравнению с реактором фильтрующего слоя, работающем при режиме, близком к идеальному вытеснению. Понижение АС тем больше, чем больше заданная степень превращения и чем выше порядок каталитической реакции. При малых степенях превращения и первом или псевдомолекулярном порядке реакции (частом для каталитических реакций) величины АС мало отличаются. [c.151]

    При химико нкинетическом исследовании наибольщая неопределенность, возможность вариантов связаны с построением кинетической схемы процесса. На этой стадии исследования большую роль играет интуиция исследователя. После построения моделей последующие операции и выводы в значительной степени детерминированы. Предлагаемая кинетическая схема записывается либо в виде последовательности стадий реакции, либо в виде графа реакции, характеризующего взаимный переход компонентов процесса. Кинетическая схема реакции при использовании законов химической кинетики однозначно приводит к системе дифференциальных и (или) алгебраических уравнений. При этом элементарные стадии реакции для мономолекулярных процессов имеют первый порядок по концентрациям компонентов [c.6]

    Недавно В. И. Гольданский с сотр. при изучении низкотемпературной полимеризации формальдегида обнаружил интересное и необычное явление квантового низкотемпературного предела скорости химической реакции [326, 327]. Экспериментальные данные и их трактовку можно найти в работах [172, 173, 328, 329]. Кинетику низкотемпературной радиационной полимеризации эти авторы изучали в широком интервале температур [от 180 К вплоть до температуры кипения гелия (4,2 К)] калориметрическим методом на установках собственной конструкции [ 328, 329]. Была получена зависимость времени роста полимерных цепей т от температуры, а также температурная зависимость длительности элементарного акта приращения одного звена к полимерной цепи (TO) в предположении, что отсутствует передача цепей и радиационный выход инициирования цепей равен единице. В интервале 80—150 К то (величина, обратно пропорциональная скорости реакции) растет с понижением температуры и ее зависимость от температуры описывается уравнением Аррениуса со значением энергии активации ЯактЛ 8—10 кДж/моль. Однако ниже 80 К найденные зависимости т и то не подчиняются закону Аррениуса, а величина TO, вместо того чтобы ряста до бесконечности, стремится к постоянному сравнительно небольшому значению, равному примерно 10 2 с (при 80 К т0 10-5 с). (Экстраполяция по уравнению Аррениуса для температуры 10 К дает значение то 1030 лет, а при 4,2 К—10100 лет.) Одним из возможных объяснений низкотемпературного предела может служить гипотеза о так называемых энергетических цепях, предложенная Н. Н. Семеновым для объяснения кинетических особенностей полимеризационных процессов в твердой фазе [298]. Согласно гипотезе, безактивацион-ные процессы полимеризации в твердой фазе могут развиваться по механизму энергетических цепей, как движение экситона (кванта возбуждения) вдоль растущей цепи [298]. Скорость роста цепи в этом случае должна иметь порядок величины скорости звука в твердом теле ( 105 см/с) [173]. Однако анализ процессов тепловыделения и теплопередачи показывает, что такое объяснение не подходит, поскольку присоединение "следующего звена полимерной цепи в результате избирательной локализации теплоты через время 10 5—10 2 с после предыдущего маловероятно. Явление низкотемпературного предела скорости химической реакции, обнаруженное для радиационно-инициированной твердофазной полимеризации формальдегида, по мнению авторов, может иметь только кваитовохимическое происхождение и не должно наблюдаться для эндотермических реакций. [c.82]

    Важной особенностью реакционно-ректификационных и реакционно-десорбционных аппаратов и процессов является то, что, организуя отвод продуктов реакции за счет наложения массообменного процесса в такт реакции, можно обеспечить практически постоянную (или даже увеличивающуюся) во времени (или по высоте аппарата) концентрацию исходных веществ в жидкой фазе. При постоянстве концентрации реактантов соответствующие концентрационные множители в кинетическом уравнении можно включить в константу скорости, при этом кажущийся порядок реакции уменьшается. Таким образом, накладывая на химический процесс диффузионный, можно понизить общий кинетический порядок реакции вплоть до нулевого (правильнее ( псевдонулевого ). [c.21]

    В кинетической области скорость химической реакции значительно меньше скорости диффузии, поэтому процесс в целом описывается уравнениями кинетики той реакции, которая протекает на поверхности раздела фаз. Действующими концентрациями в этих уравнениях должны быть поверхностные концентрации (кмоль м ). Использование объемно-молярных концентраций (ктль1м ) допустимо, когда заведомо известно, что порядок реакции не изменяется при переходе от гомогенных к гетерогенным условиям. В противном случае необходимо знать фактический порядок гетерогенной реакции и значение кажущейся константы скорости реакции. [c.259]

    После того как измерена скорость химической реакции, проводят анализ ее зависимости от концентрации реагентов. Выводы о механизме можно получить в зависимости от того, является ли порядок реакции по реагентам целочисленным, дробным или смешанным или наблюдается более сложный характер зависимости. Если можно опреде-дить константы скорости элементарных реакций при нескольких температурах, становится возможным получение параметров уравнения Аррениуса, которые сами по себе могут дать информацию о Рй Ханизме реакции или сделать выбор между аль-тернативн 1ми механизмами. Наконец, изучение кинетического изотопного эффекта может показать, разрывается или нет данная связь на стадии, определяющей скорость всего процесса. [c.81]

    Из уравнения (3 4) следует размытость и неоднозначность энергий активации процессов в МСС и ст> пенчатый характер их кинетики, В первую очередь реагируют в системе компоненты с малыми значениями энергии активации (меньше среднего), затем остальные компоненты Кроме того, возможен химически инертный участок распределения, который не вовлекается в реакции Реагент по отношению к многокомпонентной системе ведет себя как "Демон Максвелла", отсекающий химически активный "хвост" статистического распределения состава компонентов по энергии активации [3-6], Кроме того, компоненты распределения должны иметь различную кинетическую энергию, и, следовательно, обладать различной собственной температ> рой, отличающейся от средней температуры системы-термостата. В нефтяных средах это означает, что собственная температ фа ас-фальтенов может бьпь на порядок отличаться от температур легких фракций. [c.35]


Смотреть страницы где упоминается термин Кинетическое уравнение химического процесса. Порядок химической реакции: [c.156]    [c.38]    [c.193]    [c.163]    [c.258]    [c.190]    [c.22]    [c.106]    [c.184]    [c.254]    [c.195]    [c.228]   
Смотреть главы в:

Курс химической кинетики -> Кинетическое уравнение химического процесса. Порядок химической реакции

Курс химической кинетики -> Кинетическое уравнение химического процесса. Порядок химической реакции




ПОИСК





Смотрите так же термины и статьи:

Кинетические процессы

Кинетическое уравнение и порядок реакции

Кинетическое уравнение реакци

Порядок процесса

Порядок реакции

Реакции кинетическая

Реакции порядок Порядок реакции

Реакция уравнение кинетическое

Уравнение кинетическое

Уравнение процесса

Уравнения реакций

Уравнения химические

Химическая порядок

Химические реакции порядок

Химические реакции порядок кинетический



© 2025 chem21.info Реклама на сайте