Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

поглощение ионизация

    Как видим, ионизация соединений, увеличивающая электронодонорные свойства электронодонорных заместителей или электроноакцепторные свойства электроноакцепторных заместителей, сопровождается батохром-ным сдвигом полосы поглощения. Ионизация соединения, приводящая к выходу заместителя из системы сопряжения, сопровождается гипсохромным сдвигом полосы поглощения. [c.523]


    Ионизация молекул органических соединений, приводящая к усилению электронодонорности ЭД-заместителей или электроноакцепторности ЭА-заместителей, сопровождается сдвигом максимума поглощения в длинноволновую область спектра и увеличением интенсивности поглощения ионизация молекул, приводящая к уничтожению электронодонорности ЭД-заместителей, оказывает противоположное действие. [c.72]

    Основываясь на приведенных фактах, можно сформулировать третье положение теории цветности органических соединений. Ионизация молекул органических соединений, приводящая к усилению электронодонорных свойств электронодонорных заместителей или электронофильных свойств электронофильных заместителей, сопровождается резким сдвигом максимума поглощения в сторону более длинных волн и увеличением интенсивности поглощения, ионизация молекул органических соединений, приводящая к уничтожению электронодонорных свойств электронодонорных заместителей, оказывает противоположное действие. [c.46]

    В ИК-диапазоне частот молекула может накапливать энер-гию излучения, поглощая два, три и большее число фотонов (многофотонное, многочастотное поглощение [146]). Молекула таким образом приобретает энергию, достаточную для ее диссоциации на мелкие фрагменты. С помощью лазерной техники установлена также возможность многофотонной ионизации и фрагментации многоатомных молекул под действием видимого и УФ-излучения. Было обнаружено, что кислород также может поглощать излучение в ИК-области установлена возможность, многофотонного поглощения света молекулой азота, приводящего к диссоциации молекулы на атомы в основном состоянии. [c.115]

    Так как энергия частиц, применяемых в радиационной химии, во много раз превосходит энергию квантовых уровней валентных электронов веществ — участников химической реакции, то, в отличие от фотохимических процессов, первичный акт взаимодействия излучений большой энергии с веществом не носит избирательного характера. Этот первичный акт взаимодействия, излучений большой энергии с веществом приводит обычно к ионизации вещества и возникновению свободных радикалов. Поглощение ионизирующих излучений зависит от порядкового номера поглощающего элемента. Первичные продукты взаимодействия образуются вдоль путей ионизирующих частиц, причем ионизация возрастает к концу пути частиц и зависит от их природы и массы. В фотохимических реакциях вторичные процессы являются в большинстве случаев чисто химическими (ре- акциями радикалов). В отличие от фотохимических реакций, вещества, возникающие под действием радиации большой энергии, подвержены дальнейшему воздействию излучений. Вторич- [c.258]


    Стрелка с зигзагом указывает на поглощение определенной доли радиации (аналогично символу- -/гу для фотохимических процессов.) Масс-спектрометрические исследования показывают, что наиболее вероятны процессы однократной ионизации исходной молекулы. [c.262]

    Альфа-частицы легко задерживаются, но если уж они достигают легких или кровеносных сосудов, они наносят большие повреждения на очень коротком участке пути -, около 0,0025 см - из-за большой массы и высокой ионизирующей способности. Первостепенные факторы, определяющие опасность радиации для тканей, — это плотность ионизации (количество актов ионизации на единицу площади) и доза (количество поглощенной радиации). [c.352]

    Столкновение фотонов с атомами или молекулами может привести к испусканию фотоэлектронов. В течение последних двух десятилетий фотоэлектронная спектроскопия развилась в многообещающую область химии. Фотоэлектронная спектроскопия отличается от описанных ранее спектроскопических методов, в которых измеряются характеристики поглощенного, испущенного или рассеянного электромагнитного излучения. В этом методе предмет изучения — кинетическая энергия испущенных при ионизации электронов. [c.331]

    Действие излучения на коррозионную среду (радиолиз) является процессом ионизации и возбуждения в результате поглощения энергии излучения, что изменяет химический потенциал корро- [c.369]

    Характер взаимодействия ионизирующего излучения е веществом определяется параметрами частиц и свойствами вещества. При взаимодействии заряженных частиц со средой основной причиной потерь энергии являются столкновения с атомами (электронами и ядрами), приводящие к ионизации и многократным рассеяниям. Потеря энергии электронами происходит также в результате радиационного торможения, а для тяжелых частиц (протон, а-частица) - потенциального рассеяния на ядрах и ядерных реакций. При взаимодействии 7-излуче ния со средой потеря энергии объясняется Комптон-эффектом (рассеяние 7-кванта на электронах), фотоэффектом (поглощение у-кванта с передачей энергии электрону), образованием электронно-позитронных пар (при энергиях V-квантов 1,02 МэВ) и ядерных реакций (при 10 МэВ). [c.107]

    Таким образом, потоки заряженных частиц производят ионизацию и возбуждение молекул облучаемого вещества при столкновениях, а при облучении нейтральными частицами или фотонами в,основном первоначально образуются заряженные частицы, которые далее осуществляют ионизацию и возбуждение молекул. При этом число ионизаций (и возбуждений), производимых вторичными заряженными частицами на своем пути, значительно больще ионизирующей способности первичной (нейтральной) частицы. Потеря энергии ионизирующими частицами носит дискретный характер, вследствие чего в веществе образуются микрообласти с высокой плотностью поглощения энергии. [c.107]

    Таким образом, на первой, физической , стадии радиационного процесса происходит перераспределение поглощенной энергии первичного излучения между большим числом вторичных заряженных частиц, которые взаимодействуют с электронами атомов и приводят к возбуждению и ионизации молекул вещества. Затем наступает вторая - физико-химическая—стадия процесса. Образовавшиеся под действием излучения осколки молекул (ионы, атомы, радикалы) имеют большую химическую активность и реагируют как между собой, так и с другими молекулами с большой скоростью. Результатом этих вторичных реакций является образование новых активных частиц (свободных радикалов, вторичных ионов), причем в системе достигается тепловое равновесие. [c.108]

    Электронные спектры — это спектры поглощения, испускания и флюоресценции. Спектр поглощения возникает при переходе обычно одного электрона с занятой МО на свободную вплоть до отрыва (спектр ионизации). Кванты, вызывающие электронный переход, велики, и частоты переходов в спектрах лежат в видимой и ультрафиолетовой областях. Для молекулы возможен ряд возбужденных состояний, каждое из которых описывается своей потенциальной кривой. Возбужденному состоянию отвечает обычно меньшая энергия диссоциации и большее межъядерное расстояние. При переходе в возбужденное отталкивательное состояние молекула диссоциирует. [c.166]

    Процесс синтеза нефтеполимеров проводился в реакторе периодического действия при режимах температура 200-275 С продолжительность 6-8 час. Пробы отбирались с интервалом 1 час. Контролировались следующие параметры системы температура размягчения (Т ), среднечисловая молекулярная масса (ММ), коксуемость (К), относительная плотность (р). По электронным спектрам поглощения определялись эффективный потенциал ионизации (ПИ), эффективное сродство к электрону (СЭ), энергия активации вязкого течения (Е ), концентрация парамагнитных центров (С ) [3]. Свойства битум-стирольных композиций представлены в табл. 1. [c.110]


    При поглощении веществом кванта рентгеновского излучения (длина волны 0,1—20 А) или - -кванта (длина волны 10 — 10" А) образуются частицы с огромным избытком энергии, превосходящим энергию химических связей в сотни и тысячи раз. Эта энергия расходуется в основном на ионизацию молекул вещества и на возбуждение их внешних электронных оболочек. В результате поглощения одного кванта ионизирующего излучения образуется большое число пар ионов и возбужденных молекул. Как те, так и другие претерпевают разнообразные превращения, в частности, превращения, приводящие к разрыву химических связей и образованию свободных радикалов и атомов. [c.20]

    Определение констант равновесия комплексообразования. Спектрофотометрический метод широко применяется не только для определения констант ионизации кислот и оснований, но и может быть использован для нахождения констант равновесия процессов образования различных комплексов. На примере взаимодействия иода с циклогексеном в гексане рассмотрено применение УФ-спектроскопии для определения константы равновесия реакции образования комплексов донорно-акцепторного типа. На рис. 13 приведены УФ-спектры растворов иода и циклогексана в гексане и их смеси. Поглощение в области 300 нм связано с образованием комплекса с переносом заряда  [c.26]

    Подставляя полученные выражения в (XI.6), получим уравнение, связывающее измеряемые разности поглощения на двух длинах волн А0 2 и зиачения pH с константами ионизации рК и р/Сг  [c.279]

    Феноменологический подход может быть использован для определения средних показателей реакционной способности сложных систем, характеризующих ее химическую активность, по аналогии с показателями реакционной способности в химии чистых веществ . Любую многокомпонентную смесь гетероорганических углеводородных молекул можно рассматривать как статический ансамбль компонентов. Следовательно, задача состоит в определении усредненной электронной структуры этого ансамбля. Задача решается в рамках ЭФС на основе обнаруженных [12, 21] закономерностей, связывающих интегральную силу осциллятора (площадь под кривой поглощений излучения в видимом и ультрафиолетовом диапазонах спектра) с потенциалом ионизации (ПИ) и сродством к электрону (СЭ). [c.92]

    Электронное возбуждение полимерной сетки может быть вызвано электромагнитным излучением (свет, ультрафиолетовое излучение, -излучение) или облучением частицами. Для передачи энергии соударения частиц или кванта излучения электрону необходимо, чтобы энергия оказалась достаточной для перехода последнего в возбужденное состояние н чтобы существовал механизм взаимодействия. При облучении светом в видимой части спектра фотон, скажем, длиной волны 330 нм обладает достаточной энергией для разрыва С—С-связи.. Однако фотон не будет поглощаться алканами, и в них нет электронных состояний с такой же или меньшей энергией возбуждения. Для эффективного разрыва связей фотон должен поглощаться и взаимодействовать с электроном связи. Подобное взаимодействие происходит либо непосредственно, либо косвенно с помощью механизмов переноса энергии путем диффузии экситона, одноступенчатой передачи или поглощения флюоресцентного света, испускаемого той же самой или другой (примесной) молекулой [11]. Природа и последовательность этих важных процессов, которые определяют фотохимическую стабильность (или нестабильность) полимеров, не будут здесь подробно рассматриваться. Интересно, однако, определить уровни энергии, на которых начинается возбуждение электронов или ионизация молекул, и изменения энергии связи, вызванные в свою очередь возбуждением или ионизацией. [c.109]

    Детекторы сечения ионизации. Детектирование газов можно осуществить на основе поглощения ими радиоактивного излучения. Л еханизм процесса, проходящего в камере такого детектора, заполненного водородом в качестве газа-носителя, может быть представлен следующим образом  [c.44]

    Проникая в твердое вещество, излучение в зависимости от величины его энергии может затрагивать только валентные электроны, всю электронную оболочку атомов или же, при достаточно высокой энергии, и атомные ядра. В последнем случае оно производит не только возбуждение электронов, ионизацию, но и смещение атомов данного вещества из их нормальных положений. Зто относится как к электромагнитному излучению (видимому свету, ультрафиолетовым и рентгеновским лучам, 7-излучению), так и к потокам частиц (электронов, ионов, например, протонов или а-частиц и др.). При этом энергия излучения трансформируется частично в тепловую, вибрационную энергию твердого вещества, которая передается соприкасающимся с ним веществам, а частично в электромагнитное излучение сниженной частоты по сравнению с частотой поглощенной лучистой энергии. Местные изменения структуры твердого вещества, возникающие при его взаимодействии с излучением высоких энергий, принято называть радиационными дефектами. Радиационные дефекты, равномерно распределенные по всему сечению луча, проникающего в твердое вещество, создаются фотонами, электронами, а-частицами и т. д. [c.121]

    Лиганды, находящиеся в левой части спектрохимического ряда, называются лигандами слабого поля или просто слабыми лигандами. Те лиганды, которые находятся в правой части спектрохимического ряда, называются лигандами сильного поля или сильными лигандами. На рис. 23.27 схематически показано, что происходит с энергией расщепления кристаллическим полем при изменении лигандов в ряду нескольких комплексов хрома(Ш). (Здесь уместно напомнить, что при последовательной ионизации атома переходного металла первыми отрываются валентные -электроны. Поэтому атом хрома имеет электронную конфигурацию [Аг] 45 3 , а ион Сг имеет конфигурацию [Аг] 3 .) Отметим, что с усилением поля, действующего на ион металла со стороны шести окружающих лигандов, расщепление энергетических уровней -орбита-лей металла усиливается. Поскольку спектр поглощения связан с этим энергетическим расщеплением, окраска комплексов неодинакова. [c.394]

    Ионизация фотометрических реагентов с увеличением pH вызывает деформацию электронной структуры молекулы, что приводит чаще всего к батохромному сдвигу максимул1а поглощения. Ионизация оказывает поляризующее действие на хромофорную систему молекулы. Если реагент образует с ионом металла комплексное соединение, электронное состояние молекулы органического реагента также изменяется и при этом, как правило, наблюдается батохромный сдвиг. Известны, однако, случаи и гипсохромного сдвига окраски при образовании окрашенным реагентом комплекса с ионом металла. [c.11]

    Открытие явлений многофотонного и многочастотного поглощения ИК-, видимого и УФ-излучения, приводящих к аккумулированию молекулами лучистой энергии до уровня, при котором молекула не может оставаться стабильной и подвергается спонтанной ионизации и фрагментации, позволяет пересмот-реть ранее существовавшие представления о механизме процессов, протекающих в предпламенной зоне. Экспериментально наблюдавшаяся фрагментация молекул горючего в предпламенной зоне может быть объяснена воздействием излучения пламени на горючую смесь. [c.115]

    С точки зрения механизма фотохимической реакции существенное значение имеет вопрос о том, каков результат первичного воздействия света на молекулу поглощающего вещества. В зависимости от частоты света и структурных особенностей поглощающих свет молекул в резу.ггьтате фотохимической активации может произойти возбуждение, ионизация или диссоциация молекулы. Часто природа первичного фотохимического акта может быть установлена на основании данных о структуре спектра поглощения. [c.158]

    Сечение ионизации и возбуждения быстрым электроном очень слабо зависит от температуры газа. Поэтому главным кинетическим параметром, характеризующим скорость химического превращения всщества в радиациохг-ной химии, является величина G — числе превратившихся молекул па единицу поглощенной веществом энергии (обычно за Taityro единицу берется 100 эв). Эта величина носит название радиациошю-химического выхода. Выход ионизации для разных газов лежит в диапазоне от 2,39 у гелия до 4,46 у бутана [354] и слабо зависит от типа облучения [111]. [c.184]

    Показано, что МСС можно рассматривать как статистический ансамбль квазичастиц (псевдокомпонентов), средние энергетические характеристики молекулярных орбиталей которых определяют реакционную способность, термостойкость и другие свойства. Химическая активность нефтяных систем обусловлена особыми квазичастицами, включающими в определенной статистической пропорции все компоненты системы. Реакционная способность системы в целом обусловлена характеристиками электронной структуры этих частиц. Для углеводородных систем можно эмпирически определить параметры реакционной способности. Предложены способы определения энергии этих псевдомолекулярных орбиталей, основанные на установленной взаимосвязи интефальных показателей поглощения молекул органических соединений с их усредненными по составу эффективным потенциалом ионизации (ПИ) и сродством к электрону (СЗ). Установлено, что энергии псевдомолекулярных фаничных орбиталей определяют реакционную способность МСС в процессах полимеризации и олигомеризации, реакционную способность ароматических фракций в процессах карбонизации, растворимость асфальтенов. Исследованы эффективные СЭ и ПИ высокомолекулярных соединений и различных фракций, в том числе асфальто-смолистых веществ (АСВ). Доказана повышенная электронодонорная и элекфоноакцепторная способность последних. На основе представлений о поливариантности химических взаимодействий в многокомпонентных системах и образования [c.223]

    Интервал перехода pH 2,4-дипитрофенола в аци-форму составляет 2,6—4,6, полоса поглощения аци-формы обусловлена электроннымп переходами с переносом заряда с электронодо-норного (—ОН) на электроноакцепторный (—NO2) заместитель. В щелочной среде происходит усиление поляризующего влияния электронодонорного заместителя, вследствие его ионизации, что приводит к углублению окраски. Образуется соль ацп-формы, окрашенная в интенсивно-желтый цвет  [c.72]

    Желтая окраска пикриновой кислоты (Х = 360 нм) обусловлена смещением п-электронной плотности в замкнутой системе сопряженных двойных связей под влиянием суммарного действия трех электроноакцепторных (—ЫОг) и электронодонорного (—ОН) заместителей. Замена одного электроноакцепторного заместителя на электронодонорный (—ЫНг) (молекула пикраминовой кислоты) вызывает батохромный сдвиг полосы поглощения, т. е. углубление цвета раствора. Интенсивность окраски во фастает в щелочной среде за счет ионизации электронодонорного (—ОН—>-—Ог) заместителя, для пикрамината натрия Е ,=455 нм = 8,5 10 . [c.74]

    Температуры, существенно превышающие уровень температур в печах и камерах сгорания, наблюдаются в дугах, в ударно нагретых газах перед движущимися с гиперзвуковон скоростью аппаратами, такими, как планетарные зонды, возвращающиеся космические корабли, и в ядерных взрывах. При столь высоких температурах в спектрах появляются линии одноатомного газа и электронные системы полос многоатомных газов, обязанные переходам между электронными уровнями энергии — связанно-связанным переходам. Фотоионизация, или свя-занно-свободные переходы, возникают в том случае, когда процессы с участием фотонов и термического возбуждения достаточны для ионизации газа. Эти переходы дают непрерывный спектр, являющийся противоположностью линиям или полосам поглощения, поскольку фотон, обладая энергией ниже требующегося для ионизации минимального значения, тем не менее может вэаи- [c.487]

    Р ис. 3. Зависикюсть величины смещения полосы поглощения гидроксильных групп поверхности кремнезема Д-/о от потенциала ионизации. Диметил-сульфид — (У), этилпропилсульфид — (2), днпропилсульфид — (3), ди-нзопропилсульфид —(4), диизобутилсульфид —(5). [c.145]

    Все упомянутые выше реакции вызваны, конечно, первичными процессами возбуждения и ионизации. Так, по-видимому, в результате возбуждения молекулы пропана за счет поглощения энергии излучения происходит разрыв С—Н-свя-зи, при котором избыток энергии в форме кинетической сообщается атому водорода СзНв = С3Н7-Ь (Н). Горячий атом водорода способен реагировать с первой сталкивающейся с ним молекулой пропана, отрывая от последней атом [c.74]

    У незаряженных нейтронов не может быть электрического взаимодействия они останавливаются при столкновении с ядром подобно биллиардным щарам. Бомбардируемые атомы отскакивают со скоростью, достаточной для потери орбитальных электронов, и прохо-. дят через поглотитель в виде тяжелых заряженных частиц. Нейтроны могут быть также остановлены в результате поглощения атомными ядрами с сбразсванием новых, обычно радиоактивных, изотопов, но при облучении этот процесс, как правило, не имеет большого значения. Таким образом, все типы ионизирующего излучения приводят к образованию заряженных частиц большой энергии, которые в конечном итоге теряют ее, образуя ионизированные и возбужденные атомы или молекулы. Конечный результат такой ионизации и возбуждения зависит от природы химических связей в облученном материале. [c.157]

    Схема спектрографической установки показана на рис. 56, б. Регистрирующим прибором служит спектрограф J2, а в качестве спектроскопического источника света используется спектроскопическая импульсная лампа /, свет от которой, пройдя реакционный сосуд и спектрограф, попадает на фотопластинку 13. Спектроскопическая лампа зажигается через определенный промежуток времени после вспышки фотолитической лампы при помощи блока временной задержки 14. Таким образом по.лучается полный спектр поглощения фотолизуемого раствора. Меняя время задержки, можно получить набор спектров, изменяющихся во времени. В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача таких ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в УФ-области к ксенону добавляют другие газы, например Нг, или ртуть. Используют им-пульсные лампы и с другим наполнением (Ог, N2, Аг). Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической вспышки. А время вспышки импульсной лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии и от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотнонюния между сопротивлением R, индуктивностью L и емкостью С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотпошепие Lj . Уменьшение времени затухания т достигается снижением индуктивности соединительных проводов, а также снижением емкости и индуктивности конденсатора (r yZ, ). При этом уменьшение энергии вспышки E = Wj2 компенсируется за счет увеличения напряжения на конденсаторе U. Увеличение [c.157]

    Рассмотрим принцип количественного анализа смеси, состоящей из компонентов Ль Аг,. .., А,, каждый из которых имеет две константы ионизации )К и р/Сг- Будем считать, что оптическая плотность смеси аддитивна и поглощение каждого компонента подчиняется закону Ламберта — Бугера — Бера. Таким образом, разность оптических плотностей смеси определяетоя уравнением [c.281]

    Со ], 2п неизвестных констант ионизации (р/ С1 , р/Сг (/=1,..., п) и Зп иензвсстных разностей коэффициентов поглощения на двух [c.281]

    Сульфополипараксилилен является нерастворимой, но набухающей г. воде кислотой, с высокой степенью ионизации. Набухание заметно возрастает с повышением pH водного раствора. Полимер предложено использовать в качестве зерненого фильтра для поглощения катионов из водных растворов солей, т. е. н качестве к а т и о н о о б м е н н о г о ф и л I, т р а. Поглощение катионов из раствора происходит по реакции  [c.354]

    Потенциальная кривая эндотермически хемосорбированного атома или молекулы характеризует эти частицы в возбужденно.м состоянии (нормальное состояние соответствует физической адсорбции). Слои солей, а также окиси цезия в отличие от поверхностей металлов адсорбируют цезий в виде атомов, а не в виде ионов. Ионизация адсорбированных атомов может происходить в результате поглощения света [138] или теплового возбуждения [139].  [c.86]

    Различие окраски зависит от способности молекулярной и ионной форм индикатора поглощать лучи различной длины волн. Та форма индикатора, которая преобладает в растворе при данных условиях, определяет окраску раствора. При равенстве концентраций обеих форм индикатор принимает промежуточную окраску. Поскольку состав и строение нона и молекулы одного и того же вещества отличаются, то неодинаковы и их спектры поглощения. Здесь нам нужно понять механизм изменения окраски, а не причину ее появления. Если индикатор является слабой кислотой, то равновесие его ионизации кратко можно записать следующим образом Hind z И -+Ind- (23) [c.99]


Смотреть страницы где упоминается термин поглощение ионизация: [c.145]    [c.435]    [c.184]    [c.487]    [c.280]    [c.281]    [c.281]    [c.93]    [c.88]    [c.121]   
Органическая химия (1974) -- [ c.566 ]




ПОИСК







© 2025 chem21.info Реклама на сайте