Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парамагнитный механизм

    Поскольку обе спиновые изомеризации протекают при низкой температуре с почти одинаковыми скоростями и энергии активации этих реакций равны нулю, можно считать, что они имеют парамагнитный механизм. При более высоких температурах должен действовать химический механизм, и, судя по изменению энергии активации дейтеро-водородного обмена, вблизи 270° К должны действовать два различных механизма. Установлено, что скорость реакции H2/D2 при этой температуре уменьшается с понижением давления кривая зависимости log w от log р показывает, что при log р, равном 1 и 3, log w равен 17,4 и 12,9. Это подтверждает допустимость механизма реакции, предложенного Ридилом, согласно которому концентрация физически адсорбированных молекул при понижении давления умень- [c.160]


    Итак, тушение фосфоресценции красителя кислородом может быть адекватно объяснено механизмом (6), тушение флуоресценции должно происходить в соответствии с парамагнитным механизмом (И) или, что менее вероятно, по механизму (9), который характерен только для кислорода. [c.64]

    Ионы переходных металлов способны интенсивно тушить триплетные состояния. Механизм тушения ионами металлов (N 2+, Со2+, Си + и др.) связан не столько с их парамагнитными свойствами сколько со способностью образовывать комплексы с триплетными молекулами и последующей дезактивацией возбуждения в комплексе. [c.168]

    Уже сама возможность обнаружить в реагирующей системе парамагнитные центры, например атомы и радикалы, являющиеся промежуточными продуктами сложных химических процессов, часто позволяет высказать предположение о механизме этих процессов. Знание параметров спектров, в первую очередь СТС, делает принципиально возможной идентификацию парамагнитных центров, хотя практически эта задача оказывается часто весьма сложной и трудоемкой. Тонкая структура (ТС) может наблюдаться в спектрах парамагнитных частиц со спином 5 1. Связь вида ТС с симметрией электрического поля, в котором находятся соответствующие частицы, является важным источником сведений о природе -а геометрии их окружения. Такого рода данные существенны, например, при изучении координационных соединений ионов металлов переменной валентности. [c.248]

    Применение метода ЭПР в условиях матричной изоляции позволило не только изучить спектры ЭПР многих парамагнитных центров, но также существенно продвинуло вперед понимание механизмов радиацион нох имических и фотохимических процессов. Удалось также получить ценные сведения о подвижности реакционноспособных центров в твердой фазе — вращении, диффузии и о связи подвижности с химическими процессами — реакциями и рекомбинацией радикалов. [c.250]

    Действие сил растяжения вдоль оси молекулярной связи К1—Кг проявляется в ослаблении кажущейся энергии ее образования и, таким образом, способствует увеличению вероятности разрыва связи. Если ослабление кажущейся энергии связи существенно, то механическое воздействие можно считать основной причиной деструкции цепи. Поскольку разрыв цепной молекулы сопровождается образованием органических радикалов, а последующее появление неспаренных свободных электронов регулируется механическими силами, то изучение процесса образования радикалов и их реакций дает необходимую с точки зрения молекулярной теории информацию относительно сил, действующих па цепь. Исследования свободных радикалов методом парамагнитного резонанса усиленно развивались в течение последних 30 лет [1, 2]. С тех пор данный метод успешно применялся для объяснения механизма образования свободных радикалов в химических реакциях и под действием облучения видимым и ультрафиолетовым светом, рентгеновским и 7-излучением и облучением частицами [1, 3]. Дополнительно изучались величина фактора спектроскопического расщепления магнитное окружение неспаренного спина свободных электронов и структура свободного радикала. Во всех этих случаях спин свободного электрона действует как зонд, который, по крайней мере временно, присоединяется к определенной молекуле, принимает участие в ее движении и взаимодействует с окружающим магнитным полем. [c.156]


    Изменения релаксационных характеристик жидкости в дисперсной системе определяются, в основном, адсорбционным взаимодействием жидкости с поверхностью образца. ЯМР — релаксация воды в дисперсных системах — сводится к влиянию на Г] и адсорбционных свойств подложки. Известно, по крайней мере, два механизма, увеличивающих скорость релаксации вблизи поверхности. Первый — это увеличение вязкости жидкости в аномальных слоях, вызывающее сокращение времени релаксации протонов, находящихся в этом слое. Второй — присутствие локальных магнитных полей на поверхности, обусловленных небольшим количеством парамагнитных центров. Эти [c.101]

    Как уже отмечалось, повышенная растворимость олеофильных веществ в водных растворах ПАВ обусловлена связыванием этих веществ мицеллами. При этом истинная растворимость в водной (межмицеллярной) фазе практически не изменяется по сравнению с таковой в чистой воде. Для понимания механизма процессов, протекающих в системах раствор ПАВ — солюбилизат (эмульсионная полимеризация, мицеллярный катализ и др.), важно знать, где располагаются и как ориентируются солюбилизированные молекулы в мицеллах. Для выяснения этого вопроса привлекались данные рентгенографии, УФ- и ЯМР-спектроскопии, электронного парамагнитного резонанса и других физических методов исследования. [c.70]

    Ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР) — два метода радиоспектроскопии, позволяющие изучать структуру и динамику молекул, радикалов, ионов в конденсированных и газовой фазах вещества. Спектры ЯМР обладают высокой специфичностью и широко применяются для идентификации соединений, в структурно-аналитических целях, а также для изучения быстрых обменных процессов. Спектроскопия ЭПР — метод исследования парамагнитных частиц и центров, кинетики и механизмов процессов, происходящих с их участием. Особенно большой прогресс в развитии методов спектроскопии ЯМР и ЭПР, достигнутый в последние годы, связан с появлением импульсных фурье-спектрометров, двухмерной спектроскопии и техники множественного ядерного, электрон-ядерного и электрон-электрон-ного резонанса. [c.5]

    Спектроскопия ЭПР применяется не столь широко, так как этим методом могут исследоваться лишь объекты, обладающие парамагнитным моментом, т. е. частицы (молекулы, радикалы, ионы и др.) с неравным нулю суммарным электронным спином, парамагнитные центры в кристаллах и т. д. При наличии эффекта ЭПР из спектра получают ценнейшую информацию о структуре и динамике изучаемых систем. Этим методом решают разнообразные задачи химической кинетики от выяснения механизмов простых свободно-радикальных реакций до изучения сложных биологических процессов и многие другие структурно-аналитические задачи. [c.7]

    Применение методов спектроскопии ЭПР в химических исследованиях весьма разнообразно. Но грубо можно говорить о двух направлениях— одном, касающемся в основном структурных аспектов, и другом — динамики процессов. К первому относится изучение структуры органических, неорганических и комплексных радикалов и ион-радикалов, парамагнитных центров в твердых телах и т. д., а ко второму — изучение механизмов и кинетики химических реакций, обменных процессов и т. д. [c.68]

    Плодотворное использование спектроскопии ЭПР для изучения механизмов и кинетики химических реакций основывается на следующем. Во-первых, уже сама возможность обнаружения в реагирующей системе парамагнитных центров — атомов, радикалов, яв-> ляющихся промежуточными продуктами сложных процессов, позволяет предполагать какой-то, например, свободнорадикальный механизм их протекания. Если же, во-вторых, по структуре спектра ЭПР удается идентифицировать парамагнитные частицы, то предполагаемые механизмы получают дополнительное обоснование. Нако- [c.73]

    Метод электронного парамагнитного резонанса (ЭПР), основанный на использовании явления резонансного поглощения электромагнитных волн парамагнитными частицами в постоянном магнитном поле, успешно применяется для измерения концентрации парамагнитных веществ, исследования окислительно-восстановительных процессов, изучения химической кинетики и механизма химических реакций и т. п. [c.31]

    Учением о химическом процессе, закономерностях его протекания и механизме занимается химическая кинетика. Химическая кинетика широко использует следующие методы исследования спектроскопию, масс-спектроскопию, метод радиоактивных индикаторов (меченые атомы), метод электронного парамагнитного резонанса, хемилюминесценцию и др. [c.147]


    В последние годы для изучения химической кинетики стали широко применяться радиоспектроскопические методы и. в первую очередь, электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР). Усовершенствована аппаратура и получили дальнейшее развитие такие классические методы исследования, как инфракрасная ультрафиолетовая спектроскопия, спектрополяриметрия. Все шире во многих исследовательских лабораториях начинают использовать различные флуоресцентные и хемилюминесцентные методы анализа короткоживущих частиц, импульсный фотолиз, метод остановленной струи, радиотермолюминесценции и т. п. Важную информацию о механизме химических превращений можно получить при изучении воздействия на процесс света, квантовых генераторов и ультразвука. Много информации позволяет получить комбинированное применение потенциометрических и оптических методов. [c.3]

    Было указано на параллелизм с наблюдением Тейлора, относящимся к активированной адсорбции. Найдено, что кинетика реакции Нг -г 0 2НВ на никеле [63] подобна кипетаке пара-о/ го-превращения, и для этой реакции был предложен такой же механизм. С другой стороны, эта реакция не идет на угле при низких температурах [64, 65], что подтверждает парамагнитный механизм в этом случае. Превосходный обзор работ до 1935 г. дан в книге А. Фаркаша [66] мы ограничиваемся обсуждением более поздних исследований. [c.171]

    Этот механизм приводит к подвижности промежутков, которые, если бы два промежутка подходили друг к другу, заполнялись бы путем поглощения молекулы, и тем самым реакция была бы самоотравляющейся. На вольфраме, однако, мы можем ожидать, что отношение скорости превращения к скорости отравления будет порядка 10 ООО и может быть определено только в специально поставленных опытах [73]. Отравляющее действие водорода, действительно, было описано для железа [75] и угля [76], но неясно, в какой мере в наблюденном превращении участвует парамагнитный механизм. Механизм может быть проверен путем заполнения промежутков окисью углерода или ато-хмами водорода, которые, согласно этому взгляду, должны отравлять превращение. [c.177]

    С другой стороны, Мартин и Линдауэр (Martin, Lindauer, 1977) обнаружили влияние температуры на поведение пчел в магнитном поле. Впрочем, сами они объясняли свои результаты как подтверждение парамагнитного механизма чувствительности к магнитному полю. Следует учитывать, однако, что пчелы-довольно мелкие животные и обладают меньшей тепловой инерцией. [c.328]

    К сожалению, в этом разделе недостаточно рассмотрены возможности эффективного использования в кинетических исследованиях снектроскопи-ческого и масс-спектроскопического методов, а также кинетического метода применения меченых атомов, методов хемилюминесценции, электронного парамагнитного резонанса (ЭПР), раздельного калориметрирования при гомогенно-гетерогенных процессах. Эти методы успешно применяются и получили значительное развитие в СССР. С их помощью получено много сведений о детальном механизме сложных, в частности цепных, реакций. [c.6]

    Гомолитическая диссоциация диамагнитных соединений в процессах термолиза приводит к возникновению новых хилгаческих соединений, обладающих парамагнетизмом. Она является одним и основных механизмов диссипации подводимой тепловой энергии во внутреннюю. Причем компонента внутренней энергии нефтяной системы, связанная с наличием стабильных парамагнитных радикалов, весьма специфична. Достижение критической концен- [c.4]

    Продолжением цикла этих работ явилось исследование механизма ассоциации ванадилхелатов на основе метода электронного парамагнитного резонанса [33]. Было обнаружено два различных типа спектров ванадиевых соединений в растворах нефтяных асфальтенов один тип — связанный со структурой асфальтенов, а другой — свободный . Связанный ванадий характеризуется [c.225]

    Методами радиоактивных индикаторов и ЭПР доказано, что ответственными за адгезионное взаимодействие продуктов переработки углеводо-родног о сырья с поверхностью металлов являются соединения, способные к межмолекулярным взаимодействиям - парамагнитные частицы и полярные соединения. По характеру изотермы адсорбции нефтяного пека показано, что взаимодействие нефтяных остатков с поверхностью металлов происходит по механизму хемосорбции [29]. [c.19]

    Определение момента, при котором прекращается рост элементов дисперсной фазы, осуществляетс.ч следующим образом. В соответствии с заданными начальными и граничными условиями производится имитационное компьютерное моделирование роста частиц дисперсной фазы по описанному в работе [34] гибридному ОЬА ССА фрактальному механизму. При этом происходит динамическое формирование фрактальных кластеров с каркасом, состоящим из парамагнитных соединений. [c.47]

    Влияние природы растворителя на спектр ЭПР может быть объяснено механизмом [136], учитывающим возникновение слабых обменных взаимодействий при столкновении молекул в растворе. При сближении двух парамагнитных частиц обменное взаимодействие между ними может вызвать нарушение фазы ларморовых вращений спинов вокруг внешнего магнитного поля. В работах [ 137 -139] показано, что в полярных растворителях ширина сверхтонких компонент меньше, а константа сверхтонкого расщепления больше, по сравнению со значениями констант в неполярных растворителях. Этот эффект приписан возникновению комплексов радикал — растворитель. Образование комплексов свободный радикал — растворитель может быть обусловлено различными причинами, в частности водородной связью [ 138]. В ряде случаев возможно также образование молекулярных комплексов с растворителем, акцепторами, ионами металлов. Последние нередко приводят к стабилизации ион-радикалов [140, 141]. Авторы [141] считают, что молекулы растворителя локализуются на полярных заместителях или гетероатомах. [c.120]

    Согласно предлагаемому механизму, активность асфальтеновых агрегатов должна находиться в непосредственной взаимосвязи с окклюдированными углеводородами друтих классов. Для проверки этого предположения были изучены ИК-спектры осадков, анализ которых показал, что содержание парафиновых углеводородов в осадке находится не в прямой зависимости от степени разбавления исходного образца. Так, например, при разбавлении исходного образца нефти н-гептаном содержание парафинов в осадке уменьшается, затем при 20-кратном разбавлении начинает падать. Подобная взаимосвязь изменения содержания парафиновых углеводородов в осадке и его парамагнитной активности может быть объяснена различной степенью солюбилизации асфальтеновых агрегатов. [c.130]

    Установлен механизм разрушения молекул НПАВ. На примере анализа спектров ЯМР Н неонола АФ,-12 с парамагнитной солью тербия ТЬ(КОз)з показано, что НПАВ эффективно взаимодействует с солями переходных и непереходных металлов на достаточно большую глубину слоя оксиэтильных фрагментов. Растворы НПАВ в пластовых условиях конкретных месторождений подвергаются деструкции с образованием алкилфенолов и остатков полиоксиэтиленового фрагмента с последующей переэтерифика-цией до сульфидных фрагментов. [c.52]

    Исследование на моделях с использованием аценафтиле-на и других ароматических углеводородов методом электронного парамагнитного резонанса (ЭПР) в целях определения механизма химических реакций, протекающих на разных стадиях карбонизации, выполнено в [2-16,17]. Как многократно показано, спектры ЭПР полукоксов состоят из синглетных линий без сверхтонкого разрешения, ширина и интенсивность которых определяются температурой нагрева. Для определения промежуточных свободнорадикальных структур, возникающих в карбонизуемой системе при нагревании, аценафтилен и другие соединения разбавлялись в инертном растворителе м-пентафениле, что уменьшало вероятность рекомбинации промежуточных свободных радикалов и позволяло их обнаружить с помощью ЭПР. Результаты анализа спектров ЭПР показали, что при нагрювании возникают свободные ароматические радикалы, которые или взаимно рекомбинируют с выделением водорода, или в реакциях диспропорционирования преобразуются в ароматические фрагменты, или перестраивают свою структуру. При плоской конфигурации образующихся продуктов и достаточной подвижности системы карбонизация проходит через мезофазное превращение с последующим образованием при соответствующих температурах углерода с хорошо выраженной текстурой. [c.48]

    На показанной (рис. 9-36) кривой изменения модуля упругости ПАН-волокна, термообработанного в интервале 200-1000 С, можно выделить области 300-600 С — интенсивное образование циклов, в том числе по радикальному механизму 600-800 С — максимальное развитие скорости межмолекулярных сшивок, соответствующее наибольшим значениям концентрации парамагнитных центров, по данным электронного парамагнитного резонанса (см. рис. 9-45) выше 800 С — замедленный рост молекулярных цепей. [c.578]

    Берлин A.A.. Виноградов Г..А,. Берлин Ю.А. Механизм накопления свободпы.к спинов в полисонряжекны.х системах. Цепные парамагнитные процессы// Высокомолекулярные соединения. Серия. А, 1980, - [c.180]

    В настоящее время для постановки и успешного решения такой задачи имеется ряд предпосылок. Во-первых, сейчас уже, по-видимому, с большой вероятностью можно установить, из каких элементарных актов, т. е. реакций с участием свободных радикалов, складывается весь сложный процесс окисления углеводородов. Это является прямым следствием значительной достоверности, которую в результате всего предыдущего исследования приобрел химически детализированный механизм окисления, рассматриваемый в современной литературе. Во-вторых, можно думать, что химия свободных радикалов, и так уже развивавшаяся в последние годы более быстрыми темпами, чем за предшествовавшие два десятилетия, находится в наши дни на пороге еще гораздо более бурного развития. Последнее явится неминуемым результатом возникновения новых, качественно иных и гораздо более тонких, чем прежде, методов идентификации и количественного определения свободных радикалов (масс-спектромет-рии, электронного парамагнитного резонанса и др.). [c.10]

    Другими методами, которые можно привлечь к исследованию механизмов реакции, являются изучение короткоживущих промежуточных продуктов реакции с помощью масс-спектрометри№ и электронного парамагнитного резонанса. [c.149]

    Для получения оптимального сигнала желательны достаточно высокая напряженность поля и радиочастота, малая ширина линии и, конечно, достаточная концентрация парамагнитных частиц. При тепловом равновесии заселенность (3> спинового состояния электрона несколько выше и преобладает поглощение энергии радиочастотного поля с переходом электронов в верхнее а> состояние. Заселенность уровней может меняться в процессе эксперимента, но выравнивание заселенности и исчезновение сигнала поглощения не происходит из-за существования механизмов бе-зызлучательного перехода электронов на нижний уровень, называемых релаксационными процессами. [c.65]

    При изучении механизма многостадийных процессов возникает проблема установления природы промежуточных продуктов реакции. Обнаружение в ходе электродного процесса тех частиц, которые в соответствии с предполагаемой последовательностью стадий оказываются промежуточными продуктами реакции, является важным критерием при выборе механизма процесса. Качественное и количественное определение промежуточных продуктов может быть осуществлено при помощи вращающегося дискового электрода с кольцом (см. 35). Для обнаружения промежуточных продуктов реакции используют также метод осциллографической полярографии, хронопотенциомет-рию и метод ступенчатого изменения потенциала. Так, если в ходе катодного процесса образуются частицы, которые могут подвергаться электроокислению, то ток окисления этих частиц можно наблюдать при быстром изменении потенциала электрода в анодную сторону. При изучении реакций с участием органических веществ применяется метод электронного парамагнитного резонанса (ЭПР). Так как органические радикалы должны отойти на достаточное расстояние от поверхности электрода, прежде чем их удастся обнаружить при помощи ЭПР, этот метод позволяет фиксировать относительно стабйльные радикалы (с периодом полураспада 5= 1 сек). [c.354]

    Совершенно аналогичен подход к рассмотрению механизма образования химической связи в комплексных соединениях Ре +. Слабые лиганды типа Н2О и Р отдают шесть пар электронов на свободные 45-, 4р- и две 4 -орбитали иона Ре + (рис. 3.25).. Октаэдрическое строение образующихся внешнеорбитальных комплексов позволяет приписать иону PeЗ+sp d -гибpидизaцию участвующих в образовании связей орбиталей. Благодаря высокоспиновому состоянию иона Ре + комплексные ионы 1Ре(Н20)б] + или [РеРб] парамагнитны. [c.137]

    Расчет спиновых плотностей на основе и.зотропного сдвига и получение сведений о механизме делокализации электронов возможны при исследовании парамагнитных комплексов. В этом случае наиболее информативны исследования по ядрам, непосредственно связанным с парамагнитными ионами ( Ю, и др.). Однако достаточно плодотворны также исследования ПМР. [c.325]

    Применение ряда современных методов исследования, например метода электронного парамагнитного резонанса, позволяющего определять структуру и концентрацию свободных радикалов, образующихся при окислении, термическом, фотохимическом, радиационном, механическом распаде полимеров, метода ядерного магнитного резонанса и других дало возможность изучить механизм старения и стабилизации полимеров н разработать эффективные методы стабилизации различных классов полимеров. Для многих из них предложены меры комплексной защиты от теплового, термоокислительного, светоозонного, радиационного старения. При этом оценка эффективности противостарителей осуществляется не только по активности в химических реакциях, но и по растворимости в полимере, летучести, термостабильности и другим факторам. Полиэтилен, например, хорошо защищается от термоокислительной деструкции в присутствии небольших количеств (0,01 /о) фенольных или аминных антиоксидантов, что важно для его переработки. При эксплуатации полиэтилен достаточно стабилен, тогда как полипропилен нуждагтся в защите от старения при эксплуатации. Здесь более эффективны такие антиоксиданты, как производные фенилендиаминов. Для защиты полиэтиленовых пленок от действия ультрафиолетового света применяют <5г < -фенолы. Весьма важна проблема стабилизации ненасыщенных полимеров (каучуков), где достаточно эффективны аминные про-тивостарители или их сочетание с превентивными антиоксидантами. [c.273]


Смотреть страницы где упоминается термин Парамагнитный механизм: [c.209]    [c.51]    [c.171]    [c.209]    [c.414]    [c.166]    [c.5]    [c.2]    [c.2]   
Смотреть главы в:

Катализ вопросы теории и методы исследования -> Парамагнитный механизм




ПОИСК







© 2024 chem21.info Реклама на сайте