Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение триптофана в белках

    Спектрофотометрический метод определения белка основан на способности ароматических аминокислот (триптофан, тирозин и в меньшей степени фенилаланин) поглощать ультрафиолетовый свет с максимумом поглощения при 280 нм. [c.33]

    Триптофан входит в состав многих белков, но обычно лишь в незначительных количествах. Определение его облегчается применением различных цветных реакций, характерных для этой аминокислоты. При кислом гидролизе протеинов он разлагается, но при ферментативном расщеплении белка может быть выделен в лсвовращающей форме. [c.990]


    Ультрафиолетовые спектры белков отличаются сильным поглощением, характеристическим для ароматических фрагментов аминокислот, входящих в их состав фенилаланин, тирозин, триптофан. Эти спектры поглощения используют для аналитического определения остатков указанных аминокислот. Резкий максимум поглощения, характерный для нуклеиновых кислот и нуклеопро-теидов, позволяет определить их содержание в отдельных клетках. [c.361]

    Гидролиз 6 н. H I полностью разрушает триптофан. Можно очень грубо оцепить его содержание по УФ-поглощению белка, вычитая из него вклад поглощения Туг и Phe, содержание которых определяется количественно. Для точного определения содержания Тгр иногда [c.526]

    Ультрафиолетовые спектры поглощения определяются возбуждением электронных уровней атомов и молекул и обладают максимумами, положение которых характерно для определенных атомных группировок, сопряженных двойных связей и др, В белках ультрафиолетовые спектры поглощения в основном определяются ароматическими аминокислотами — фенилаланином /--макс— 260 м х), тирозином и триптофаном 280 жр-), причем спектры поглощения могут быть даже использованы для аналитического определения этих аминокислот. Нуклеиновые кислоты и нуклеопротеиды обладают настолько резким максимумом поглощения при 260—265 лр., что при помощи фотографирования в ультрафиолетовом микроскопе легко определить их содержание в отдельных клетках (Брумберг). Зависимость ультрафиолетовых спектров поглощения от pH, сос- тава среды, от образования комплексов с другими соединениями позволяет исследовать изменения состояния растворенных веществ так, по смещению максимума поглощения с 280 до 260—265 м а было обнаружено образование комплекса между белками и полисахаридами (Розенфельд). Линейные полимеры обычно не имеют интенсивных полос поглощения в видимой и ближней ультрафиолетовой областях спектра. [c.61]

    В области видимого спектра растворы важнейших аминокислот практически не поглощают, а в УФ-области поглощают растворы только тех аминокислот, которые содержат в молекуле бензоидные фрагменты или гетероциклические ядра ароматического характера - фенилаланин, тирозин, гистидин, триптофан. Относительно интенсивное поглощение при X = 260-290 нм характерно для тирозина и триптофана. Высокая мольная экстинк-ция тирозина при 280 нм используется для определения содержания белка в растворах. [c.455]


    Гидролиз пептидов (и белков) приводит к освобождению аминокислот, участвовавших в их построении. Расщепление проводят, как правило, кипячением с соляной или серной кислотами. При этом все аминокислоты выделяются в виде солей, например хлоргидратов. Исключение составляет триптофан, который разрушается в ходе гидролиза, и поэтому для его определения требуются иные способы. Щелочи также гидролизуют пептиды (и белки), но этот процесс протекает менее гладко и приводит к значительной рацемизации аминокислот. Гидролиз полипептидов до аминокислот можно проводить и при помощи ферментов (трипсин, эрепсин). [c.383]

    Триптофан находится почти во всех белках и часто присутствует в растениях в свободном состоянии. В отличие от других аминокислот триптофан распадается при кислотном гидролизе белков, поэтому для определения триптофана гидролиз белков проводят обычно с применением щелочи или определяют его содержание без предварительного гидролиза белков. [c.200]

    Гидролиз белков ЗМ /г-толуолсульфокислотой или АМ метан-сульфокислотой [7,8], содержащей 0,2% триптамина, в вакууме при 110°С, в течение 3 суток с хорощим выходом приводит к аминокислотам, включая триптофан, однако углеводы могут мешать. Триптофан можно определять также после щелочного гидролиза, но при этом разрушаются полностью аргинин, цист(е)ин, серин и треонин. Общее содержание амидов, обусловленное наличием аспарагина и глутамина, можно определить после гидролиза 10 М НС1 при 37°С в течение 10 суток и последующего анализа на аммиак с помощью микродиффузионной техники. Раздельное определение аспарагина и глутамина можно провести с помощью предварительной этерификации (метанол-уксусный ангидрид) свободных карбоксильных групп, последующего восстановления (борогидрид лития) образовавшихся сложноэфирных групп и определения аспарагиновой и глутаминовой кислоты после кислотного гидролиза соответственно в виде v-гидрокси-а-аминомасляной кислоты и б-гидрокси-а-аминовалериановой кислоты. Содержание аспарагина и глутамина получают путем вычитания этих величин из содержания аспарагиновой и глутаминовой кислот после полного гидролиза немодифицированного белка. Полный ферментативный гидролиз белков без деструкции аминокислот можно осуществить, используя смешанные конъюгаты Сефарозы с трипсином, химотрипсином, пролидазой и аминопептидазой М [9]  [c.260]

    Аминокислоты (гликоколь, цистин з, пролин, триптофан, аргинин, гистидин, серин °), а также ди- и полипептиды реагируют своими аминогруппами, образуя соответствующие сульфокислоты, замещенные у азота °. Последняя реакция была применена для определения строения белков и продуктов их расще-пления . [c.267]

    Так как тирозин и триптофан частично разрушаются при кислотном гидролизе, был разработан спектрофотометрический метод их определения в нативном белке [7]. [c.402]

    Несмотря на то что в состав белков человеческого организма и вхог дят все аминокислоты, перечисленные в табл. 14.1, однако отнюдь не все они должны обязательно содержаться в пище. Экспериментально доказано, что для человека существенное значение имеют девять аминокислот. Такими незаменимыми аминокислотами являются гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. Все остальные аминокислоты, которые называют зал1еныл1ьши аминокислотами, человеческий организм способен вырабатывать сам. Минимальные количества аминокислот, необходимые человеку в молодости, были установлены американским биохимиком У. Ч. Роузом. Ерли ежесуточное поступление в организм человека любой из восьми указанных аминокислот (за исключением гистидина) окажется ниже определенного уровня, то организм человека будет выделять больше соединений азота, нежели получать их с пищей белки в его организме станут распадаться быстрее, чем синтезироваться. Потребность молодых людей в аминокислотах колеблется в пределах двукратной дозы, например 0,4—0,8 г лизина в сутки. Минимальная потребность по Роузу представляет собой наибольшую величину для любого из наблюдаемых им лиц. Нет сомнений в том, что каждый человек отличается от другого своими генетическими особенностями, а следовательно, и своими биохимическими характеристиками. Данные, приведенные в табл. 14.2, вдвое превышают значения, установленные Роузом. Предположительно эти количества вполне достаточны для предотвращения нарушений белкового обмена для большинства людей (99%). Потребности женщин составляют приблизительно две трети от количеств, указанных для мужчин. [c.389]

    Следующий шаг в определении структуры белка сводится к определению длины его полипептидной цепи, с тем чтобы установить, из скольких связанных между собой аминокислот построена полимерная молекула белка. Если учесть, что полипептидная цепь должна содержать по крайней мере один остаток наиболее редко встречающейся в этом белке аминокислоты, то из данных по аминокислотному составу (аналогичных приведенным в табл. 2) можно определить минимальную длину цепи. Триптофан-синтаза, например, содержит 1,1 моль% наиболее редкой аминокислоты —метионина. Следовательно, ее полипептидная цепь должна содержать по крайней мере 100/1,1 = 91 аминокислотный остаток. Если на самом деле полипептидная цепь триптофан-синтазы содержит более одного остатка метионина, то действительная ее длина должна быть кратной этой возможной минимальной длине, равной 91 аминокислотному остатку. Приближенное значение действительной длины полипептидной цепи можно получить с помощью физико-химических методов, например измеряя скорость седиментации полипептидной цепи при центрифугировании или количество света, рассеиваемого раствором белка. (Чем длиннее цепь, тем быстрее она седиментирует и тем больше света [c.85]


    Для полного гидролиза белков можно использовать сильную кислоту, сильное основание или специфические катализаторы — протеолитические ферменты. Наиболее часто используется для этой цели сильная кислота. Обычная методика гидролиза состоит в кипячении белка с 6 н. НС1 в запаянной ампуле (из которой предварительно откачивают воздух) при 110° в течение 12—96 час. В этих условиях пептидные связи гидролизуются с количественным выходом (для полного освобождения валина, лейцина и изолейцина требуется сравнительно большое время) и в результате гидролиза образуются гидрохлориды аминокислот. При нагревании с минеральными кислотами триптофан полностью распадается, а оксиаминокислоты серин и треонин подвергаются частичному разрушению. Эти потери определенным образом учитываются. Рацемизации аминокислот при кислотном гидролизе не происходит. [c.57]

    Гидролиз белков можно провести ферментативно или используя кислоты и щелочи. При щелочном гидролизе белков возможно разрушение некоторых аминокислот или их изомеризация в )-формы, которые в биологических системах используются не полностью. Надо отметить, что в щелочной среде инактивируются некоторые витамины. При кислотном гидролизе белков разрушаются незаменимая аминокислота — триптофан и некоторые витамины группы В. Гидролиз белков можно осуществить, используя препараты протеолитических ферментов. Кроме того, в самих клетках дрожжей есть активные протеолитические ферменты, которые при определенных условиях в среде могут разрушать клеточные белки (автолиз). [c.110]

    Анализ аминокислотного состава включает полный кислотный гидролиз исследуемого белка или пептида с помощью 5,7 н. соляной кислоты и количественное определение всех аминокислот в гидролизате. Гидролиз образца проводится в запаянных ампулах в вакууме при ПО "С в течение 24 ч. При этом полностью разрушается триптофан и частично серии, треонин, цистин и цистеин. а глутамин и аспарагин превращаются соответственно в глутаминовую и аспарагиновую кислоты. В то же время пептидные связи, образованные аминокислотными остатками с разветвленной боковой цепью (Val, Не. Leu), из-за стерических препятствий гидролизуются частично. Особенно стабильны связи Val—Val. Ile—Ile, Val—De и Ile—Val. [c.34]

    Триптофан обычно определяют в белках, которые пе подвергались гидролизу [165, 186]. Однако в последнее время были сделаны попеки стабилизации его молекулы, а также молекулы тирозина, цистеина и метионина при помощи реакции восстановления, которой предшествовала реакция десульфурации [92]. Кроме того, был разработан количественный метод колориметрического определения аминокислот в гидролизатах, полученных при действии селенитов щелочных металлов [56]. [c.392]

    В тесной связи с вопросом о биологической ценности белка находится представление о так называемых жизненно необходимых, или незаменимых, аминокислотах. Значение определенных аминокислот для нормального роста было выяснено в опытах на людях и некоторых животных. В этих опытах потребность в белках удовлетворялась смесью чистых аминокислот, из которой исключались те или иные аминокислоты, и, в зависимости от того, тормозился при этом рост или совершался нормально, делали вывод о значении исследуемых аминокислот для роста. Так, было установлено, что жизненно необходимыми (незаменимыми) аминокислотами для роста крыс являются следующие 10 аминокислот валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин, гистидин, аргинин (рис. 40 и 41). Незаменимость указанных аминокислот для роста, видимо, связана с тем, что организм неспособен их синтезировать. Они должны быть введены извне вместе с пищей. Скорость синтеза аргинина, который может быть синтезирован в организме, невелика. Поэтому при отсутствии аргинина в пище рост не прекращается, но идет медленнее, чем при наличии аргинина. Отсутствие в пище остальных аминокислот (например, гликокола, аспарагиновой кислоты) не влияет на рост, так как организм способен их синтезировать. [c.308]

    Гидролиз белков кислотой обычно сопровождается разрушением (в результате окисления) большей части триптофана, окислением цистеина в цистин и некоторым распадом серина и треонина. Щелочной гидролиз имеет то преимущество перед кислотным, что триптофан в этих условиях более стабилен. Однако при щелочном гидролизе имеет место интенсивный распад серина, треонина, цистина, цистеина и аргинина. Кроме того, при щелочном гидролизе наблюдается рацемизация природных аминокислот. Гидролиз белка как кислотой, так и щелочью сопровождается дезамидированием глутамина и аспарагина. Эти амиды аминокислот и триптофан можно выделить из гидролизатов, полученных при помощи протеолитических ферментов. Однако ферментативный метод также страдает определенными недостатками в частности, гидролиз может быть неполным и сам фермент может распадаться с освобождением аминокислот. Выделение аминокислот из белков и получение их с количественным выходом представляет очень сложную задачу, которой занимались многие исследователи. Эта обширная область всесторонне рассмотрена в монографии Блока и Боллинг [98]. [c.24]

    Гидролиз пищевых продуктов. Чаще всего при определении аминокислотного состава пищевых продуктов используют кислотный гидролиз в 6 н. растворе НС1, проводимый в запаянных ампулах при температуре ПО—120°С в продолжение 22—24 ч [38, 48, 61]. Необходимо отметить, что гидролиз — наиболее несовершенная операция в аминокислотном анализе, так как в белках содержится несколько лабильных аминокислот (треонин, серин, цистин, метионин, гистидин, триптофан, тирозин), которые, по мнению многих авторов, заметно разрушаются даже при кратком кислотном гидролизе другие (валин, лейцин, изолейцин), наоборот, с трудом высвобождаются из полипептидных цепей при длительных сроках гидролиза (в течение 70—80 ч). Поэтому для определения истинных количеств аминокислот в белках при особо точных исследованиях гидролизуют несколько (3—4) проб белка при различных сроках (20—80 ч). Путем построения графиков зависимости количества аминокислот от длительности гидролиза находят истинное значение содержания лабильных аминокислот, экстраполируя кривую к начальному моменту гидролиза. [c.190]

    Р. Фолина — водный раствор Hj[P(W20 )g] и H [P(Mo207)g]. Используют для качественного и количественного определения фенолов, белков, содержащих тирозин или триптофан, пуриновых оснований и гликопротеинов. Перечисленные соединения при нагревании с реактивом Фолина образуют продукты, окрашенные в сине-зеленый цвет. [c.254]

    ФОЛИ НА РЕАКТИВ, водный р-р H7[P(W,07)e] и Hj[P(MoiOi)6]. Примен. для обнаружения и фотометрич. определения фенолов, белков, содержащих тирозин или триптофан, пуриновых оснований (гуанина, ксантина, [c.625]

    Триметиламин, разделение NHs, СНзННз, (СНз)гЫН И (СНз)зН 8316 Т ринитротолуол восстановление на Hg-капельном электроде 7148 определение 7112, 7429, 7808 в воздухе 7121, 7540 Триоксиглутаровая кислота определение 8378 применение при определении виноградного и молочного сахара 6566 Триптофан, определение в белках 6901, 7125, 7248, 7250, [c.393]

    Поглощение ультрафиолетового излучения. Большинство белков поглощает ультрафиолетовое излучение с длиной волны около 280 тр. Было показано1 [91—94], что это поглощение обусловлено тирозином, триптофаном и (в меньшей степени) фенилаланином. Таким образом, величина поглощения зависит от содержания этих аминокислот в белке. Измерение оптической плотности белкового раствора при 280 пу служит удобным и точным методом определения концентрации белка [95], если известен коэффициент экстинкции и в растворе нет других веществ, поглощающих свет с этой длиной волны. Рассматриваемый метод можно также применять для приближенного измерения общего содержания белков в смеси в тех случаях, когда допустимо использование среднего коэффициента экстинкции. Метод имеет то преимущество, что на поглощение света не влияют растворенные соли и многие другие вещества и что, следовательно, определение можно производить на образцах белковых фракций без всякой специальной их подготовки, Анализ производится быстро, причем требуются всего лишь доли миллиграмма белка. [c.20]

    Вернер и Один [274] опубликовали подробную методику определения сиаловых кислот с помощью прямой реакции Эрлиха. Реакция специфична для очищенных гликонротеинов, так как, насколько известно, они не содержат каких-либо компонентов, отличающихся от сиаловых кислот и дающих устойчивое пурпурное окрашивание с г-диметиламинобензальдегидом. Триптофан и содержащие триптофан белки дают пурпурное окрашивание нри нагревании с реагентом Эрлиха, но окраска исчезает через несколько минут после охлаждения. Недостатком метода является его невысокая чувствительность для одного определения необходимо 200—400 мкг сиаловой кислоты. [c.220]

    В основу метода определения белка по Лоури положена реакция Фолина, открывающая в белке тирозин и триптофан. Окрашенный белковый комплекс получают в два этапа 1) реакция меди с белком в щелочной среде 2) восстановление фос-фомолибденово-фосфовольфрамового реагента белком, обработанным медью. [c.71]

    При цитофотометрическом определении содержания белка с помощью ультрафиолетового микроскопа используется область спектра от 230 до 300 нм, где находятся в первую очередь максимумы поглощения ароматических аминокислот, таких, как триптофан и тирозин. Отдифференцировать эти аминокислоты невозможно. Кроме того, [c.315]

    Ароматические аминокислоты тирозин и триптофан, содержащиеся в белках, поглощают свет в области 280 нм. Однако сильное поглощение ультрафиолетовых лучей в этой области характерно и для нуклеиновых кислот, хотя в целом пик поглощения последними ультрафиолетовых лучей приходится на область спектра 260 нм. Поэтому при определении концеитрации белка в растворах названным методом показания светопогло-щеиня (синонимы —оптическая плотность, экстинкция) снимают при 280 и 260 им. Показания свстопоглощеиия шкалы прибора подставляют в уравпеипе Варбурга — Христиана  [c.177]

    Витаминами называют вещества, очень малые дозы которых, наряду с жирами, белками, углеводами и минеральными веществами, необходимы для нормального развития животного организма недостаток витаминов приводит к болезненным явлениям, так называемому авитаминозу. Одкако приведенное определение витаминов требует известного уточнения. Существует много веществ, без которых животный организм не может нормально развиваться среди них встречаются и такие вещества, которые требуются организму в небольших количествах, но которые все же не считаются витаминами, например триптофан или иод. Под витаминами подразу.меаают некоторые сравнительно неустойчивые органические соединения относительно сложного строения, безусловно необходимые животному организму. Животный организм часто неспособен синтезировать их из простых соединений они попадают в животный организм с растительной пищей или образуются в нем в результате превращений довольно сложных соединений растительного происхождения. [c.890]

    Определение качественного и количественного аминокислотного состава белков и пептидов проводят после их гидролиза кислотой или щелочью. Оба вида гидролиза разрушают некоторые аминокислоты. При щелочном гидролизе частично разрушаются цистеин, серии, треонин и происходит частичная рацемизация некоторых аминокислот. При гидролизе соляной кислотой (5,7 н., 105—110° С), которая обычно используется при кислотном гидролизе пептидных связей, практически полностью разрушается триптофан. В связи с этим содержание триптофана в пробах обычно определяют после щелочного гидролиза или спектрофотометрическим методом Кроме того, наблюдаются значительные потери оксиаминокислот (серина, треонина, тирозина), се-русодержащих аминокислот (цистеина, метионина) и частично пролива. При этом степень разрушения аминокислот зависит от чистоты и концентрации НС1, используемой для гидролиза, а также длительности и температуры гидролиза. Следует отметить, что примеси альдегидов при кислотном гидролизе приводят к значительной потере тирозина, а также цистеина, гистидина, глутаминовой кислоты и лизина, а примеси углеводов в больших концентрациях — к разрушению аргинина. [c.123]

    Вторая часть доказательства коллинеарности между нуклеотидной последовательностью в ДНК и последовательностью аминокислот в белках включала в себя определение полной аминокислотной последовательности триптофансинтетазы и картирование пептидных фрагментов мутантных ферментов (гл. 2, разд. 3,2). Пептидные карты позволили идентифицировать дефектные пептиды и точно установить природу аминокислотных замещений в большом числе различных ауксотрр-фов по триптофану. Когда это было сделано, оказалось, что мутациям, локализованным очень близко друг к другу, соответствовали аминокислотные замещения в непосредственно (или очень близко) прилегающих друг к другу участках полипептидной цепи. [c.251]

    В гидролизатах коллагена и эластина содержатся десмозин и изодесмозин их разделяли в модифицированных условиях по одноколоночной [59, 60], а также по двухколоночной схемам анализа [61, 62]. Множество работ посвящено хроматографии серусодержащих аминокислот. Определены объемы выхода производных цистеина [63] и цистина, полученных после модификации белков и последующего гидролиза [64]. Найдены условия разделения производных лизина, полученных при модификации нативного белка, а также разработаны условия ускоренного анализа этих соединений [65, 66]. Метилгистидин и некоторые редкие аминокислоты разделяли на 15-сантиметровой колонке [67]. При снижении скорости потока в реакторе вдвое было достигнуто 10—20-кратное увеличение чувствительности при определении N-метиламинокислот, которые разделяли в специально разработанных условиях [68]. Триптофан и его производные разделяли на амберлите G-50 [69]. [c.349]

    Водородные связи, которые обычно образуются в результате взаимодействия фенольного гидроксила тирозина (14) и карбоксила глутаминовой (24) или аспарагиновой кислоты, могут вносить свой вклад в стабилизацию третичной структуры. Ионные взаимодействия, например между р-карбоксильной группой аспарагиновой кислоты (18) и е-аминогруппой лизина (8), также, по-видимому, участвуют в стабилизации структуры. Ди-сульфидные связи могут быть образованы между боковыми цепями или группами К двух остатков цистеина (4, 10) естественно ожидать, что белковая структура, фиксированная такими связями, будет очень стабильна. Недавно было высказано предположение, согласно которому внутренняя часть белковой молекулы представляет собой каплю масла . Это дает основания утверждать, что гидрофобные взаимодействия могут быть важным фактором в определении третичной структуры. Неполярные группы К таких аминокислот, как фенилаланин (11), лейцин (13), триптофан (15), изолейцин (16) и валин (19), несовместимы с высокополярными молекулами воды. Рентгеноструктурное исследование подтвердило предположение, что эти группы стремятся разместиться во внутренней части пептидной цепи и исключить воду из своего непосредственного соседства. Стабилизация структуры белка, являющаяся результа-татом этого процесса, имеет энтропийную природу, и, хотя для белков оиа не может быть точпо рассчитана, ее можно оценить, измеряя термодинамические параметры переноса углеводородов из неполярных растворителей в воду. Например, переход [c.381]

    Таким образом, для чисто химических или физико-химических исследований основным требованием является точность для широкого обзора в области пищевых белков самое первое, что нужно, это — получить возможно больше материала по присутствию и содержанию незаменимых аминокпслот. В нашей практике часто встречалось, что пищевой белок является хорошим источником больщинства незаменимых аминокислот, которые легко определить (именно цистин, метионин, аргинин, гистидин, лизин, тирозин и триптофан), и все же неполноценен в отношении других аминокислот, для выявления которых нет простых и точных способов определения. Если в таких случаях руководствоваться только анализами первой группы аЛтинокислот, то можно было бы впасть в серьезную ошибку при биологической оценке данного белка. Поэтому только полный анализ аминокислот, имеющих значение для питания, может дать правильную и полноценную картину исследуемых продуктов, даже если определение отдельных аминокислот будет произведено не абсолютными, а скорее сравнительными методами. [c.9]

    Примечание. Этот метод, которым пользовались авторы, открывшие триптофан, имеет не только исторический интерес. Поль, зуясь И.М, авторы выделили из казеина 1,5% триптофана. Это количество совпадает с теми, которые получены в ряде колори-метрически.х определений или выше. Только один исследователь (Дэкин [183]) получил более высокие результаты, выделив из казеина 1,7% триптофана. В обоих случаях пользовались техническим трипсином. Гопкинс и Коле [307] употребляли на 1 кг казеина 400 мл панкреатического сока. Дэкин [183] не указывает количества взятого экстракта панкреаса. Есть основания полагать, что в течение столь длительного переваривания (7—14 дней) в значительной степени гидролизуются белки панкреаса. Выделявшийся при этом триптофан считали за триптофан казеина. Наличие в панкреасе 1,4% триптофана, может быть, является причиной того, что из казеина выделяют больше триптофана, чем определяют наиболее точными колориметрическими методами. Для разрешения этого противоречия Шо и Мак-Фарлен [577] гидролизовали казеин трипсином. Но после гидролиза им удалось выделить менее 1% триптофана. Эта величина лишь немногим ниже устаксвленной колориметрически. [c.115]

    При действии гипохлорита или гипобромита натрия а-нафтол конденсируется с метилгуанидином, агматином, гликоцнамином, аркаином и аргинином с образованием красноокрашенных пигментов. В белках аргинин — единственная аминокислота, дающая эту реакцию, и поэтому она может применяться для качественного и количественного определения аргинина в белках. Аммиак, гистидин, тирозин и триптофан могут мешать определению. [c.163]

    Из обычных аминокислот флуоресцируют только те, которые содержат ароматические системы, например триптофан, тирозин и фенилаланин [343]. Они поглощают только ниже 300 нм, и в этой области возбуждаются также многие другие распространенные соединения, например продукты гидролиза белков. Поэтому Ваалкс и Юденфренд [344] разработали для тирозина химический метод (реакция с а-нитрозо-р-нафтолом в присутствии азотной и азотистой кислот) получения флуоресцирующего продукта, который можно возбудить в видимой области при 460 нм. Такой способ применяется, например, для определения тирозина в плазме или ткани с использованием сравнительно простой методики, не требующей полного выделения тирозина. В биохимических исследованиях такой принцип — сдвиг параметров флуоресценции в более длинноволновую область — очень часто используется с целью избежать помех, обусловленных многими сопутствующими веществами, и обеспечить более надежную идентификацию. [c.435]

    Щелочной гидролиз и определение триптофана. Триптофан при кислотном гидролизе белка распадается почти полностью и поэтому для его определения, как правило, проводится отдельный анализ с щелочным гидролизом. Ранее для определения триптофана в щелочном гидролизате широко использовались многочисленные модификации колориметрического метода, основанного на реакции триптофана с пора-диметнламинобензальдегидом [7, 17, 42, 68]. Однако этот ме тод применим лишь при определении триптофана в чистых растворах и в какой-то мере в гидролизатах чистых белков, В случае использования его для определения триптофана в гидролизатах пищевых продуктов среда окрашивается в rpflSHOBato-зеленые тона, соверщенно не сопоставимые с ярко-синим стандартом [47]. [c.191]


Смотреть страницы где упоминается термин Определение триптофана в белках: [c.625]    [c.90]    [c.205]    [c.622]    [c.329]    [c.466]    [c.120]    [c.109]    [c.119]    [c.182]   
Смотреть главы в:

Методы химии белков -> Определение триптофана в белках




ПОИСК





Смотрите так же термины и статьи:

Определение триптофана в интактном белке

Определение триптофана после кислотного гидролиза белка

Определение триптофана после щелочного гидролиза белка

Триптофан

Триптофан определение содержания в белка

Триптофана остатки, определение белках



© 2025 chem21.info Реклама на сайте