Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы процесса конверсии окиси углерода

    Схема процесса представлена на рис. 13.6. В качестве примера рассматривается очистка водорода, получаемого паровой конверсией углеводородов природного газа. Выходящая из реактора газовая смесь, содержащая главным образом водород, окись и двуокись углерода, охлаждается добавкой водяного пара и конденсата примерно до 370° С и пропускается через, конвертор СО первой ступени, заполненный катализатором. Здесь 90—95% присутствующей окиси углерода превращается в двуокись с образованием эквивалентного количества водорода. Первая ступень конверсии служит в основном для получения дополнительного водорода и поэтому не может рассматриваться как операция очистки газа в узком смысле этого термина. Горячий газ, выходящий из конвертора СО, охлаждается примерно до 38° С, после чего двуокись углерода удаляют обычными регенеративными жидкостными процессами (этаноламиновая или поташная очистка). Очищенный от двуокиси углерода газ снова подогревается в печи и после добавки водяного пара проходит через конвертор второй ступени, за которым следует вторичная очистка от двуокиси углерода. Для получения водорода весьма высокой чистоты может быть добавлена третья ступень конверсии и удаления двуокиси углерода. Газ, получаемый по схеме с трехступенчатой конверсией СО, имеет следующий типичный состав (в % объемн.) окись углерода 0,02, двуокись углерода 0,01, метан 0,27, водород 99,7. [c.332]


    Если процесс ведется с целью получения водорода, то для удаления из полученной смеси окиси углерода водяной газ пропускают вместе с водяным паром над раскаленной окисью железа или другим веществом, служащим катализатором. Окись углерода взаимодействует с водяным паром, образуя водород и углекислый газ. Эта реакция так называемой конверсии окиси углерода выражается уравнением [c.47]

    Высокотемпературная паровая конверсия СО, превращающая окись углерода и пар в двуокись углерода и водород, увеличивает эффективность использования водорода и вследствие этого применяется на большинстве аммиачных установок. Низкотемпературная конверсия СО — относительно новый процесс, который требует применения чистого газа и пара, а также современной технологии производства катализаторов. В процессе происходит небольшое увеличение концентрации водорода, но главное его преимущество заключается в снижении содержания окиси углерода до такого уровня, который позволяет исключить применение дорогостоящего абсорбционного оборудования. Метанирование (получение метана в реакции СО и СОа с водородом) не является новым процессом, но его применение в производстве синтез-газа для аммиака стало возможным после разработки низкотемпературных катализаторов паровой конверсии СО. [c.117]

    Для синтеза аммиака и процессов гидрирования органических соединений необходим водород, значительную часть которого производят конверсией природного газа (в основном метана) с водяным паром [38, 39]. Первую стадию этого процесса осуществляют на никелевом катализаторе с получением синтез-газа, содержащего водород и окись углерода. Вторую стадию — конверсию окиси углерода с водяным паром — проводят на окислах железа и хрома. Ныне открыты катализаторы, содержащие окислы меди и медные шпинели, которые много активнее железохромовых и позволят полнее использовать СО в конверсии с водяным паром. [c.10]

    Весьма чувствительны к отравлению сероводородом катализаторы низкотемпературной конверсии окиси углерода, содержащие окись цинка и окись меди. При попадании сероводорода на катализатор окись цинка постепенно по ходу газа дезактивируется. Чем выше концентрация H2S и объемная скорость, тем меньше срок службы катализатора. Так, при содержании серы в газе 0,2 мг/м и объемной скорости 3000 ч срок службы катализатора НТК-4 составляет два года [4]. Учитывая увеличение объема газа в процессе в 4—6 раз, концентрацию сернистых соединений в очищенном газе, поступающем [c.60]


    Катализаторы гидролиза сернистых соединений аналогичны катализаторам процесса конверсии в тех случаях, когда очистка совмещается с конверсией окиси углерода. В качестве главного компонента они содержат окись железа. Предложены 1 атализаторы и на другой основе 81—83].  [c.305]

    Катализаторы конверсии природного газа с окислами металлов., Сущность этого процесса состоит во взаимодействии кислорода окислов металлов с углеводородами, которое приводит к образованию газа, содержащего водород, окись углерода и частично восстановленного окисла металла. [c.37]

    Теоретически производство метанола из природного газа — легко осуществимый процесс, однако на практике это оказалось весьма трудным делом. Природный газ в условиях повышенного давления и при температуре около 800—820°С подвергается разложению паром с целью получения смеси окиси углерода и водорода. Избыток водорода удаляется, иначе говоря, соотношение водорода и окиси углерода тем или иным способом подгоняется к отношению 2 1, водород и окись углерода взаимодействуют в присутствии катализатора, образуя метанол, в соответствии с последовательно протекающими реакциями, приведенными ниже паровая конверсия метана [c.221]

    Д е г и д р о генизация боковой цепи. Примером этой реакции может служить конверсия этилбензола, получаемого при алкилировании бензола этиленом, до стирола. Реакция протекает в интервале температур от 650 до 700° С или при более низких температурах, а случае применения соответствующих катализаторов. Так, Облад и др. [30] нашли, что в контакте с окисью хрома реакция проходит при 480° С. Во время мировой войны стирол, используемый для получения синтетического каучука, производился главным образом посредством процесса Доу [16] с использованием в качестве катализатора промотиро-ванной карбонатом калия и стабилизированной окисью меди, окиси железа, нанесенной на окись магния. Температура устанавливалась в интервале от 600 до 660° С. Для удаления отложившегося на катализаторе углерода использовался пар в количестве до 2,6 кг на килограмм этилбензола. Реакции дегидрогенизации также способствовало применение бензола в качестве разбавителя или низких давлений. Выходы продукта доходили до 35% за проход, а предельные выходы — порядка 90%. Время действия катализатора — год или больше. [c.107]

    В настоящее время основным сырьем в производстве аммиака являются природный газ, попутные газы нефтедобычи, жидкие углеводороды и коксовый газ. Доля аммиака, получаемого из твердого топлива и электролитического водорода, все более снижается. При современных методах получения аммиака все большее значение приобретают процессы очистки газа. Из технологических газов на разных стадиях получения аммиака удаляют такие примеси, как сернистые соединения, двуокись и окись углерода, ацетилен, окислы азота, кислород и др. Эти примеси, содержащиеся в газе в различных концентрациях, по-разному влияют на процесс. Например, сернистые соединения оказывают сильное влияние на все катализаторы, применяемые в синтезе аммиака серосодержащие соединения, присутствующие в исходном углеводородном сырье, ухудшают работу катализаторов конверсии метана, что приводит к повышению температуры процесса и увеличению расхода кислорода. При использовании наиболее экономичного способа производства аммиака, который основан на методе бескислородной каталитической конверсии метана в трубчатых печах, содержание сернистых соединений в природном газе не должно превышать 1 мг/м . [c.7]

    Рабочая температура для большинства современных катализаторов конверсии СО составляет 400—500 °С. Поэтому по завершении процесса конверсии метана конвертируют окись углерода при 400—500 °С на специальном катализаторе в отдельном аппарате. Обычно стремятся к возможно более полному превращению СО в СОг как для лучшего использования газа, так и потому, что остающаяся в газе окись углерода отравляет катализатор процесса синтеза аммиака, а удаление окиси углерода из газовой смеси является сложной и дорогой операцией. Разрабатывают также катализатор, на котором конверсию окиси углерода можно вести при 200—250 °С. В этом случае содержание СО снижается до 0,3%, что позволяет значительно упростить очистку газа, применяя для этого лишь предкатализ (стр. 200). [c.176]

    Приготовленный описанным способом катализатор содержит окись никеля, которая должна быть восстановлена, так как каталитический процесс конверсии метана идет только на металлическом никеле. Восстановление катализатора производится в контактном аппарате при высокой температуре водородом или смесью водорода и окиси углерода. В производственных условиях перед восстановлением катализаторную массу нагревают до 900—950 °С топочными газами. [c.30]


    В Руре на всех заводах газ синтеза получался из кокса в стандартных генераторах синего водяного газа . На некоторых заводах этот процесс дополнялся другими процессами, как, например, термическим разложением газа коксовых печей. Для получения более высокого отношения Hg СО, требуемого для обычного синтеза из окиси углерода и водорода, часть водяного газа, смешанного с избытком водяного пара, подвергали конверсии на специальных установках, где в результате взаимодействия окиси углерода и воды получались водород и двуокись углерода. Конверсию проводили при 450—500° на катализаторе окись железа—окись хрома. На двух заводах в Руре газ с высоким содержанием водорода, полученный при термическом разложении газа коксовых печей, смешивали с водяным газом, и вследствие этого уменьшалось количество водяного газа, подлежавшего конверсии. [c.282]

    Большим успехом химиков является разработка процесса низкотемпературной конверсии окиси углерода при 200—250° С. Это стало возможно в результате создания высокоактивных катализаторов. При осуществлении конверсии метана с водяным наром образуются водород и окись углерода по реакции СН4- -Н20 = ЗН2 + С0. Этот газ, содержащий избыточный [c.14]

    Высокотемпературная (некаталитическая) конверсия метана представляет собой неполное горение его в кислороде, проводимое в свободном объеме в отсутствии катализаторов. Процесс горения протекает при температуре 1350—1400° С. Основными продуктами горения являются водород и окись углерода. Высокотемпературная конверсия метана описывается уравнением [c.19]

    Особенно экономично также превращение в водяной газ коксового или природного нефтяного газов. Для этого можно конвертировать их водяным паром в системе труб с наружным обогревом или проводить неполное сжигание газов с ограниченным количеством кислорода в присутствии водяного пара. При 1000— 1100° удается осуществить почти полную конверсию метана и других углеводородов в окись углерода и водород одновременно образуется и двуокись углерода. В коксовом газе, подвергнутом такой конверсии путем частичного сжигания с кислородом и водяным паром, содержится около 55% И,,, 16% СО и 23% N3. Процесс проводят в присутствии никелевого катализатора, поэтому исходный газ должен быть тщательно очищен от серы. [c.88]

    Далее получающаяся окись углерода конвертируется в водород по реакции (VI, 4). Поскольку реакция (VI, 5) обратима и протекает с поглощением тепла, для сдвига равновесия конверсия метана проводится при высокой температуре —порядка 1400°С (высокотемпературная конверсия). В присутствии катализатора процесс осуществляется при температуре 800—900°С (каталитическая конверсия). В качестве катализатора применяется никель, нанесенный на окись алюминия или окись магния. Никелевый катализатор чувствителен к примеси соединений серы в газе. [c.95]

    Применение кипящего слоя позволяет проводить процесс в изотермических условиях при максимально возможной температуре и тем самым достигнуть большей скорости конверсии и более глубокого превращения углеводородов в водород и окись углерода, а в контактных аппаратах трубчатого типа — интенсивно и равномерно подводить теплоту к слою катализатора и избежать прогорания труб. [c.149]

    Окись углерода сгорает на втором слое полностью. Это обусловливает разогрев контактной массы до 540—560°С и предопределяет относительно невысокую степень конверсии SO2 на втором слое (Ах = 32%) вследствие приближения процесса к условиям равновесия. В связи с этим решить однозначно, что тормозит реакцию окисления сернистого ангидрида (СО или OS) на основании данных, полученных на промышленном аппарате, не представляется возможным, так как истинную активность катализатора на втором слое, где еще достаточно много СО и мало OS, определить нельзя.  [c.212]

    Как видно из табл. 5, при восстановлении катализатора водородом конверсия пропилена падает с 60 до 10%, т. е. до величины более низкой, чем при действии одного алюмосиликата. Отмечается также, что ослабляющее действие на процесс полимеризации оказывают окислы металлов натрия, кальция, бария, цинка, магния, циркония, а также бензол, сероводород, ацетилен, окись углерода. [c.37]

    Окись меди входит в состав сложных катализаторов, ускоряющих некоторые процессы окисления водой (конверсия метана [587] и окиси углерода [417]) для серебряных и медных контактов характерно также окисление окисью азота (пропилена, окиси углерода, толуидинов др. молекул) [592, 1256, 1163—1166]. [c.1218]

    В промышленности в настоящее время применяют несколько схем процессов гидрирования кислородсодержащих примесей. В старых схемах, в которых конверсия окиси углерода осуществлялась на среднетемпературном катализаторе, а непрореагировавшая окись углерода удалялась медноаммиачньку раствором, продолжают работать установки продуцирующего и непродуцирующего предкатализа [67]. [c.404]

    Еще меньше ясности имеется в отношении механизма паровой конверсии высших углеводородов. Установлено лишь, что в процессе паровой конверсии гомологов метана происходит преобразование их в метан, т. е. протекает процесс частичной конверсии. Цредпола-гается [44], что углеводород на поверхности катализатора диссоциирует с образованием радикалов СН , которые реагируют с водяным паром и водородом. В результате взаимодействия радикалов с молекулами воды, адсорбированными на поверхности катализатора,, образуются окись углерода и водород, а с водородом — метан и углерод. Последний реагирует с водяным паром с образованием СО и На-Таким образом, рассмотренный механизм конверсии включает крекинг углеводородов, гидрирование продуктов крекинга й газификацию, а образование углерода является неизбежной промежуточной - тадией конверсии. [c.87]

    Образующиеся в процессе конверсии углеводородов газы содержат Нг, СОг, СО, НгО и непрореагировавший метан. Для проведения синтеза аммиака полученный газ очищают от окиси и двуокиси углерода. Окись углерода конвертируют в двуокись в присутствии железо-хромового катализатора при температуре 370—480° С. Содержание окиси углерода в газе снижается с 16% на входе до 1% на выходе из конвертора. В процессе конверсии окиси углерода стали применять цинковый катализатор,, активный при температуре 200-—320Х. Фирма Girdler atalysts разработала катализатор типа G-66 , промышленные испытания которого показали, что содержание окиси углерода при его использовании может быть снижено с 20 до 0,2% при температуре 180°С. Срок службы нового катализатора — более пяти лет. Конверсий окиси углерода осуществляется в одну стадию вместо обычных двух, что снижает капиталовложения на 10—25% [50, 51]. [c.350]

    Как показал рентгеноструктурный анализ, катализаторы, приготовленные на основе окиси железа, содержат а-модификацию РсаОз — кристаллическую окись железа ромбоэдрической структуры. Активной же частью катализатора в процессе конверсии окиси углерода является магнетит Рвз04, состоящий из кристаллов кубической системы. Для превращения а-Ре Оз в активный магнетит катализатор восстанавливают газовой смесью, содержащей водород и окись углерода. Согласно исследованиям А. М. Алексеева, И. П. Кириллова, восстановление железохромового катализатора сопровождается экзотермическими реакциями, а присутствие окиси углерода в газовой смеси может вызывать восстановление РегОд до металлического железа. При этом не только снижается активность катализатора, но и создаются условия для протекания весьма быстрой экзотермической реакции окисления железа водяным паром, которая может вызвать резкий подъем температуры и перегрев катализатора. В результате этого возможно необратимое снижение каталитической активности, а в отдельных случаях даже спекание катализатора и его механическое разрушение, приводящее к увеличению гидравлического сопротивления при прохождении реакционной смеси через катализатор. Для уменьшения количества тепла, выделяющегося при восстановлении катализатора конверсии окиси углерода, было предложено применять в качестве восстановителя газовую смесь с низким содержанием СО. [c.31]

    В составе многих применяемых в этом процессе никель-алюми-ниевых катализаторов содержатся добавки окислов щелочных металлов, окись хрома и многие другие трудновосстанавливаемые и тугоплавкие окислы металлов. Роль этих добавок заключается в предотвращении или замедлении отложения углерода на катализаторе в процессе конверсии бензина. С целью предотвращения зауг-лероживания катализатора предлагается также подавать смесь углеводородного сырья с водяным паром на катализатор при температуре равной или более 350° С. Для этого же реко.мендуется рециркулировать часть образующего газа с таким расчетом, чтобы объемное соотношение возвращаемого газа и исходных реагентов было равно 2—10. Использование последнего приема позволило увеличить пробег катализатора без понижения активности почти в три раза (с 200 до 550 ч). [c.44]

    С целью предотвращения выпадения и накопления углерода к катализаторам добавляют щелочь, катализирующую процесс газификации углерода. В данном случае добавка щелочи более оправдана, чем в катализаторах полной конверсии, поскольку до 500 °С щелочи практически не летучи. Из щелочных и щелочноземельных металлов чаще рекомендуется добавлять калий, хотя есть рекомендации вводить Ва, Mg и Са. Имеется большое число патентов [31] на катализаторы частичной конверсии, содержащие никель, окись алюминия и щелочи. Используют также катализаторы, содержащие 10—30% Ni на AI2O3 [32]. В такой катализатор добавляют 5—25% Zn или Сг и промотируют названными выше добавками. [c.83]

    После первой стадии газы охлаждают до 175-350 , поскольку бопее низкие температуры благоприятствуют более высоким степеням превращения СО. Реакцию проводят в присутствии более активных окисных медноцинковых катализаторов, в которых отношение 2п Си обычно изменяется от 0,5 1 до 3 1. В этом случае величина давления также подбирается с учетом остальных параметров и может достигать 30-40 атм. Среднечасовая скорость подачи газа 300-4000 степень превращения составляет 95-99%, Как и на первой стадии, процесс проводится в адиабатическом реакторе. Концентрация СО в продукте составляет 0,05-0,5%. После низкотемпературной конверсии СО 2 извлекают из газа. Если непрореагиров вшая окись углерода может оказывать отрав- [c.164]

    Пром. синтез КНз з N3 и Н3 был осуществлен в результате работ Ф. Габера и К. Боша в нач. 20 в. на железных катализаторах при давлениях ок. 300 атм и т-ре 450-500 °С. В настоящее время используют более активные Ре-катализаторы, промотированные У2О5, СаО, А13О3 и др. оксидами, что позволяет вести процесс при более низких давлениях и т-рах. Водород для синтеза N143 получают путем двух последоват. каталитич. процессов конверсии СН4 или др. углеводородов (СН4-(-НзО- СО-(-ЗН3) на Н1-катализаторах и конверсии образующегося оксида углерода (СО-ь НзО-> СОз + Н2). Для достижения высоких степеней превращения последнюю р-цию осуществляют в две стадии высокотемпературной (315-480 °С)-на Ре-Сг-оксидных катализаторах и низкотемпературной (200-350°С)-на Си-2п-оксидных катализаторах. Наиб, крупный потребитель ЫНз-произ-во НЫОз окислением ЫНз до N0 на Р1 и Р1-КЬ сетках при 900-950 °С. [c.336]

    Blake разработал процесс, в котором метан и водяной пар, взятые в соответствующих количествах, реагируют в присутствии катализатора (например никель — окись церия — окись алюминия) при температурах 400—700°, образуя водород и двуокись углерода с очень небольшим количеством окиси углерода или совсем без нее. Так при пользовании 10 объемами водяного пара и 5 объемами СН при 508° наблюдается конверсия метана на 90%, а получаемый сухой газообразный продукт содержит только 2% окиси углерода (после удаления СОг). [c.317]

    На всех заводах окись углерода конвертируют в двуокись для этого к газу добавляют избыток водяного пара полученную смесь подогревают до 300—400 °С и пропускают над таблетироваяпым окис-иожелезиым катализатором. Выходящий из конвертора газ, нагревающийся за счет тепла конверсии до 500—600 °С, обычно пропускают через котел-утилизатор для получения водяного пара, потребляемого в процессе. [c.434]

    Вторую стадию, т. е. дегидрогенизацию смеси бутенов в бутадиен, необходимо проводить в вакууме. При атмосферном давлении бутеиы дегидрогенизируются приблизительно на 50% снижение парциального давления до 100 мм сопровождается повышением конверсии до 80 %. Поэтому смесь бутенов разбавляют водяным паром. Последний, однако, обладает тем недостатком, что довольно быстро дезактивирует катализатор. Но преимущества такого приема окупают этот недостаток процесс является безопасным, а регенерация катализатора протекает легче, поскольку углерод, образующийся в результате пиролитических реакций, реагирует с водяным паром, образуя водяной газ. Эта реакция является экзотермичной и компенсирует часть тепловой энергии, необходимой для дегидрогенизации бутенов, которая, наоборот, имеет отрицательный теп.ловой баланс. Глубокое влияние на процесс оказывает температура. Последняя не должна быть ниже 600° и не должна превышать 700°. До 600° процесс идет с более низким выходом при температуре свыше 700° имеют место потери за счет пиролитических реакций. Оптимальная температура составляет примерно 650°. В качестве катализатора лучше всего зарекомендовала себя активированная окись алюминия с осажденной на ней окисью хрома. Поскольку этот катализатор быстро дезактивируется водяным паром, в последнее время начинают применять смешанный окисный катализатор, о котором мы упоминали выше (см. стр. 65), устойчивый в описанных условиях. Оп сохраняет свою активность в течение 7 месяцев, обладает большой избирательной способностью и нечувствителен как к водяному пару, так и к катализаторным ядам. На этом катализаторе процесс идет с выходом бутадиена 70—85 %. [c.538]

    Водород, окись углерода, синтезгаз, HGN, ацетилен и сажу получают, как правило, из сухих природных газов. Синтезгаз образуется при конверсии метана водяным паром либо при неполном горепии метана в кислороде. Состав получающейся при конверсии метана водяным паром смеси газов (СН4, НоО, СО, На, Oj) зависит от темп-ры и количества нара, вводимого в процесс. Реакция идет со значительным потреблением тепла, проводится обычно на никелевом катализат(и)е при 700—800 . Реактор представляет собой трубчатую печь. Реагирующие газы проходят по вертикальным трубкам из жаропрочной стали, заполненным катализатором. Снаружи трубки обогреваются горячими дымовыми газами. При неполном горении метана в кислороде (наз. также кислородной конверсией) процесс протекает при 1400— 1300 без катализаторов, в печах, выложенных огнеупорным материалом. Состав сырого газа, получаемого при конверсии метана водяным паром и при неполном горении метана в кислороде, приведен в таблице. [c.386]

    Получение водорода и двуокиси углерода взаимодействием окиси углерода с водяным паром в присутствии окисных железных катализаторо является одним из первых применепий катализа в промышленности. Технология этого процесса, который широко известен под названием конверсии СО, значительно усовершенствована по сравнению с первоначальным ее уровнем. В настоящее время процесс весьма широко применяется для получения и очистки водорода. Процесс применим для очистки водорода, получаемого в генераторах водяного газа, реакторах паровой конверсии углеводородов, процессами частичного окисления и железопаровым. Его можно также использовать для изменения отношения водород окись углерода в синтез-газе и очистки газов, получаемых в генераторах защитной атмосферы для термообработки. Поскольку процесс этот достаточно подробно описан в литературе, ниже рассмотрены лишь важнейшие его особенности, причем особый упор делается на применении его для очистки газов. [c.338]

    Выходы толуола при дегидроциклизации -гептана достигают 60% за проход при следуюш,их условиях процесса давление атмосферное, температура 550° С, объемная скорость продукта (объем объом/час) от 0,03 до 0,5 с катализатором окись хрома на окиси алюминия (6 атомных % Сг). В результате конверсии при 500° С, атмосферном давлении и объемной скорости 3,6, были получены следуюш,ие продукты (в вес. %) 12,1% толуола, 11,5% гептенов, 74,0% непрореагировавшего и-гептана, 0,17% углерода и 1,7% сухого газа (97,1% водорода).Выход низкокипяш,их фракций, образовавшихся в результате крекинга, составил только 0,5 от сырья. [c.168]

    К этой группе относятся газификация твердых топлив (условно) бурого угля, торфа [93, 326, 327] полукоксование в сочетании с газификацией [47], а также многочисленные другие пропессы, разнообразные по технологии и аннаратурному оформлению. В числе этих процессов [10, 44, 140, 267, 301, 331, 338, 389, 640, 761] окисление SO2 в серный ангидрид на ванадиевом катализаторе нафталина во фталевый ангидрид бензола в малеиновый ангидрид этилена в окись этилена, а также хлористого водорода в хлор и т. д. дегидрирование бутана, бутилена, альдегидов гидрирование нефтяного сырья для иолучения нафталина алкилирова-нне бензола иропан-пропиленовой и бутан-бутиленовой фракциями на алюмосиликатном катализаторе хлорирование метана, этилена, нентанов синтез аммиака, цианистого водорода из метана и аммиака, дивинила из этилового сиирта полимеризация ацетилена в бензол в слое инертного материала конверсия метана, окиси углерода и т. д. прокаливание катализаторов обжиг известняка, цемента, гипса вснучивание перлитов цементация изделий и вулканизация в слое инертной насадки (условно). [c.422]

    Таким образом, содержание хлора в катализаторе можно регулировать, меняя концентрации в реагирующей газовой смеси хлорированного углеводорода, насыщенного углеводорода и диоксида углерода. Кроме того, соединения щелочноземельных металлов сохраняют хлориды, из которых хлор переходит на серебро, и понижают чувствительность серебра к перехлориро-ванию. Щелочноземельные металлы облегчают ингибитору управление конверсией. Катализаторы всех промышленных процессов содержат некоторое количество щелочных или щелочноземельных добавок. Кроме реагентов и продуктов — этилена, кислорода, окиси этилена, диоксида углерода и воды — в реагирующих газах всегда присутствуют газообразные углеводороды и ингибиторы, как правило хлорированные углеводороды. Поэтому любая теоретическая или эмпирическая кинетическая модель должна объяснять действие большинства этих компонентов. Из них наименее важна вода, затем окись этилена и, возможно, сам этилен, если его концентрация обеспечивает насыщение поверхности. [c.239]

    Природный газ очищают от сернистых соединений (HjS и др., см. Гшов о шстка), смешивают с водяным паром, нагревают и направляют на никелевый катализатор, где при аОО пропсходит конвер , ия (см. Aleman). Темп-ра поддерживается посредством сжигания нек-рой части исходного газа. После конверсии метана и др. углеводородов) полученная газовая смесь В. и окиси углерода вновь смешивается с водяным паром и направляется на катализатор (Fe с добавкой Сг пли Mg), где прп 500—550° происходит конверсия СО. Далее газ проходит очистку от (Юг и остатков СО. Другой способ получения В. из природного га.эа — неполное окисление метана — основан на реакции GH4 + /2 О — СО 2Пг, идущей с выделением теплоты. Дальнейшие стадии конверсии СО н очистки аналогичны применяемым в первом способе. Целесообразно сочетать вместе оба способа получения В. из природного газа, т, к. при этом для протекания эндотермич. реакции конверсии метана и др. углеводородов используется теплота, выделяющаяся прн их неполном окислении. Для проведения такого процесса исходный природный газ смешивается с водяным паром и кислородом. Реакции конверсии и неполного ок.псления протекают одновременно на никелевом катализаторе при 800—900. Если же прп первоначальном смешении вместо кислорода исполь.зуют воздух, обогащенный кислородом, то получают В, в смеси с азотом, пригодный для синтеза аммиака. В,, получаемый из природного газа, является наиболее дешевым. [c.311]


Смотреть страницы где упоминается термин Катализаторы процесса конверсии окиси углерода: [c.85]    [c.21]    [c.551]    [c.25]    [c.538]   
Смотреть главы в:

Технология соединений связанного азота -> Катализаторы процесса конверсии окиси углерода




ПОИСК





Смотрите так же термины и статьи:

Катализаторы окиси углерода

Катализаторы процессов конверсии метана и окиси углерода



© 2025 chem21.info Реклама на сайте