Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы процесса конверсии метана

    Метан является главной составной частью природного газа. Каталитическая конверсия природного газа — основной метод получения водорода в промышленности, и в первую очередь — для синтеза аммиака. Процесс проводят в интервале температур 400—1200° С при давлениях от 1 до 30 атм на катализаторах, активным компонентом которых является никель. [c.3]


    Схема процесса представлена на рис. 13.6. В качестве примера рассматривается очистка водорода, получаемого паровой конверсией углеводородов природного газа. Выходящая из реактора газовая смесь, содержащая главным образом водород, окись и двуокись углерода, охлаждается добавкой водяного пара и конденсата примерно до 370° С и пропускается через, конвертор СО первой ступени, заполненный катализатором. Здесь 90—95% присутствующей окиси углерода превращается в двуокись с образованием эквивалентного количества водорода. Первая ступень конверсии служит в основном для получения дополнительного водорода и поэтому не может рассматриваться как операция очистки газа в узком смысле этого термина. Горячий газ, выходящий из конвертора СО, охлаждается примерно до 38° С, после чего двуокись углерода удаляют обычными регенеративными жидкостными процессами (этаноламиновая или поташная очистка). Очищенный от двуокиси углерода газ снова подогревается в печи и после добавки водяного пара проходит через конвертор второй ступени, за которым следует вторичная очистка от двуокиси углерода. Для получения водорода весьма высокой чистоты может быть добавлена третья ступень конверсии и удаления двуокиси углерода. Газ, получаемый по схеме с трехступенчатой конверсией СО, имеет следующий типичный состав (в % объемн.) окись углерода 0,02, двуокись углерода 0,01, метан 0,27, водород 99,7. [c.332]

    Паровая конверсия метана без катализатора протекает с приемлемой скоростью и глубиной превращения на шамотной насадке только-при температурах 1250—1350 °С [19]. Опыты, выполненные в пустотелом кварцевом реакторе [20], показали, что при объемной скорости 200 ч , отношении пар газ, равном 2 1, и атмосферном давлении даже при 1000 °С степень конверсии метана не превышает 8—9%, а при 900 °С она равна всего 1,1%. При температурах 760—800 °С паровая конверсия метана вообще не протекает [21]. В случае нагревания гомологов метана в смеси с водяным паром без катализатора выше 500—600 °С протекают с большой скоростью процессы пиролиза с образованием непредельных углеводородов (этилена, пропилена и др.). В процессе пиролиза образуются также метан, этан, пропан п в относительно небольших количествах — водород. [c.79]

    Основное затруднение в процессе конверсии жидких углеводородов по сравнению с конверсией природного газа заключается в том, что высшие углеводороды легче распадаются с образованием свободного углерода, чем метан, что приводит к зауглероживанию катализатора. [c.90]


    Не оставляя этого метода конверсии, промышленность Германии использовала также и другой способ получения синтез-газа из метана, получивший название процесса К У. При этом методе метан и кислород после предварительного подогрева подвергают неполному сжиганию при высокой температуре (700—1000°) над никелевым катализатором. Происходящая реакция может быть выражена уравнением  [c.195]

    Процесс конверсии ведут с водяным паром при давлении 150—200 бар. Сырье вводят на катализатор при температуре 500—660° С, объемной скорости I—15, соотношении водяной пар углерод, равным 3—4 1. Внутренний диаметр зоны конверсии равен 10—100 мм, полезная длина — 6—15 мм. Этим способом при температуре 700—900° С можно получить водород или газ для синтеза аммиака, либо при температуре 500—750° С— городской газ, обогащенный метаном [c.155]

    Наиболее радикальным решением проблемы конверсии гомологов метана следует признать двухступенчатый процесс паровой конверсии. На I ступени процесс ведется в- адиабатическом реакторе при 450—520 °С с получением газа, содержащего преимущественно метан. На II ступени проводят полную конверсию метана в реакционных трубах с внешним обогревом с использованием известных, хорошо зарекомендовавших себя катализаторов. В последние годы для частичной конверсии углеводородов разработаны высокоэффективные стойкие катализаторы. [c.82]

    Процесс конверсии метана в метано-водородных смесях в кипящем слое катализатора успешно осуществляется при больших объемных скоростях в расчете на исходный метан и достигается высокая степень его конверсии. Однако с уменьшением содержания СН4 в смеси высокая степень конверсии при той же температуре достигается при меньших объемных скоростях в расчете на метан. Общая интенсивность процесса fi расчете на смесь остается практически неизменной  [c.178]

    Конверсия. При конверсии из одного объема метана можно получить два объема водорода. Процесс конверсии протекает при нагревании метана до 1000—1100°С, а в присутствии катализатора—и при более низкой температуре. В этом случае метан расщепляется на водород и углерод. Из смеси окиси углерода с водородом можно получить метиловый и этиловый спирты и другие продукты, в том числе газ для сварки, растворители, синтетический каучук, лаки. [c.194]

    Эффективность работы катализатора при прочих равных условиях (температура, состав исходной смеси и т. д.) зависит также от времени пребывания газовой смеси в зоне катализа. О времени пребывания газов в этой зоне обычно судят по количеству (объему) газа, проходящего в единицу времени через единицу объема катализатора. Эта величина называется объемной скоростью и имеет размерность м Цм -ч), или ч . В процессе конверсии метана объемную скорость относят к объему сухого исходного газа (метан или природный газ), приведенного к нормальным условиям (0°С и 760 мм рт. ст.). [c.25]

    Процесс конверсии осуществляется по следующей типовой схеме. Природный газ очищают от сернистых соединений до содержания серы в нем менее 1 см /м , нагревают до 430° С и смешивают с водяным паром, нагретым до 580° С. Газо-паровая смесь поступает в первую ступень — трубчатую печь, где на никелевом катализаторе при давлении 30 ат и температуре 810° С метан реагирует примерно [c.111]

    Синтез-газ (от процесса получения ацетилена) и метан, предварительно увлажненные в сатурационной башне, орошаемой горячей водой, подогреваются до 450° С, смешиваются с кислородом в соотношении 1,5 1 и поступают в конвертор метана, где происходит конверсия метана с кислородом и паром на никелевом катализаторе при 1100° С и давлении 0,6—0,7 ат. Содержание метана по выходе из конвертора не должно превышать 0,3—0,5%. Конвертированный газ увлажняется впрыскиванием конденсата и добавлением пара до соотношения пар газ—0,68 1, охлаждается свежим синтез-газом до 400°С и подается в конвертор окиси углерода, где при 500° С взаимодействует с паром на железо-хромовом катализаторе до содержания окиси углерода в конвертированном газе около-4%. Затем охлажденный до 30°С газ очищается от двуокиси углерода абсорбцией водным раствором моноэтаноламина в насадочных скрубберах в две ступени при давлении 0,15 и 30 ат. [c.335]

    Важная те.хнологическая ступень при производстве ЗПГ — конверсия окислов углерода в метан в процессе химической реакции с водородом в присутствии катализатора (см. гл. 10). Реакции [c.97]

    Кинетика селективной паровой конверсии этана (в смеси с метаном) на никель-хромовом катализаторе. Для изучения этого процесса мы предложили методику обработки результатов исследования кинетики химического процесса на проточном градиентном реакторе нашей конструкции в неизотермических условиях [36]. Основной особенностью кинетики конверсии этана с водяным паром является то, что скорость данного процесса сначала возрастает, достигает максимума и лишь затем (при значительной степени превращения углеводорода) начинает уменьшаться. В целом процесс имеет выраженный автокаталитический характер. Полученные нами экспериментальные данные удовлетворительно описываются эмпирическим кинетическим уравнением [c.122]


    В таблице 6 приведены данные по изменении концентраций метана и кислорода на поверхности зерна и в объеме, а также степени превращения водяного пара, по длине слоя катализатора. Как видно из табл.6, внешнеди узионное торможение скорости реакции существует как по кислороду, так и по метану. Отрицательные степени превращения водяног пара свидетельствуют о накоплении водяного пара в процессе конверсии метана в результате протекания реакций горения. [c.230]

    Термодинамические исследования показали, что, изменяя условия проведения этого процесса, из жидких углеводородов можно получить метан или газ с повышенным содержанием водорода. Экспериментальные исследования показали, что паровая конверсия н-гептапа на никель-хромовом катализаторе идет уже при температуре 240° С и, следовательно, является низкотемпературной. В начальный период испытания наблюдается заметное падение активности катализатора с последующей ее стабилизацией [59]. Для данного процесса перспективным является предложенный нами никелевый катализатор, нанесенный на активную окись алюминия. [c.124]

    Эта серия опытов позволила сделать вывод о том, что с повышением давления в аппарате процесс парокислородной конверсии метана можно осуществить с высокой интенсивностью в кипящем слое катализатора без опасения его перегрева. Камеру предварительного смешения кислорода с метаном конструктивно можно оформить таким образом, что термическое разложение метана с образованием сажи в момент смешения практически полностью исключается. [c.175]

    Для создания реактора одностадийной газификации необходимо одновременно катализировать реакции паровой конверсии оксида углерода и метанирования. Это потребует бифункционального катализатора. Так как реакции паровой конверсии оксида углерода и метанирования обычно катализируются никелем или железом, то комбинации никеля и других переходных металлов с оксидами или карбонатами щелочных металлов могут использоваться как катализаторы одностадийной газификации [129—131]. Результаты обнадеживают, но для обеспечения приемлемой- производительности обычно необходимы большие количества катализатора. Патент в этой области [131] описывает смежный процесс, в котором используются преимущества катализаторов со щелочными металлами для газификации. Однако вместо проведения стадии метанирования в газогенераторе используются повышенные парциальные давления водорода. Это приводит к существенному увеличению в гидрогазификации (см. ниже), и, в принципе, метан получают в термонейтральном процессе. [c.93]

    Для компенсации ингибирующего действия СО можно повышать температуру процесса, но это приводит к возрастанию скорости образования зеленого масла и, в дальнейшем, к отравлению катализатора. Вследствие этого на этиленовых производствах предусмотрена очистка метан-водородной фракции от СО каталитической конверсией его в метан. [c.51]

    Три реактора размещены в газоходах топки, обогреваемой горелкой J0. Бензин и вода насосами 1 подаются в змеевик испарителя 2. Смесь паров поступает на сероочистку в реактор 3, заполненный, например, поглотителем ГИАП-10-2. Паровая смесь, попавшая в реактора, в его верхней части конвертируется в метан. В нижней более нагретой части этого же реактора происходит конверсия метана. Газ уходит через змеевик 4а, отдавая часть своего тепла на первую фазу процесса, который заканчивается в реакторе 5 конверсией окиси углерода. Готовый газ направляется в конденсатор 6 для отделения влаги. Во всех трех реакторах для отвода газа предусмотрены внутренние цилиндрические вставки для уменьшения толщины прогреваемого слоя катализатора. [c.150]

    При проведении процесса без применения катализатора скорость реакции между метаном и водяным паром незначительна, и термодинамическое равновесие в интервале температур 700— 1050° С не устанавливается. В практических условиях для конверсии метана с водяным паром в отсутствие катализатора необходимы температуры порядка 1300—1400° С. [c.145]

    Следует отметить, что состав, а также способ приготовления катализатора, используемого в этом процессе, должны выбираться с учетом характеристики исходного газа и температурного режима. В углеводородной смеси, направляемой на конверсию, могут Находиться метаН, его гомологи и олефины. При конверсии углеводородов возможен их термический распад с выделением углерода. Углерод, откладывающийся на катализаторе, приводит к резкому падению активности последнего. Поэтому рассмотрение [c.145]

    Сущность процесса паровой конверсии газа состоит в том, что метан, содержащийся в газе, реагируя при высокой температуре с водяным паром в присутствии никелевого катализатора, конвертируется до водорода и окиси углерода  [c.320]

    Еще меньше ясности имеется в отношении механизма паровой конверсии высших углеводородов. Установлено лишь, что в процессе паровой конверсии гомологов метана происходит преобразование их в метан, т. е. протекает процесс частичной конверсии. Цредпола-гается [44], что углеводород на поверхности катализатора диссоциирует с образованием радикалов СН , которые реагируют с водяным паром и водородом. В результате взаимодействия радикалов с молекулами воды, адсорбированными на поверхности катализатора,, образуются окись углерода и водород, а с водородом — метан и углерод. Последний реагирует с водяным паром с образованием СО и На-Таким образом, рассмотренный механизм конверсии включает крекинг углеводородов, гидрирование продуктов крекинга й газификацию, а образование углерода является неизбежной промежуточной - тадией конверсии. [c.87]

    Образующиеся в процессе конверсии углеводородов газы содержат Нг, СОг, СО, НгО и непрореагировавший метан. Для проведения синтеза аммиака полученный газ очищают от окиси и двуокиси углерода. Окись углерода конвертируют в двуокись в присутствии железо-хромового катализатора при температуре 370—480° С. Содержание окиси углерода в газе снижается с 16% на входе до 1% на выходе из конвертора. В процессе конверсии окиси углерода стали применять цинковый катализатор,, активный при температуре 200-—320Х. Фирма Girdler atalysts разработала катализатор типа G-66 , промышленные испытания которого показали, что содержание окиси углерода при его использовании может быть снижено с 20 до 0,2% при температуре 180°С. Срок службы нового катализатора — более пяти лет. Конверсий окиси углерода осуществляется в одну стадию вместо обычных двух, что снижает капиталовложения на 10—25% [50, 51]. [c.350]

    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]

    Окисление метана до формальдегида нод низким давлением в присутствии следов окиси азота в качестве катализатора применялось в Германии (Гутегофнунгсгютте.) В 1940 -г. была построена установка в Румынии в литературе имеется подробное описание ее [18]. Процесс проводился при очень Малой глубине конверсии за проход и температурах реакции от 400 до 600° С в коротких трубках, облицованных керамическими плитками. В качестве сырья применялась смесь, состоящая из 1,0 части метана и 3,7 частей воздуха, к которой добавлялось 0,08% азотной кислоты в качестве катализатора. Отношение метановоздушного " сырья к рисайклу равнялось 1 9. Формальдегид вымывался из выходящего газа, образуя примерно 5%-ные водные растворы. Выход его на расходованный метан составлял 35%. [c.345]

    Исследованию механизма гидрирования сероорганических соединений на различных катализаторах посвящено много работ. Процесс гидрирования достаточно сложен. Предполагается, что он протекает через ряд промежуточных стадий с образованием побочных продуктов. Авторы [85], исследовавшие гидрирование сульфидов и дисульфидов в синтез-газе на катализаторах — окислах Ре, N1, Со, Мп, С(1, Сг, Мо, V, А1, Мд, показали, что первоначально происходит гидрирование до меркаптана, который затем превращается Б сероводород. В работе [86] исследовано гидрирование метилмеркаптана и тиофена над алюмокобальтмолибденовым катализатором в интервале температур 200—260 °С. Показано, что реакция гидрирования метилмеркаптана протекает в двух направлениях 1) гидрирование с образованием метана и сероводорода, 2) диспро-порционирование с образованием диметилсульфида и сероводорода. Максимальная конверсия в метан получена над катализатором с соотношением атомов кобальта и молибдена 1 3, конверсия на таком катализаторе в диметилсульфид минимальна. Тиофен разлагается при более высокой температуре, образуя бутан, бутеиы и серЪводород. Методом изотопного обмена [87] над МоЗг и 3г при гидрировании этилмеркаптана было установлено, что помимо [c.306]

    Более эффективный привы, позволяющий осуществить сдвиг равновесия в оптимальных условиях ведения процесса, состоит в удалении из зоны реакции одного из образующихся компонентов - водорода или углекислоты. Удаление водорода возможно при размещении в слое катализатора элементов, изготовленных из тонких мембран на основе лалладиевых сплавов, селективно проницаемых для водорода. Термодинамические расчеты показали [7], что проведение конверсии метана с одновременным выделением водорода позволяет прк температуре 1000 К, давлении 2,0 МПа и соотношении пар метан 2 1 достигнуть глубины превращения метана 0,94 и получить водород высокой степени чистоты. Конструкция аппарата, обеспечивающего достаточную интенсивность подвода тепла и удаления водорода через палладиевые мембраны, сложна, поэтому процесс не реализован в промышленных масштабах. [c.57]

    Каталитическая реакция метана с водяным паром изучена многими исследователями, особенно русскими Бодровым, Аппельбаумом и Темкиным [57]. Эйкерс и Кэмп [581, используя никелевый катализатор на кизельгуре, изучили в интегральном реакторе при температуре 638 С и давлении 1 ат влияние концентрации на скорость этой реакции. Они нашли, что реакция имеет первый порядок по метану, что как СО, так и Oj являются первичными продуктами, а реакция конверсии СО либо совсем отсутствует, либо протекает очень медленно. Они предположили, что хемосорбция СН4 или расщепление СН4 на радикалы Hj и является стадией, лимитирующей скорость процесса, и определили, что энергия активации этой стадии равна 9 ккал1моль. [c.110]

    Взаимодействие толуола с водяным паром приводит к образованию газообразных продуктов, содержащих кроме водорода и окислов углерода еще и метан. При повышении температуры реакции выход водорода снижается и увеличивается образование метана. Специальными опытами показано, что одновременно протекает гидродеалкилирование толуола водородом, образующимся при конверсии с водяным паром. Эту р ёакцию можно интенсифицировать подъемом в реакционной зоне температуры и повышением давления. Зависимость глубины превращения метилбензолов от объемной скорости подачи сырья на ЛЧ-Сг катализаторе показана на рис. 6.11 [3, с. 168—176]. Процесс проводили при 375 °С и мольном отношении вода углеводород = 6 1. С увеличением числа метильных групп в молекуле углеводорода скорость деалкилирования в одном ряду углеводородов возрастает толуол < ж-ксилол (и-ксилол) < мезитилен и в другом ряду убывает толуол > о-ксилол гемимеллитол. Скорость деалкилирования псевдокумола больше, чем о-ксилола, и меньше, чем м- и и-ксилола. Таким образом, скорость деметилирования возрастает в том случае, если каждая последующая метильная группа станет по отношению к предыдущим в мета- или параположение [61—66]. [c.258]

    В этой же работе описан одностадийный процесс паровой конверсии жидких углеводородов при 500—550 °С и 2—ЗМПа (СбНи+ -f2,5H20—)-4,75 СН4+1,25 СОг) с тепловым эффектом, практически равным нулю. Важно выдерживать температуру в пределах 500—550°С, так как ниже 500 °С происходит полимеризация углеводородных радикалов (закупорка пор катализатора), а выше 550 °С усиливается коксообразование. Катализатор должен быть чрезвычайно активным (70—75% Ni). Изучается также двухстадийный процесс газификации углеводородов, например гексана в метан. Каталитический риформинг можно использо1вать при подборе соответствующих сырья и режима для получения сжиженных газов (Сз—С4). [c.202]

    Существуют различные способы пагрева сероводорода сероводород нагревается в реакторе циклического действия с твердым теплоносителем AL2O3 сероводород нагревается в трубчатой печп с горящим топливом получение водорода, серы и сероуглерода в процессе термической конверсии смеси сероводорода с метаном на катализаторе M0S2 прп температурах 980-1060 К. Получение сероуглерода оправдано тем, что стоимость его па мировом рынке в 4 раза выше, чем серы и конверсия FI2S в этом процессе всего 30 %. [c.453]

    Из схемы следует, что кроме а-метилстирола при протекании побочных реакций из кумола образуются бензол, толуол, стирол, метан, этилен, пропилен. Побочные продукты снижают селективность процесса. При высоких температурах (530-600 °С) на железооксидных катализаторах в условиях разбавления водой (соотношение водаггаз А. = 15- 20) протекает преимущественно реакция дегидрирования до а-метилстирола. Рассчитанные для этих условий равновесные (теоретически возможные) степень превращения и селективность соответственно равны = =0,99 и = 0,98. Конверсия кумола в действующем производстве достигает Хд = 0,5, а селективность по а-метилстиролу 5д = 0,9. Используя значения конверсии и селективности в действующем процессе и их предельные значения, можно определить коэффициент эффективности реакторного узла дегидрирования  [c.231]

    Конверсия бензина на контакте 6540 при 250° С и исходном соотношении Н2О С = 4 показала, что данный катализатор в рабочих условиях постепенно разрабатывается , изменяя селективность процесса. На начальной стадии в образующихся продуктах преобладает, в соответствии с тергйодипамикой, метан (46,1%), тогда как содержание водорода составляет 33,2%- Уже примерно через 4 ч концентрации этих компонентов выравниваются (38,6%)- Затем содержание водорода монотонно возрастает, а метана — убывает, достигая к 15 ч соответственно 68,2 п 7,1 7о- [c.94]

    Активность единицы никелевой поверхности в реакции конверсии метана водяным паром при 900° С составляет 4,3 нж /ч м . Подставив характерные для катализаторов конверсии метана значения5ш= 1 ж /г 7к=1500 кг/м в уравнение (1), находим, что предельно допустимая объемная скорость по метану в этом процессе составляет колоссальную величину  [c.54]

    Уксусная кислота, С12+ 50, Метан, С1з, НР Монохлор уксусная кислота Замещение, идущее совм Трифтор хлорметан (I), дифтордихлорметан (II), фтортрихлорметан (11 ), НС1 Уголь 115—120° С, 15 ч. Выход 11,7% [37] le mHo е другими процессами Последовательное пропускание смеси через 2 катализатора 1) активированный уголь 470° С, время контакта 1,5 сек, С1з НР СН = 3,9 1,6 1 (мол.) 2) AlPg 230 С, время контакта 1 сек. Конверсия СН4—99,3%, I2 —97,5%, НР—98,8%. Выход I - 1,8%, П — 60,8%, III — 37,1% [38  [c.468]

    Blake разработал процесс, в котором метан и водяной пар, взятые в соответствующих количествах, реагируют в присутствии катализатора (например никель — окись церия — окись алюминия) при температурах 400—700°, образуя водород и двуокись углерода с очень небольшим количеством окиси углерода или совсем без нее. Так при пользовании 10 объемами водяного пара и 5 объемами СН при 508° наблюдается конверсия метана на 90%, а получаемый сухой газообразный продукт содержит только 2% окиси углерода (после удаления СОг). [c.317]

    Исследования конверсии метана с кислородом, произведенные Падовани, Сальви и Фиумара [15], подтвердили двухстадийность этого процесса. Указанные авторы пришли к выводу, что последовательное протекание этих стадий происходит достаточно быстро, а в некоторых условиях и мгновенно, и что в данном процессе вторая его стадия — реакция Н2О и СО 2 с непрореагировавшим в первой стадии метаном — идет значительно быстрее, чем это можно ожидать из соотношения компонентов смеси. Высокие объемные скорости, пониженные температуры и недостаточная активность катализатора способствует раздельному протеканию стадий, увеличению содержания СО2 и Н2О в получаемом газе и возникновению местных перегревов. [c.155]

    На этой стадии процесса ВМ постоянно рассчитывает оптимальную температуру и соотношение пар-углеводород с целью обеспечения максимальной конверсии углеводорода при минимальной стоимости пара и топлива, что позволяет снизить себестоимость получения водорода и уменьшить уровень инертных составляющих, таких как неконвертирован-ный метан, в синтез-газе. При этом ВМ учитывает уменьшение срока службы катализатора при повышении температуры конверсии. [c.558]

    В конвертор кислорода, благодаря чему суммарный процесс становится немного экзотермическим. Расчеты показывают, что для этой цели на конверсию надо подавать смесь СН4 и О2 в отношении 1,0 0,55, находящуюся вне пределов взрываемости, которые тем более не достигаются из-за разбавления смеси водяным паром. Объемное отношение последнего к метану в этом случае можно брать более низким, чем в отсутствии кислорода, а именно от 1 1 до (2,5 4- 3,0) 1 в зависимости от применяемого давления. Этот процесс окислительной, или автотер-мической конверсии получил большое распространение. Он не требует подвода тепла извне и осуществляется в шахтных печах со сплошным слоем катализатора (рис. 28,6). [c.86]


Смотреть страницы где упоминается термин Катализаторы процесса конверсии метана: [c.340]    [c.120]    [c.36]    [c.27]    [c.145]    [c.125]    [c.205]    [c.144]    [c.155]   
Смотреть главы в:

Технология соединений связанного азота -> Катализаторы процесса конверсии метана




ПОИСК





Смотрите так же термины и статьи:

Катализаторы конверсии метана

Катализаторы процессов конверсии метана и окиси углерода

Конверсия метана

Моделирование процесса конверсии метана на зерне катализатора



© 2025 chem21.info Реклама на сайте