Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Антрацен, электронный спектр

    II. В высокочастотной области, соответствующей колебательным движениям малых и даже очень малых групп (атомы водорода, отдельные электроны), зондирование структуры основано на несколько ином принципе. Возникновение организованных, в первую очередь кристаллических, структур сразу же резко ограничивает подвижность наблюдаемых при соответствующей частоте групп. По аналогии с температурными искажениями релаксационного спектра это должно приводить к смещению или размазыванию резонансных линий. В радиочастотном диапазоне это может быть расширение линий протонного магнитного резонанса при введении в полимер. электронного парамагнитного зонда — какого-либо устойчивого свободного радикала— характер его ЭПР-сигнала меняется в зависимости от плотности окружения, т. е. от того, находится ли он в кристаллической, жидкокристаллической или изотропной (аморфной) области. В оптическом диапазоне по тем же причинам могут изменяться форма, положение и интенсивность полос колебательных спектров (часто приходится, например, встречаться с термином кристаллическая полоса ). Можно вводить в-полимер электронный зонд— люминофор (например, антрацен) и по изменениям спектральных характеристик поляризованной люминесценции снова судить о подвижности или плотности тех участков, в которых расположен люминофор. [c.54]


    Необычные изменения происходят при действии ВД+ДС на полициклические ароматические углеводороды, как, например, нафталин, антрацен. При давлениях до 10 ГПа эти вещества приобретают темную окраску, появляются резкие сигналы электронного парамагнитного резонанса, а ПК спектры свидетельствуют о частичном разрушении ароматических колец. [c.223]

    Чтобы понять, как характер поглощения связан со строением органического вещества, вернемся к условию Бора Е — Ео = /IV. Чем ближе друг к другу находятся оба энергетических уровня (основной и возбужденный), тем меньше затрата энергии на возбуждение, тем меньшей энергией может обладать действующий квант света, тем, следовательно, меньше его частота (и соответственно больше длина волны). Разность энергий Е — Ед определяется природой возбуждения. Свет видимой и ультрафиолетовой частей спектра обладает энергией, достаточной для возбуждения электронов затрачиваемая на возбуждение энергия определяется в конечном счете подвижностью электронов. Так, электроны 0-связей требуют для своего возбуждения квантов с большой энергией, эти электроны малоподвижны. Поэтому предельные углеводороды, спирты, простые эфиры поглощают лишь в очень далекой ультрафиолетовой области. Этилен, имеющий подвижные л-электроны, поглощает свет при 193 нм. Сопряженные двойные связи в бутадиене, обладая еще большей подвижностью я-электронов, вызывают поглощение уже при 217 нм. В бензоле я-электронная система имеет несколько полос поглощения, наиболее длинноволновая из которых расположена в области 260—270 нм. Нафталин поглощает уже при 314 нм, антрацен — при 380 нм. На этих примерах видно, как с ростом сопряжения (ростом подвижности электронов) поглощение постепенно сдвигается в длинноволновую область — в область квантов со все меньшей энергией. Однако все упоминавшиеся пока соединения бесцветны — их поглощение лежит в ультрафиолетовой области спектра. [c.358]

    Константы основности, определенные таким образом, дают общую основность. В случае метильных производных можно, однако, изменять отношение ионов А и Б, присутствующих в растворе. Ионы А и Б отличаются друг от друга по электронным спектрам, так что имеется аналитический метод определения соотношения концентраций этих двух ионов [114]. Анализ основан на предположении, что коэффициенты экстинкции ионов А и Б для всех изомерных метилбенз[а]антраценов одинаковы. При таком предположении, измерив коэффициенты экстинкции, можно определить соотношение концентраций ионов А и Б. Таким образом, зная общую константу основности, можно вычислить величины р/Св для ионов А и Б. Этот метод вычисления, конечно, не очень точен, однако он правильно отражает влияние метильных заместителей на основность. В табл. 23 приведены величины, полученные таким путем для [c.319]


    Электронные спектры многоядерных ароматических углеводородов, подобных нафталину и антрацену, в которых ароматические кольца сконденсированы линейно, напоминают спектр бензола, но полосы в них сдвинуты в сторону больших длин волн. В случае четырех линейно сконденсированных циклов (как в нафтацене) бензольная полоса сдвинута в длинноволновую область настолько, что она попадает в видимую часть спектра (табл. 22-5) в соответствии с этим нафтацен имеет желтую окраску. Следующий член ряда — пентацен — окрашен в синий цвет. [c.124]

    Перенос заряда, индуцированный фотохимическим способом, может приводить к образованию ион-радикалов или карбониевых ионов. Многие ароматические вещества растворяются в борной, фосфорной и других кислотах, которые при комнатной температуре и ниже образуют стекловидные растворы. При облучении этих растворов ароматическая молекула часто превращается в соответствующий ион-радикал. Это видно из УФ-спектров [3] и спектров ЭПР [33]. Передает молекула электрон или нет — не зависит от ее потенциала ионизации. Дифенил или антрацен, которые в растворе не окисляются бромом, при облучении ультрафиолетовым светом легко отдают электрон в стекловидном растворе борной кислоты. С другой стороны, тетрафенилэтилен с метоксигруппами в пара-положении устойчив при облучении, но в то же время реакция с бромом в спирте или нитрометане приводит к потере двух электронов. Бук и др. [12] обнаружили, что основность молекулы в возбужденном состоянии является определяющей для скорости процесса фотоионизации. [c.158]

    Чем ближе друг к другу находятся оба энергетических уровня, тем меньше затрата энергии на возбуждение, тем меньшей энергией может обладать квант света, т. е. меньше частота (и, наоборот, тем больше соответствующая этой частоте длина волны). Разность энергии Е — Ео определяется в конечном итоге подвижностью электронов. Так, электроны о-связей связаны весьма прочно для возбуждения их нужны кванты с большой энергией. Поэтому предельные углеводороды, спирты, простые эфиры поглощают лишь в очень далекой ультрафиолетовой области. Этилен, имеющий подвижные я-электроны, поглощает при 193 нм. Сопряженные двойные связи в бутадиене СН2=СН—СН = СНг, обладая еще большой подвижностью я-электронов, поглощают уже при 217 нм. В бензоле я-электронная система имеет несколько полос поглощения, наиболее длинноволновые из которых расположены в области 260—270 нм. Нафталин поглощает уже при 314 нм, антрацен — при 380 нм. На этих примерах видно, что с ростом сопряжения (ростом подвижности электронов) наблюдается постепенный сдвиг поглощения в длинноволновую область. Однако все упоминавшиеся до сих пор соединения бесцветны, так как их избирательное поглощение лежит в ультрафиолетовой области спектра. Видимая желтая окраска появляется лишь у нафтацена (Хмакс = = 480 нм)  [c.478]

    Электронно-колебательные спектры ПАУ поглощения и люминесценции зависят от строения и размера молекул. С увеличением числа бензольных ядер в молекуле ПАУ оптические спектры смещаются в сторону больших длин волн, что является следствием большего понижения верхних (возбужденных) 5 -и Г -уровней в ряду по сравнению с соответствующими основными уровнями [439]. Эта зависимость особенно наглядна у ряда молекул с линейным расположением колец (бензол, нафталин, антрацен, нафтацен и др.). При этом частоты —5о- и Т —5о-переходов при добавлении бензольного кольца уменьшаются в среднем на 5000 см . При другом способе конденсирования бензольных ядер эта величина несколько меньше. Можно заметить, что спектры определяются максимальным числом бензольных колец, расположенных в один ряд. Так, спектры [c.237]

    Антрацен (III). Имеет симметрию Спектр поглощения содержит три электронные полосы с хорошо разрешенной колебательной структурой (26 ООО [c.78]

    В ультрафиолетовой области спектра антрацен имеет сильную полосу поглоще-оси ния при 2500° А и полосу умеренной интенсивности около 4000 Л, которые в общей классификации электронных спектров ароматических углеводородов, данной Кларом [15], обозначены как Р- и р-полосы соответственно. Спектры поглощения (—)-изомеров 1, Г-диантрилов 1 и II сходны, но р-полоса расщеплена, а вращательные спектры имеют в каждом [c.76]

    Трициклические углеводороды с двумя бензольными кольцами и одним пятичленным насыщенным кольцом (аценафтен) несколько слабее адсорбируются на кристаллах карбамида и его комплексах с н-алканами. Это можно объяснить тем, что в насыщенном кольце на один углеродный атом меньше, чем у тетралина, а электронное облако в меньшей степени смещено от оси симметрии молекулы. Самая слабая интенсивность спектра поглощения ЭПР обнаружена у трициклических углеводородов (антрацен), причем поверхность кристалла насыщается пара-магннтными центрами антрацена при его концентрации в растворе порядка 0,8-1.0% (масс.),в то время как в [c.50]


    Высокая плотность п-электронов в молекулах ароматических соединений определяет их основные свойства при взаимодействии с кислотами. Бензол, толуол, ксилолы, мезитилен, нафталин, антрацен и многие другие полиядер-ные ароматические углеводороды растворимы в жидком фтористом водороде, особенно в присутствии комплексооб-разователей иона фтора. Изучая электропроводность и спектры этих растворов, можно найти койстанты равновесия реакций и установить константы основности ароматических углеводородов  [c.85]

    Конденсированные арены делятся на две группы — линейные, или аце-пы (антрацен пентацен и т. д.), и угловые (ангулярные), к которым относятся фенантрен, пирен, хризен и т. д. В аценах общие грани соседних бензольных ядер все лежат на одной прямой (оси дг), тогда как в ангулярных линии, соединяющие общие грани, лежат на нескольких прямых, образующих угол друг с другом. Важно отметить, что обобщение тс-электронов в аценах выражено сильнее, чем у ангулярных систем. Так, в ряду нафталин — ашрацен — пентацен и т. д. формируется общий сильный хромофор с поглощением в видимой области спектра. В этом ряду уже тетрацен имеет желтую окраску, тогда как пирен и хризен, также имеющие по четыре бензольных ядра, но ангулярное их расположение, — бесцветны. [c.337]

    В других системах наблюдались слабые линии с красной стороны от предполагаемых начал чисто электронных полос нри низких температурах, при которых о колебательном возбуждении в основном состоянии не может быть и речи природа этих полос не установлена. Сидман исследовал систему антрацена нри 3800 А и нашел, что в дополнение к основной прогрессии, начинающейся приблизительно при 25 ООО с красной стороны существует также слабый спектр, поляризованный вдоль оси Ь. Он измерил семь линий, включая две резкие линии при 24 809 и 24 926 см . Определив из спектров флуоресценции, что начало системы в эмиссионном спектре расположено при 24 929 см , Сидман пришел к заключению, что эта частота соответствует отдельному электронному переходу. Он предположил, что этот переход может соответствовать уровню захваченного экситона типа, впервые предложенного теоретически Френкелем. Расчеты [27] подтверждают, что экситонная полоса этого перехода в антрацене лежит приблизительно на 200 ниже самого низкого уровня с к = О, на который в основном происходят сильные переходы. Кроме того, вследствие несовершенств или дефектов решетки могут быть индуцированы переходы на уровни, соответствующие началу полосы. Однако Лейси и Лайонс [57] недавно высказали предположение, что в привлечении таких специальных механизмов нет необходимости, так как начало электронной полосы, поляризованной вдоль оси Ь, лежит ниже, чем предполагалось ранее, и, возможно, достаточно низко для того, чтобы можно было объяснить полосы, наблюдаемые Сидманом. Кроме того, нельзя не принимать во внимание влияние небольших количеств примеси, в частности антрахинона, особенно после выяснения подобной проблемы в случае спектра кристаллического нафталина. [c.561]

    Зонную теорию обычно используют для описания ионных кристаллов [104], которые, как правило, являются хорошими изоляторами. Полагают поэтому, что ее можно применять также при описании молекулярных кристаллов. Например, с использованием этой теории рассматривались электрические свойства кристаллов Ь и Зв [102], а также электрические свойства кристаллов типа антрацена [33]. Однако при рассмотрении молекулярных кристаллов встретились затруднения, которых не возникает, например, в случае ковалентных кристаллов типа германия или соединений двух элементов. Бьюб [18] приводит более 100 таких соединений, имеющих тесное соответствие между энергетической щелью и длинноволновой границей поглощения. Изучение всех этих кристаллов несколько осложнено наличием экситонов их спектр вполне определяется энергетической щелью. Дополнительной характеристикой служит и то, что вообще в таких соединениях эффективная масса электрона (а также дырки) имеет примерно тот же порядок величины, что и масса свободного электрона. Молекулярные кристаллы, такие, как антрацен, отличаются от только что обсуждавшихся неорганических соединений тем, что начало сильного поглощения у них непосредственно не связано с энергетической щелью между нижней зоной и зоной проводимости. Край поглощения кристаллом непосредственно связан с краем погло- [c.661]

    Влияние ароматических соединений на процесс анионной полимеризации изучали и другие авторы ю52-1054 Показано, что добавление антрацена к живому полистиролу или трибута-диену резко снижает скорость полимеризации. При этом изменяются и спектры. Авторы предполагают, что происходит образование комплексов антрацена с активными концами цепи, которые уже не способны к дальнейшему росту, называемых спящими полимерами Относительно природы комплекса предполагают, что либо они являются комплексами переноса заряда, где антрацен является акцептором электрона, а растущий конец — донором, либо происходит присоединение антрацена с образованием ковалентной связи. [c.129]

    Антрацен адсорбировался на фторированном пористом стекле из раствора в органическом растворителе. Сигнал в спектре ЭПР, указывающий на наличие парамагнитного соединения, не был обнаружен. Аналогичный опыт с алюмосиликатпым катализатором крекинга позволил наблюдать снектр ЭПР, похожий на тот, который был получен Руни и Пинком (1962). На этом основании Чэпман и Гер сделали вывод, что на поверхностп фторированного пористого стекла нет льюисовских кислотных центров, которые могли бы привести к окислению молекулы углеводородов в результате отрыва электрона с образованием катион-радикала. [c.236]

    Фотокатод ФЭУ должен изготовляться из материала, который очень хорошо освобождает фотоэлектроны [2,6]. Этот материал следует выбирать в зависимости от света люминесценции (энергии фотонов). Для красного света подходит висмут-цезиевый катод, для голубого — сурьмяно-цезиевый катод. В зависимости от комбинации различных материалов и особенно от способа приготовления можно приготовить фотокатоды с различной спектральной чувствительностью. Так как фосфоры, применяемые при сцинтилляционных измерениях, люминесцируют в голубой области спектра [ZnS — Ag (для а- частиц) при 4500 Л, антрацен (для р-частиц) при 4400 Л, NaJ — Т1 (для у-лучер ) при 4100 Л], для этих целей нужно употреблять ФЭУ, которые в этой области длин волн обладают особенно большой чувствительностью и имеют незначительную чувствительность к красным и ультрафиолетовым лучам. Раньше использовали катоды из сурьмы и цезия, в настоящее время используют катоды из сурьмы, калия и натрия (цезий вызывает нежелательную эмиссию электронов из динодов). [c.113]

    Работа посвящена изучению процессов захвата электронов при низкотемпературном радиолизе поливинилхлорида (ПВХ) и полиметилметакрилата (ПММА) как акцепторными добавками, так и самими полимерами. Кроме того, изучалось влияние добавок на выход газообразных продуктов радиолиза ПВХ (НС1, Hg). Для изучения этих процессов в качестве конкурентных электроноакцепторных добавок мы использовали соединения, анион-радикалы которых можно получить обычными химическими методами ароматические углеводороды [6] (антрацен, г-терфенил) и хино-ны (ге-бензохинон [7], хлоранил [8]). Спектры поглощения и ЭПР соответствующих анион-радикалов известны [9, 10] из литературы. Добавки в количестве 0,03—1,0 мол.% вводили в полимерные пленки, получаемые испарением растворов ПВХ в дихлорэтане и ПММА в метипенхлориде. Облучение проводили в запаянных ампулах в вакууме ( 10 мм рт. ст.) при 77°К Y-лучами Со °. Образование анион-радикалов изучали по спектрам поглощения в видимой и УФ-области и по спектрам ЭПР при 77°К. Оптические спектры поглощения измеряли на спектрофотометре СФ-4 в специально сконструированной кварцевой дьюаровской ячейке, особенностями которой было отсутствие жидкого азота на пути луча и точная магнитная фиксация образцов. Спектры ЭПР записывали на радиоснек- [c.218]

    Как указывалось в предшествующих главах, при конденсации бензольных колец с образованием рядов аценов или фенов в спектрах соединений наблюдаются постоянные значительные сдвиги спектральных полос. Эти сдвиги всегда одинаковы и из них могут быть выведены значения К или Кр для каждого члена аннеллированных рядов. В противоположность этому, спектральные сдвиги весьма различны при последовательном присоединении двух дифенильных систем к бензолу I с переходом соответственно к трифенилену II и тетрабенз-антрацену III, которые формально являются симметрично аннеллированными. Первый из наблюдаемых в этом случае сдвигов значительно больше, чем второй. Природа такой электронной асимметрии [c.82]

    Построение корреляции между и расчетными данными позволяет уловить не только электронные, но и стерические эффекты в молекулах. Хорошая корреляция Е электровосстановления и электроокисления в серии фенилзамещенных антраценов (9-, 9,10-, 1,9-, 1,10-, 1- и 2-) и рубрена со значениями гпп+1 и т 1, рассчитанными на основе параметров, предсказанных по сверхтонкой структуре спектров ЭПР ион-радикалов с учетом угла отклонения 0 фенильного заместителя от плоскости антраценового ядра, показало, что значения 0 отражаются также на Еч , следовательно, по- следние могут быть использованы для приближенной оценки угла отклонения заместителя нз плоскости [64]. глы 0 рассчитаны также для серии ароматических шиффовых оснований, замещенных в альдегидном и аминном ядрах [65]. [c.124]

    Каллман и Фюрст [18, 19] установили, что у некоторых соединений, как, например, у бензола, ксилола и толуола, под действием 7-излучения свечение не проявляется совсем или проявляется весьма слабо, но при введении в них в небольшом количестве веществ, обладающих хорошей способностью к флуоресценции (антрацен, дифенилбензол и др.), интенсивность свечения сильно увеличивается, в некоторых случаях в 35 раз. Эмитируемое излучение имеет спектральную характеристику, специфичную для добавляемого флуоресцирующего вещества. Спектры флуоресценции этих веществ (антрацен, дифенилбензол и др.) в кристаллическом состоянии и в растворе одинаковы при облучении рентгеновскими лучами, комптонов-скими электронами и ультрафиолетовыми лучами [201. [c.69]

    ПО отношению к целлюлозе. Например, лейкосоединения дибензантрона, его 16,17-диметоксипроизводного и изодибензантрона отличаются очень высокой субстантивностью. Следует напомнить, что длина волны и интенсивность максимума поглощения также повы-щаются в ряду бензол, нафталин, антрацен и т. д. Вероятно, что резонанс молекул, с которым связан характер поглощения света, также обусловливает субстантивность красителей, являющихся производными этих кольцевых систем. Вследствие электронного резонанса между молекулами большие плоские молекулы в растворе склонны к полимеризации, на что иногда указывает появление в спектре поглощения z-полосы. По мере увеличения размера циклической системы возрастает склонность ароматических соединений к образованию продуктов присоединения (например, с пикриновой кислотой). Большая поляризуемость сложных циклических систем увеличивает возможность взаимодействия между красителем и целлюлозой. Несмотря на высказанное предположение, что основным механизмом связывания молекул красителя и целлюлозы является образование водородных мостиков, в настоящее время несомненно, что даже в отсутствие таких связей для межмолекулярного притяжения целлюлозы и красителей, например лейкосоединений антрахиноновых кубовых красителей с конденсированными многоядерными ароматическими системами, достаточно дисперсных и электростатических сил, возникающих в результате постоянных диполей в молекуле целлюлозы и красителя. Однако в этом случае [c.1472]

    По влиянию на спектры Черкасов разбил заместител на две группы. К первой отнесены те заместители (напри мер, алкильные, галоидные и т. д.), которые вызываю-некоторый батохромный сдвиг полосы, не изменяя су щественно ее вида по сравнению с соответствующей поло сой антрацена. Во вторую группу включены сильно изме няющие спектр заместители, которые имеют кратные связи сопряженные с л-системой антрацена, или связаны с угле родом антраценового ядра через атомы с неподеленным] парами электронов (например, NH2,0H). Если взаимодей ствию я- или /г-электронов заместителей второй группы > я-электронами антраценового ядра не препятствуют сте рические факторы, то спектры замещенных антрацен, изменяются настолько, что идентификация отдельны электронно-колебательных полос становится весьма труд НОЙ. При стерически затрудненном сопряжении, что на блюдается, в частности, у жезо-замещенных антрацена длинноволновая полоса поглощения имеет типичный дл антрацена вид, но в спектрах флуоресценции обнаружи ваются специфические изменения (размытая колебательна структура, нарушение зеркальной симметрии, увеличе ние стоксового сдвига). [c.156]

    Дейнтон и др. [62] и Кэмп и др. [148[ исследовали быстро исчезающие спектры поглощения, возникающие в разбавленных растворах нафталина в бензоле при действии коротких импульсов электронов (2 мксек). Этим путем наблюдалось сенсибилизированное растворителем образование триплетного состояния нафталина. ]Тосворти [183] наблюдала перенос энергии возбуждения от бензола к диметилфума-рату и антрацену. Перенос энергии вызывает изомеризацию диметил-фумарата, измеряемую аналитически, и возбуждение антрацена до триплетного состояния, обнаруживаемое путем кинетических измерений ультрафиолетовых спектров в растворах, облученных импульсами излучения. Антрацен, по-видимому, конкурирует с реакцией фумарата, и величины для антрацена и фумарата равны 746 и 320 л моль соответственно. Принимая коэффициент экстинкции равным 7-10 (при 430 нм), можно вычислить величину С образования триплетного состояния антрацена, составляющую 1,1, и О(диметилмалеат) 2. Хотя в этих экспериментах наблюдаются реакции фумарата и антрацена, возбужденных в триплетное состояние, не было доказано, что это то же самое состояние возбуждения, которое переносится донором. Позже Кандэлл и Гриффитс [60] показали, что выход триплетного состояния антрацена в бензоле при добавлении высоких концентраций циклогексена, являющегося тушителем триплетного состояния бензола, может уменьшиться только на 40%, поэтому только часть триплетов антрацена могла образоваться путем реакции переноса энергии триплетов. (Это очень важный результат, делающий ненадежными многие опубликованные величины выхода радиолитического образования триплетного состояния бензола, измеренные косвенными путями. Однако можно возразить, что использованная высокая концентрация циклогексена фундаментально изменяет характеристики ароматической системы, поэтому необходимы очень тщательные исследования, прежде чем отбросить прежние предположения, основанные на ряде хороших корреляций.) [c.126]

    Интересен факт отличия масс-спектров отрицательных ионов двух изомеров — антрацена и фенантрена. На кривой эффективного выхода ионов (М—Н) антрацена наблюдается перегиб, который у фенантрена выражен слабее, т. е. кривая эффективного выхода ионов (М—Н) фенантрена более симметрична. Кроме того, в антрацене захватом тепловых электронов образуется долгоживущий молекулярный ион с т — 21 мксек. Эти особенности позволяют масс-спектрометрически различать рассматриваемые изомеры. Сечения образования ионов (М—Н) антрацена и фенантрена сечение недиссоциативного захвата электронов молекулами антрацена —10 см . [c.73]

    Измерения сцинтилляций кристаллов нафталин — антрацен [7, 67, 144, 146 показывают, что f y = 1 при концентрации антрацена 10 моль моль ( 1 г л). При этой концентрации антрацена самопоглощение значительно меньше, чем в чистом кристалле антрацена [28], самотуше-ние пренебрежимо мало, и поэтому свойства растворенного вещества приближаются к молекулярным свойствам, а именно ( оу)о = 0>9 [67], Еоу = 2,9 эв [115]. В случае нафталина из спектра испускания получено значение Eix = 3,68 эв [142]. Подставляя величину РС = 0,067 и приведенные значения в уравнения (29) и (30), получим для смешанного кристалла нафталин — антрацен Sy = 0,047, Ny = 1,6 10 , тогда как в случае чистого кристалла антрацена S = 0,034, == 1,3 10 фотонов на 1 Мэе энергии электрона (табл. 4). Кроме того, молекулярный спектр испускания антрацена (рис. 12) лучше согласуется с кривой спектральной чувствительности S11 (рис. 5, v), чем его технический спектр, так что т — 0,92. Вследствие этого определенная практическая сцинтилляционная эффективность оказывается равной То = 1,47 Ю фотоэлектронов на 1 Мэе энергии электрона, по сравнению с Т = 10 для чистого антрацена. [c.221]

    Еще сто лет назад было известно, что ароматические углеводороды могут реагировать со щелочными металлами. Например, в 1867 г. Вертело [1] сообщил об образовании черного промежуточного продукта при сплавлении металлического калия с нафталином в запаянной ампуле. Первое объяснение этому явлению дал, по-видимому, Шленк, хотя подход, использованный в его работах, отличался от принятого в настоящее время. Еще в 1914 г. он исследовал реакцию щелочных металлов с антраценом в растворе эфира и сообщил [2] об образовании двух различных соединений аддукта натрийантрацен состава 1 1 и аддукта динатрийантрацен состава 2 1. Два эти вещества были идентифицированы химическим анализом и ультрафиолетовыми спектрами. Хотя в то время современная концепция радикалов и ион-радикалов еще не получила развития, описание Шленком [28] натрий-антрацена и кетилов, которые были широко изучены в его лаборатории, очень близко к современной интерпретации. Используя современную ему терминологию, Шленк сообщил о возможности процессов с переносом электрона с участием карбанионов, радикалов и ион-радикалов. [c.295]


Смотреть страницы где упоминается термин Антрацен, электронный спектр: [c.558]    [c.283]    [c.155]    [c.403]    [c.342]    [c.126]    [c.141]    [c.65]    [c.105]    [c.277]    [c.326]    [c.437]   
Спектроскопия органических веществ (1992) -- [ c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Антрацен

Спектры электронные



© 2025 chem21.info Реклама на сайте