Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение серебра окисях

    Методы, основанные на окислении Мп(П) до Мп(УП) с последующим титрованием Мп(УП) растворами соли Мора [235, 1180] или арсенита натрия [150]. В качестве окислителей используют висмутат натрия, окись серебра и другие. Ошибка метода составляет 0,2%. Используют метод для определения марганца в стали и сплавах [150]. [c.49]

    Повышение (до определенных пределов) концентрации хлора в серебре уменьшает подвижность кислорода, что приводит к снижению степени превращения этилена в двуокись углерода при сохранении той же степени его превращения в окись этилена. Увеличение количества добавки сверх оптимального может еще более упрочнить связь серебра с атомарным и молекулярным ионами кислорода, что вызовет уменьшение скорости окисления этилена и отравление катализатора. Введение незначительных количеств металлоида (сера, селен), степень заполнения поверхности которыми равна 0 = 10" —10" снижает энергию адсорбции кислорода, что увеличивает активность катализатора. При большем покрытии поверхности (0 — 0,2) активность катализатора уменьшается вследствие блокирования части его поверхности металлоидом. [c.220]


    Сульфамиды, образующие нерастворимые соли серебра, определяли методом, который представляет собой радиометрический вариант обычного волюмометрического метода [11] с применением нитрата серебра- [10]. В анализе этим методом образец растворяют в ацетоне, добавляют в раствор окись магния и титруют полученный раствор. Конечную точку титрования определяют путем измерения радиоактивности верхней фазы, обусловленной избытком иона Ошибки определения этим методом составляют от +0,6 до —0,8%. [c.374]

    В дальнейшем, в схемах окисления этилена на серебре рассматривали участие в реакции и атомарного и молекулярного адсорбированного кислорода. Эти формы представляют собой анион-радикалы. Адсорбированные этилен и окись этилена являются донорами электронов. Промежуточные комплексы, образовавшиеся в результате взаимодействия этилена с различными формами кислорода, заряжены, а знак заряда экспериментально не определен и зависит от состава этих комплексов. Отдельные стадии окисления этилена на серебре по этой схеме такие  [c.77]

    К данному типу процессов фактически относится лишь одна реакция — окисление этилена в окись этилена. Единственным известным в настоящее время эффективным катализатором этой реакции является серебро [2, 4, 6, 14]. В литературе имеются отрывочные сведения о возможности осуществления этой реакции также на некоторых окисных контактах 16], однако сделать определенные выводы об их эффективности не представляется возможным. В промышленных условиях окисление этилена в окись этилена проводят на массивных или нанесенных серебряных катализа- [c.192]

    В большинстве работ по газохроматографическому определению углерода и водорода вначале проводят количественное окисление анализируемых органических соединений. В качестве окислителей применяют кислород, окись меди, окись-закись кобальта, перманганат серебра и др. Разделение образующихся продуктов — воды и двуокиси углерода — осуществляют при помощи различных хроматографических схем и методик. [c.134]

    В данной работе на основании разработанного нами ранее [1] метода определения величины поверхности серебра, нанесенного на носитель, было проведено исследование влияния величины поверхности носителя и количества нанесенного серебра на величину удельной поверхности (отнесенной к единице веса) и удельной активности (отнесенной к единице поверхности) в реакции окисления этилена в окись этилена. [c.224]


    Окись серебра как окислитель. Определение марганца, церия и хрома.  [c.178]

    Ход определения. В толстостенную склянку, снабженную стеклянной притертой пробкой, наливают 50 мл 0,1 н. раствора нитрата серебра н 50 мл 0,15 н. раствора едкого натра и затем сейчас же прибавляют столько разбавленного раствора пиридина, чтобы выпавшая окись серебра перешла в раствор. После этого вводят в склянку нз газовой бюретки анализируемую пробу газа, заменяя им бывший в склянке воздух. [c.365]

    Для понимания химических явлений в смысле механическом, т.-е. для изучения хода химических явлений, особо важным должно считать в настоящее время 1) сведения стехиометрии или той части химии, которая изучает весовое и объемное количественное отношение между реагирующими веществами 2) различение разных видов и классов химического взаимодействия 3) изучение изменения свойств от перемены состава 4) изучение явлений, сопровождающих химические превращения, и 5) обобщение условий, в которых происходят реакции. Что касается до стехиометрии, то эта область химии разработана с большою полнотою и в ней найдены законы (Дальтоном, Авогадро-Жераром и др.), столь глубоко проникающие во все части химии, что в течение нескольких десятилетий ее состояние можно было характеризовать, как эпоху их применения к частным случаям. Выражение количественного (весового и объемного) состава тел поныне составляет важнейшую задачу химических исследований, а потому все дальнейшее изложение предмета подчинено законам стехиометрическим. В этом смысле родилось новое, до того не существовавшее, разделение сложных тел на определенные и неопределенные соединения. Еще в начале XIX столетия Бертолле не делал этого различия. Но Пру показал, что множество сложных тел содержат составные части, из которых они происходят или на которые распадаются, в совершенно точной, определенной и не изменяющейся ни при каких условиях пропорции по весу. Так, напр., красная ртутная окись содержит на 200 вес. ч. ртути 16 ч. кислорода, что и выражается химическою формулою Н О. В сплаве же меди с серебром можно прибавить того или другого металла любое количество, как в водном растворе сахара можно изменять относительное содержание частей н все же получить однородное целое с суммою самостояте. ьных свойств. В этих [c.44]

    Восстановление У(У1) на платиновом микроэлектроде изучали Сонгина и соавт. [387] на фонах МаКОд, КаКОд + Ка2804, КаКОд + N 2804 -Ь 1 М Н23 04. Они не обнаружили в этих условиях волны восстановления У(У1) и появления черного налета на электроде. В присутствии Ag(I), Аи(П1) или Си(П) начинается восстановление, причем осадок на электроде состоит из вольфрама и Ag, Аи или Си. На основании полученных результатов авторы считают невозможным иснользовать в качестве титранта при амперометрическом определении вольфрама нитрат серебра. Окись вольфрама, растворенная в тетраборате натрия, образует прозрачный расплав. Восстановление У(У1) в расплаве на платиновом катоде проходит в две стадии [494]  [c.154]

    Приборы и реактивы. (Полумикрометод.) Прибор для определения электропроводности растворов. Стаканы на 50 мл. Сахар (порошок). Поваренная соль кристаллическая. Ацетат натрия. Хлорид аммония. Цинк гранулированный. Индикаторы лакмусовая бумага, спиртоной раствор фенолфталеина, метиловый оранжевый. Спирт метиловый. Глюкоза. Окись кальция. Полупятиокись фосфора. Растворы соляной кислоты (2 и 0,1 н.), серной кислоты (2 и 4 н., 1 1), уксусной кислоты (2 и 0,1 н., концентрированный), едкого натра (2 и 4 н.), трихлорида железа (0,5 н.), сульфата меди (II) (0,5 н.), дихлорида магния (0,5 н.), сульфата натрия (0,5 н.), силиката натрия (0,5 н.), хлорида бария (0,5 н.), хлорида кальция (0,5 н.), нитрата серебра (0,1 н.), иодида калия (0,1 н.), карбоната натрия (0,5 н.), хлорида аммония (0,5 н.), перманганата калия (0,5 н.), сульфата калия (0,5 н,), трихлорида алюминия (0,5 н.), хлорида цинка (0,5 н.), аммиака (0,1 н.), ацетата натрия (2 н.). [c.55]

    Многие исследователи отмечали поразительное свойство серебра, адсорбировать значительное количество кислорода в интервале температур от —193 до -f 300 °С. Таким образом, взаимодействие серебра с кислородом принадлежит к низкотемпературным процессам окисления, и вопрос о форме кислорода, атомарной или молекулярной, приобретает определенный интерес. Следует также учесть, что хорошо известные слородные соединения — окись и двуокись серебра (AgaO и AgO) при этих температурах термодинамически нестойки и поэтому должны относительно легко разрушаться. [c.271]

    Примечания. Обычно pH определяют в 10%-иой суспензип сорбента в воде. 1—5. Максимальное содержание примесей хлориды—0,004% (№ 5— 0,2%), сульфаты — 0,1%, водорастворимые вещества — 0,2—0,5%. 6. Окись алюминия, специально предназначенная для определения морфина. 7—12. Максимальное содержание примесей хлориды —0,02%, железо — 0,02%. ФИ — неорганический. Окись алюминия типа Е характеризуется относительно высокой удельной поверхностью, порядка 100—200 м /г (в процессе изготовления прокаливается при сравнительно низкой температуре). Сорбент содержит неорганическое связующее (не гипс), которое ие затвердевает до нанесения на пластины, и поэтому может сохраняться в суспензии. Возможно получение прочных слоев толщиной до 0,5—2 мм. Выпуск сортов № 11 и № 12 прекращен. 13—15. Окись алюминия-типа Т отличается относительно низкой удельной поверхностью, — 50-100 м" , (.в процессе изготовлення сорбент прокаливлется при сравнительно высокой температуре). Содержание хлоридов —0,1%, (№ 13—14), 1% (№ 15). Пластины с окисью алюминия типя Т, в отличие от типа Е, нельзя проявлять с помощью азотнокислого серебра. [c.201]


    Катализаторы полимеризации. Трехчленные гетероциклы (этиленимин, окись этилена, этиленсульфид) в абсолютно чистом виде (кинетически вполне устойчивы ввиду близости энергетических характеристик всех эндоциклических связей. Действительно, было показано [21], что абсолютно сухой этиленимин в чистом виде не полимеризуется даже при 150° С. Однако эти гетероциклы полимеризуются в присутствии определенных активаторов (катализаторов полимеризации), избирательно действующих на связь углерод — гетероатом. Обцчными поли-меризующими агентами являются кислоты [2—5, 7, 22—25] (включая углекислоту [12, 26, 27]), кислые соли [2, 3] и фенол [28], алкилирующие агенты [3, 29—32] (в том числе ди- и поли-галогениды углеводородов и простых эфиров [32]), трехфтористый бор [3, 16, 33, 34], безводное хлорное железо [34], соли лназония [35], нитрат или перхлорат серебра [36], поверхностно-активные вещества (кизельгур, активированный уголь [2], окись алюминия, силикагель и т. д. [16]), аммиак под да(вле-нием [37, 38], амины [38] и вода . Любой реагент действует как катализатор полимеризации этиленимина, если он может продуцировать четырехвалентный азот в иминном цикле (путем со-леобразования, окисления или координации). [c.160]

    Сопоставление результатов по окислению этилена на серебре и пятиокпси ванадия показывает, что в обоих случаях мы имеем одинаковую схему процесса при окислении непредельных углеводородов. В присутствии альдегидов реакция генерации СОг не ускоряется, и они не могут быть промежуточными продуктами полного окисления этилена. При ввэдении их в реакционную смесь соотношение скоростей реакции образования окиси этилена и СОг изменяется вследствие сильной адсорбции альдегидов поверхностью контакта. Окись этилена образуется на серебре и практически не образуется на окислах ванадия. Это дает ответ (хотя и несколько неожиданный) на вопрос о причине неудачных попыток получения окиси этилена из этилена, окисляемого на окисных контактах определенного типа (окислы ванадия, вольфрама, молибдена, хрома и др.). Опыты с ацетальдегидом и формальдегидом показали, что практическое отсутствие их в продуктах окисления па серебре [c.78]

    Свойства очень небольших агрегатов, состоящих всего из нескольких атомов металла, отличаются от свойств металла в описанном выше случае. Для таких агрегатов простая теория объемного заряда на поверхности раздела металл —полупроводник определенно неприменима, и в этом случае необходимо использовать локальный подход. Если агрегат состоит, например, из трех атомов, перенос уже одного электрона к носителю оказывает существенное влияние на свойства агрегата. Оценки потенциалов ионизации небольщих агрегатов серебра и палладия сделаны Бетцольдом [1] и Митчелом [3]. Например, для тетраэдра Ag4 потенциал ионизации составляет 4,7—6,0 эВ, и эта величина характеризует минимальное значение сродства к электрону носителя при образовании из Л 4 иона Лд+4 для тетраэдра Рс14 потенциал ионизации, по-видимому, составляет 5,5—8,0 эВ, если исходить из потенциала ионизации отдельного атома и вводить коэффициент пересчета, как в расчетах Бетцольда [1]. На поверхности некоторых окислов-изоляторов имеются центры — акцепторы электронов, для обнаружения которых широко используют образование катионов при адсорбции полициклических углеводородов (например, перилена). Потенциалы ионизации применяемых в этих целях ароматических углеводородов составляют 6,4—8,4 эВ. Следовательно, весьма логично допустить возможность переноса электронов от небольщих агрегатов металла к таким электроноакцепторным центрам, которые, как известно, способствуют образованию катионов ароматических углеводородов. К носителям, которые имеют электроноакцепторные центры данного типа, относятся алюмосиликаты и содержащая хлор окись алюминия [74, 75]. Сама окись алюминия даже [c.283]

    Так, Г. К. Боресков показал это экспериментально для платиновых катализаторов реакции окисления водорода, полученных различным путем и имеющих различную структуру, дисперсность и т. д. (платиновая фольга, сетка, платина, нанесенная на силикагель и другие подкладки, платиновая чернь). В лаборатории М. Я. Ру-баника в Институте физической химии АН УССР было найдено, что приготовленное различным образом активное серебро для реакции окисления этилена в окись этилена проявляет примерно постоянную удельную каталитическую активность. При этом необходимо в каждом образце приводить содержание СР-ионов, попавших в виде примеси на поверхность катализатора, к одной и той же величине путем обработки аммиаком. При нагревании серебряного катализатора, содержащего определенное количество примесей (Ag I), происходит уменьшение активности, большее, чем это соответствует уменьшению поверхности. Раньше подобные явления приписывали спеканию, уменьшающему число активных центров однако в данном случае ясно, что падение активности связано с увеличениел в результате нагревания количества примесей на единицу поверхности (для серебряного катализатора существует оптимальный предел концентрации примесей С1 -ионов, который в данном случае превзойден). Отмывание избытка примесей аммиаком возвращает удельную активность к прежней величине. [c.170]

    Найтингел и Уолкер 8] разработали метод одновременного определения углерода, водорода и азота быстрым сожжением (в течение 30 сек.) анализируемой пробы с помощью индукционной печи. В качестве окислителей использованы перманганат серебра и окись меди. Быстрое сожжение пробы с катализатором в потоке гелия позволяет непосредственно без предварительного концентрирования разделять простые продукты окисления в хроматографической колонке. Навеску анализируемого вещества, смешанного с окислителем, сжигали в угольном тигле, футерованном кварцем. Продукты окисления проходили через реактор, заполненный на /з окисью меди и на /з металлической медью для завершения окисления и восстановления окислов азота. Далее газовый поток проходил через реактор с карбидом кальция, где вода превращалась в ацетилен. Карбид кальция в реакторе заменяли новым перед каждым анализом. Смесь простых продуктов (азот, двуокись углерода, ацетилен) разделяли на хроматографической колонке с молекулярными ситами 5А. Среднее отклонение при определении углерода 0,52%, водорода 0,22%, азота 0,58%. [c.116]

    Интересно отметить, что окись серебра характеризуется периодом индукции при разложении в присутствии кислорода в противоположность разложению в вакууме. Это указывает на подавление кислородом роста зародышей при очень небольшом их размере, как это бывает в случае зародышей металлического бария, образующихся из азида бария. Экспериментальные результаты Бентона и Дрейка показывают, что разложение представляет собой обычную реакцию на поверхности раздела и протекает на поверхности серебра или окиси серебра. По данным Гарнера и Ривса, в массивной окиси серебра все зародыши начинают расти в начале реакции, и, так как они трехмерны, уравнение скорости подчиняется закону кубического корня, пока реакция не пройдет наполовину. Расхождения между величинами энергии активации, полученными различными авторами, велики. Значения, полученные Льюисом, не следует, по-видимому, принимать в расчет, так как при определении им констант скорости не были учтены некоторые эффекты, связанные с реакцией рекомбинации. Бентон и Дрейк ввели поправку на реакцию рекомбинации, и их значения энергии активации относятся к диссоциации на активной поверхности, в то время как энергия активации, вычисленная Гарнером и Ривсом, относится к массивной окиси серебра. [c.304]

    Определение ионов серебра с помоЦью ионообменной хроматографии. В колонку помещают окись алюминия, затем вносят в колонку четыре капли 2 н. раствора едкого натра, после чего вводят точно такой же объем, как в первом случае, исследуемого раствора нитрата серебра. Наблюдают образование черной зоны. [c.195]

    Колориметрические определения Ag, Hg, РЬ, 1п, Оа, Зе, Те, Со, Мп и В1 возможны также при соответствующих операциях отделения от мешающих элементов. Серебро и свинец следует определять по реакции с дитизоном [20], индий и галлий после экстракции соответственно с 8-ок-сихинолином [21] и люмогаллионом [22]. В лучах ультрафиолетового света возможно флуоресцентное определение индия и галлия с кверцети-ном [23] соответственно с чувствительностью 1 10 % и 5-10 %, выделив экстракцией вначале галлий из солянокислого раствора, а затем индий из раствора бромидов. Селен и теллур могут быть сконцентрированы в аммиачном растворе на гидроокиси железа и определены по цветным реакциям соответственно с 3,3 -диаминобензидином и бутилродамином Б. Определение кобальта возможно по реакции с нитрозо-К-солью, марганца по каталитической реакции с серебром в присутствии окислителя, а висмута по образованию комплекса с тиомочевиной. Ртуть также может быть определена фотоколориметрическим методом по реакции с дитизоном [20] или с тиураматом меди [24]. В последнем случае определению ртути мешает только серебро. [c.385]

    При окислении моносахаридов в щелочной среде они расщепляются с образованием ряда продуктов, в том числе очень легкоокисляющихся. Поэто.му в щелочной среде моносахариды являются сильными восстановителями. Подобно альдегидам, они восстанавливают аммиачную окись серебра с образованием металлического зеркала, а также феллингову жидкость. В результате последней реакции получается закись меди. На этом свойстве основано их количественное определение. [c.106]

    Применение. В гистохимии для выявления жирных кислот ло методу Ока-MOTO-, Уеда н Като [1], серебра по методу Окамото, Утамура и Акаги [2] и меди по образованию красновато-коричневого осадка (чувствительность метода 0,6 мкг Си +) [Пирс, 618]. В аналитической химии для определения Ag, Au, Hg и обнаружения Ag, Au, u, Hg, Pd, Pt, алкалоидов, антипирина, белков, инди-каиа, сульфонамидов, уробилиногена. [c.129]

    Функциональный анализ. Одним из необходимых шагов в структурном анализе органических соединений является определение природы и числа функциональных групп. На функциональные группы обращали внимание уже сторонники теории радикалов и теории типов. Поэтому и до появления теории химического строения было известно немало реакций для открытия функциональных групп. Б Введении к полному изучению органической химии Бутлеров упоминает о таких реакциях, например, на гидроксильную группу (в спиртах) с металлическим натрием образование алкоголята с хлорокисью фосфора продукта замещения гидроксильной группы на хлор с кислотами сложных эфиров, особенно характеристический и свойственный собственно алкоголям случай замещения водорода водяного остатка [25, с. 133]. Те же реагенты могут действовать и на гидроксильную группу кислот, однако при этом образуются соли, галогенангидриды кислот, которые в отличие от га-логенпроизводных алкогольных радикалов легко разлагаются водой. Подобный анализ имеет не только качественный, но и количественный характер, так как по числу атомов замещенного водорода в гидроксильных группах или самих этих групп можно судить, например, об атомности и основности оксикислот. К характерным реакциям альдегидов, открытым ранее, относится их легкая способность окисляться до кислот, восстанавливая окись серебра (Либих, 1835), а также способность к прямому соединению с аммиаком (Деберейнер, 1832). Кетоны резко отличаются от альдегидов тем, что не присоединяют кислород, а при действии окисляющих веществ, в отличие от альдегидов, распадаются. Бутлеров упоминает также о бисульфитной реакции на альдегиды и кетоны (Бертаньини, 1853). Были известны также реакции не только на аминогруппы, но и для [c.298]

    Термовесы особенно удобны при количественном определении компонентов бинарных смесей, например сплавов меди с серебром. При этом их сначала превращают в соответствующие нитраты, которые затем подвергают термическому разложению в весах Дюваля. Оказывается, что нитрат серебра AgNOs при 473° С разлагается с выделением металлического серебра, а медь, полученная в виде гексагидрата нитрата меди Си(Н0з)2-6Н20, при температуре выше 200° С превращается в окись меди СиО. [c.325]

    Трубку наполняли и послойно Отдельные слои состояли из окиси меди, платиновой сетки или платинированного асбеста и металлического серебра. Хотя наполнение в трубке усложняло метод и одно определение занимало много времени, результаты оправдывали эти услол<нения. Однако метод, разработанный для анализа органических соединений, оказался непригодным для кремнийорганических веществ. Поскольку анализируемое вещество из лодочки испарялось в окислительный слой, то разложение вещества и полное окисление продуктов разложения проходило в основном в окислительном слое окиси меди, активная поверхность которой покрывалась мелкодисперсной двуокисью кремния, образующейся при окислении кремния. В результате окись меди быстро отрабатывалась и данные анализа получались неустойчивыми. Наблюдалось также и образование карбида кремния В этом заключалась основная трудность проведения анализа кремнийорганических веществ в трубке с наполнением. [c.261]

    Для получения хромового ангидрида насыщенный раствор двухромовокалиевой соли при обыкновенной температуре приливают тонкою струею к равному объему чистой серной кислоты. При смешении, разумеется, температура повышается. При медленном охлаждении хромовый ангидрид выделяется в длинных игольчатых кристаллах красного цвета, ногда в несколько сантиметров длиною. Чтобы освободить кристаллы от маточного раствора, их кладут на пористую глиняную массу, напр., на кирпич (ни процеживания, ни промывания здесь употребить нельзя, потому что бумагою хромовый ангидрид восстановляется, а промыванием растворяется). Весьма важно обратить здесь внимание на то, что при разложении хромовых соединений никогда не выделяется гидрата хромовой кислоты, а всегда ангидрид СгО . Соответственный гидрат СгО Н- или какой-либо другой даже вовсе неизвестны. Тем не менее надо принять, что хромовая кислота двуосновна, потому что она образует соли изоморфные или совершенно аналогические с солями серной кислоты, которая есть лучший пример двуосновных кислот. Доказательство этому видно и в том, что СгО при нагревании с Na l и H SO дает летучий хлорангидрид rO l с двумя [атомами] хлора, как следует для двуосновной кислоты. Хромовый ангидрид представляет красное кристаллическое вещество, при нагревании дающее черную массу при накаливании до 190° плавится, выше 250° выделяет кислород и оставляет двуокись хрома СгО [556], а при еще более возвышенной температуре — окись хрома СгЮ . Хромовый ангидрид чрезвычайно легко растворяется в воде, притягивает даже влагу воздуха, но определенного соединения с водою, как сказано выше, не образует. Уд. вес кристаллов равен 2,7 (сплавленных 2,6). Раствор представляет совершенно ясные кислотные свойства из угольных солей выделяет угольную кислоту, в солях бария, свинца, серебра и ртути производит осадок нарастворимых солей. [c.236]

    Хотя серебро непосредственно не соединяется с кислородом, но косвенным путем из солей серебра могут быть получены три различные степени соединения серебра с кислородом. Все они, однако, малопостоянны и разлагаются при накаливании на кислород и металлическое серебро. Эти три окисла серебра имеют состав закись или недокись, А О [626], соответствует (мало исследованным) недокисям, или квадрантным окисям щелочных металлов окись серебра, Ag O, соответствует окисям щелочных металлов и обыкновенным солям серебра А Х, и перекись серебра АдО [627] или, судя по определениям Вертело, АдЮ - Сравнительною прочностью отличается только окись А "0. Окись серебра получают, прибавляя к раствору серебряной соли, напр., [c.302]


Смотреть страницы где упоминается термин Определение серебра окисях: [c.407]    [c.224]    [c.79]    [c.319]    [c.76]    [c.218]    [c.121]    [c.224]    [c.180]    [c.10]    [c.492]    [c.150]    [c.229]    [c.189]    [c.180]    [c.118]    [c.38]    [c.423]    [c.310]    [c.616]    [c.640]   
Аналитическая химия серебра (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Серебро окись



© 2025 chem21.info Реклама на сайте