Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Чернь как носитель

    Такие реакции известны достаточно давно [1—4]. Они успешно проходят на двух группах катализаторов. К первой относятся катализаторы с чисто металлической поверхностью (монокристаллы, пленки, черни), а также катализаторы, содержащие один или несколько металлов на носителях, не имеющих своей особой функциональной активности, например на активированном угле. К другой группе принадлежат катализаторы, состоящие из металла, чаще всего переходного, отложенного на каталитически активном веществе, выполняющем особую каталитическую функцию. Такие катализаторы называют бифункциональными. [c.87]


    Зависимость состава продуктов превращения н-гексана (а) и 2-метилпентана (б) от содержания водорода в газе-носителе (Pt-чернь, [c.227]

    С целью выяснения роли алкенов и водорода в процессе Сб-дегидроциклизации и изомеризации алканов исследованы [125] превращения 3-метилпентана, а также З-метилпентена-1, цис- и транс- изомеров 3-метилпен-тена-2 на платиновой черни при температуре 300—390 °С Е1 токе Нг и Не при ( азличном содержании Нг в газе-носителе. Выявлено четкое влияние концентрации Нг в газе-носителе на превращения (Сз-циклизация, скелетная изомеризация, образование метилциклопентана и бензола) 3-метилпентана и изомерных алкенов. Полагают [125], что скелетная изомеризация должна проходить через промежуточный поверхностный комплекс, общий для 3-метилпентана и 3-метилпентенов. Этому комплексу соответствует полугидрированное поверхностное состояние углеводорода, адсорбированного на двух центрах. При малом содержании Нг возникает сильное взаимодействие между углеводородом и металлом с образованием кратных связей углерод—платина, что приводит к образованию З-метилпентена-1 из 3-метилпентана и. к частичному покрытию поверхности катализатора коксом. При больших количествах Нг преобладает слабое взаимодействие, увеличивается время жизни промежуточного комплекса и протекают характерные реакции дегидрирование алкана с образованием 3-метилпентена, Сз-де- [c.229]

    ЩИХСЯ между силикатными слоями. По этой причине глинистые почвы очень удобны для выращивания растений. Это же свойство позволяет использовать их в качестве носителей для металлических катализаторов. Один из распространенных катализаторов-платиновая чернь - представляет собой тонкоизмельченную металлическую платину, полученную осаждением из раствора. Каталитическая активность платиновой черни усиливается высокоразвитой поверхностью металла. Аналогичный эффект достигается путем осаждения металла-катализатора (N1 или Со) на поверхность глины. Атомы металла покрывают внутренние поверхности силикатных листов, а кристаллическая структура глины предотвращает слипание металла в бесполезную массу. Согласно предположению Дж. Бернала, первые каталитические реакции на ранних стадиях эволюции жизни, еще до появления биологических катализаторов (ферментов), могли протекать на поверхности глинистых минералов. [c.637]


    В последнее время вопрос о большом влиянии способа приготовления катализатора на число активных центров на единице поверхности, по крайней мере для некоторых катализаторов и реакций, подвергся пересмотру (Боресков). Например, для платинового катализатора установлено, что активность поверхности образца платинового катализатора, независимо от его формы и способа приготовления (фольга, сетка, платиновая чернь, использование разных носителей и т. д.), получается приблизительно одинаковой, если одновременно точно определять истинную поверхность образца я пересчитывать активность катализатора на 1 истинной поверхности. По-видимому, в некоторых случаях способ приготовления катализатора несуществен для удельной активности катализатора. [c.463]

    В таких случаях решающее значение имеют выбор катализатора и носителя, концентрация катализатора, растворителя, время, давление и другие факторы. Так, например, при гидрировании карвона над Р -чернью было показано, что сперва гидрируется олефино- [c.390]

    На рис. 8.8 белыми точками представлена изотерма адсорбции пара -гексана на ГТС при комнатной температуре, полученная обычным вакуумным статическим методом. В области малых концентраций (давлений) гексана в газовой фазе эта изотерма круто поднимается, причем первые более или менее надежно измеренные точки дают величины Г не менее 0,2 мкмоль/м , что соответствует заполнению гексаном уже более 5—7% поверхности. Определить отсюда ход изотермы адсорбции в области более низких заполнений и константу Генри невозможно из-за ненадежности экстраполяции. Черными точками представлена та же изотерма адсорбции в области низких и средних заполнений поверхности ГТС, полученная описанным методом достижения адсорбционного равновесия с использованием насыщения газа-носителя паром гексана в криостате (для создания малых его концентраций) и тепловой десорбции для определения малых значений адсорбции. Из рисунка видно, что при этом можно исследовать изотерму адсорб- [c.157]

    Носитель смеши- Черная  [c.313]

    Рубеановодородная кислота 2, Гексацианоферрат (II) калия Безводная окись алюминия Анионная и безводная окись алюминия 1% осадителя 0,1 мг-экв осадителя на 1 г носителя Вещества смешиваются в сухом виде Осадитель вносят в носитель в виде раствора, содержащего 0,1 мг-экв вещества Черная Красно-ко- ричневая [c.267]

    Этот эффект должен особенно проявиться при сопоставлении активности поликристаллического катализатора, например платиновой черни, и разведенных адсорбционных катализаторов, у которых активные ансамбли настолько разъединены носителем (расстояния порядка нескольких десятков ангстрем), что передача [c.121]

    Вторая полоса свидетельствует о дальнейшем окислении карбонильного углерода в карбоксильный. В газовой фазе органические кислоты не появляются, т. е. карбоксильная группа и енольная форма представляют собой тупиковые формы. Таким образом, каталитическое окисление произошло однократно и не сопровождалось освобождением соответствующего активного участка. При применении ИК-спектроскопии к изучению адсорбированного состояния необходимо подбирать адсорбенты и катализаторы, достаточно прозрачные в исследуемой области спектра. Окисные адсорбенты сами пропускают излучение в области 4000—1200 см . Металлы в виде сплошных напыленных пленок почти полностью отражают, а металлические черни с частицами малых размеров почти полностью поглощают излучение. Частичное преодоление этих трудностей возможно при помощи отраженных инфракрасных спектров. Более перспективна методика нанесения частиц металла очень малых размеров на тонко измельченный прозрачный носитель типа силикагеля или окиси алюминия с достаточно развитой поверхностью. [c.178]

    Свободные металлические платиновые катализаторы не очень удобны в обращении, требуют специальных предосторожностей при хранении, в процессе получения трудно воспроизводимы по активности. Лучше в этих отношениях платиновые катализаторы на носителях, или поверхностные катализаторы. Применяют разнообразные носители активированный уголь, оксид алюминия, силикагель, сульфаты и карбонаты бария, кальция и других металлов, асбест, пемзу, кизельгур и др. Обычно при приготовлении поверхностных платиновых катализаторов металл осаждают на носитель из раствора соли, в котором суспендирован или которым пропитан носитель (например активированный уголь или асбест соответственно). Как и при получении платиновой черни, соль часто восстанавливают формалином. Весьма активен катализатор Р1-С, приготовленный непосредственно перед гидрированием путем восстановления хлороплатиновой кислоты борогидридом натрия в этаноле в присутствии активированного угля. [c.19]


    Нитробензоат гексаметиле-намина Г-2 2 Этанол (42 %) На пористом носителе, водо-спиртовые растворы, бумага Черные металлы, А1, РЬ, 5п, N1 [c.147]

    Широкое распространение в настоящее время получил так называемый зональный электрофорез — электрофорез на твердом носителе (на бумажных полосах, агаре, крахмале, акриламиде), пропитанном буферным раствором с нужным значением pH. Положение белков на бумаге или геле определяют путем фиксации и последующего окрашивания их тем или иным красителем (обычно бромфеноловым синим, ами-довым черным или кумасси синим). Количество белка в каждой фракции можно ориентировочно определять по интенсивности окраски связанного красителя. Такое определение не дает строго количественного соотношения белковых фракций, так как количество красителя, связываемого различными белками, неодинаково. [c.89]

    При исследовании поведения в присутствии Pt-черни н-гексана и 2-метилпентана в токе смесей гелия и водорода Паал и Тетени показали [114, 115], что скорость реакций Сз-дегидроциклизации — изомеризации при добавлении водорода к гелию сначала увеличивается, а затем, пройдя через максимум, уменьшается (рис. 43). Та же закономерность наблюдается при преврашении н-гексана в бензол. Рост активности катализатора при добавлении водорода в газ-носитель объясняется [114, 115] замедлением дезактивации катализатора за счет удаления с поверхности последнего необратимо адсорбированных образований , являющихся предшественниками углистых слоев на металле. При дальнейшем увеличении концентрации водорода в газовой фазе происходит частичное вытеснение углеводорода с поверхности металла, так как водород расщепляет поверхностные связи С—М, что в свою очередь приводит к уменьшению обшей степени превращения. Таким образом объясняется появление максимумов на кривых конверсия углеводорода — содержание Из в газе-носителе. [c.226]

    Следует подчеркнуть, что в обсуждаемых до сих пор работах в качестве катализаторов дегидроциклизации, как правило, использовали металлы в виде черней, пленок, а также Pt и Pd, отложенные на активированном угле, SiOg или некислом АЬОз, т. е. такие катализаторы, в которых носитель либо отсутствовал, ли о по крайней мере не влиял явным образом на каталитические свойства. Очевидно, что в присутствии би- и поли-функциональных металлоксидных катализаторов реакции дегидроциклизации могут проходить несколько иначе. Кроме того, течение этих реакций может осложняться рядом побочных и вторичных процессов. Краткий обзор этих работ, посвященных исследованию реакций дегидроциклизации на би- и полифункциональных металлоксидных катализаторах, приведен в следующем разделе. [c.244]

    Устойчивость катализатора на носителе по отношению к дей- твию ядов, как правило, также резко повышается по сравнению с устойчивостью массивных и порошкообразных металлических катализаторов. Например, спад активиости ила типовой черни (при разложении перекиси водорода) наблюдается уже при прокаливании ее до 300—350° С. Платина же, нанесенная на силикагель, почти не изменяет своей активности при прокаливании до 700 и даже до 900° С. Препятствуя спеканию , но-сит( ль продлевает срок службы катализатора и увеличивает ннт( рвал температур, прн которых этот катализатор достаточно активен. Благодаря этому оказывается возможным во многих случаях повышать температуру проведения реакции, ускоряя ее и повышая выход полезных продуктов. Столь же показательно отношение нанесенных катализаторов и к действию ядов. Например, кристаллический палладий нри адсорбцин 2,5- 10" г-атома яда (ионов ртути) иа г-атом палладия теряет 86,97о своей каталитической активности. Палладий, адсорбированный на угле, при том же соотношении яда и активного металла теряет только 17% первоначальной активности. Аналогичные соотношения наблюдаются и для других катализаторов. [c.351]

    Удельная активность, отнесенная к одному атому платины, изменяется с увеличением температуры сдекания в противоположность тому, что наблюдается в случае кристаллической Р1-черни. Это показывает, что адсорбционные катализаторы с малой концент рацией нанесенного веш,ества, даже подвергнутые тренировке (прогреванию и откачиванию до 10" мм рт. ст.), не представляют собственно кристаллических систем. С увеличением степени покрытия поверхности носителя до 0,038 образцы адсорбционных катализаторов по избыточной информации, параметру / и удельной активности приближаются к образцам Р1-черни. [c.107]

    Каталитическое гидрирование в паровой фазе при атмосферном давлении над восстановленным никелем было открыто Сабатье Вскоре В. Н. Ипатьев впервые применил гидрирование в жидкой фазе под давлением водорода. За почти семидесятилетний период развития и изучеааия реакций гидрирования было открыто много весьма активных катализаторов позволявших работать при очень мягких условиях никелевые катализаторы на носителях, хромит-медные катализаторы, окись платины, платиновая чернь и др. Большое значение, в том числе и промышленное, получили так называемые скелетные никелевые катализаторы ( никель Ренея ) . К настоящему времени ряд катализаторов значительно пополнен, а известные катализаторы усовершенствованы. Так, например, очень активными катализаторами являются сплавы никеля и родия, платины и рутения, модифицированные катионами палладиевые катализаторы и др. Скелетные катализаторы значительно улучшены промотированием , а приготовление катализаторов усовершенствовано так, что платиновая чернь, например, может быть получена с хГоверхностью до 200 м /г, в то время как в прошлом лучшие образцы имели поверхность не более 50—60 м г. [c.130]

    Графопостроитель состоит из электромеханического двухко-. ординатного регистрирующего построителя и системы приема и переработки графических данных. Построитель управляется шаговыми двигателями и обеспечивает перемещение пишущего узла. Пишущий узел состоит из нескольких пишущих элементов, которые могут заправляться черни.яами различного цвета. Система приема и переработки данных обеспечивает прием и декодирование графических данных, их интерполяцию и управление исполнительными устройствами. По типу носителя графопостроители подразделяются на планшетные и рулонные. [c.190]

    Гидрирование этилеиа в этан было впервые осуществлено в середине XIX в. Фарадеем, применившим в качестве катализатора платиновую чернь. Впоследствии для гидрирования олефинов использовали платину, скелетный никелевый катализатор (никель Ренея), никель на носителях, медь, смешанные оксидные катализаторы (медь-хромитный и цинк-хромитный) и многие другие гетерогенные контакты.. Наиболее типичны для промышленной практики металлический никель и никель, осажденный ыа оксиде алюминия, оксиде хрома или других носителях. В их присутствии высокая скорость реакции достигается при 100—200 °С и давлении водорода 1—2 МПа. Если исходное сырье содержит сернистые соеди-Г ения, рекомендуется применять катализаторы, стойкие к сере (сульфиды никеля, вольфрама и молибдена) при 300—320°С и 5-30 МПа. [c.496]

    В первый период развития гидрогенизационных процессов в качестве катализаторов применялись специальным образом приготовленные металлы VIII группы периодической системы элементов никель, кобальт, железо, платина, палладий или их окислы [1—7]. Катализаторы этого типа характеризуются весьма высокой гидрирующей способностью и могут использоваться на носителях и без них. В литературе подробно освещены способы приготовления и применения никеля Ренея [8,9], платиновой и палладиевой черни, окиси платины [10], никеля на кизельгуре или на окиси алюминия [II], платины и палладия на активированном угле [12, 13]. [c.64]

    Осаждение катализаторов на носители стало известным с первой четверти XIX в., когда И. Деберейнер впервые применил платиновую спираль и гончарную глину для осаждения на них платиновой черни при изучении превращений различных газов (эвдиомепг-рия). Позднее было доказано, что носителями могут быть многие пористые вещества уголь, асбест, пемза, тальк, кизельгур, глинозем, [c.82]

    В качестве катализаторов гидрирования применяют никель, платиновую и палладиевую чернь. В последнее время используются сложные катализаторы, состояш,ие из смеси окислов хрома и некоторых других металлов (меди, цинка). Особенно активным катализатором является никель Ренея, который получается при обработке сплава никеля с алюминием (1 1) едким натром. Катализаторы применяются в мелкораздробленном состоянии, в большинстве случаев на носителе (активированный уголь, асбест) и при различных температурах. В присутствии никеля Ренея, платины и палладия гидрирование обычно проводят при комнатной температуре, а в присутствии никеля и меди — при нагревании. [c.147]

    Черный порох представляет собой тесную смесь KNO3 с серой и углем. Смеси такого типа были, по-видимому, изобретены около 100 г. до н. э. в Китае. Их взрывное действие трактовалось как результат внезапного соединения противоположных начал ян и инь (I 1 доп. 4), причем носителем ян считалась сера, а носителем ннь — селитра. В Европе порох стал известен около 1200 г. Первый точный рецепт его изготовления дается в составленной до 1250 г. Книге огня Марка Грека следующим образом Возьми 1 фунт живой серы, 2 фунта липового или ивового угля, 6 фунтов селитры. Очень мелко разотри эти три вещества на мраморной доске и смещай . [c.432]

    Пластинку помещают в камеру, на дно которой наливают подвижный растворитель, в наклонном положении 20—30° так, чтобы слой носителя не ссыпался с нее, нижний край пластинки осторожно погружают в подвижный растворитель. Пятна с исследуемым раствором и свидетелями должны находиться выше подвижного растворителя на 10 мм. Камеру закрывают и оставляют стоять для развития хроматограммы на 50 мин. Время развития хроматограммы зависит от влажности носителя. После того как подвижный растворитель поднимется по тонкому слою носителя на высоту не менее 17 мм, пластинку вынимают, подсушивают при комнатной температуре и проявляют путем опрыскивания ее 1 н. раствором N328. На хроматограмме проявляются два пятна желтое ( dS) и ниже — черное ( uS). Сравнивают окраски полученных пятен от исследуемого раствора с пятнами свидетелей и опреде- [c.136]

    Таким образом, даже для простейших неорганических катализаторов, взятых в кристаллическом виде, существует не только валентный механизм, но смешанный валентно-энергетический. Это существенно расширяет первоначальное представление о безразличном отношении атомных металлических ансамблей к носителям, на которых они адсорбированы. Представления теории активных ансамблей остаются вполне справедливыми для инертных носителей типа окислов, углей, но не для собственной кристаллической решетки. Для кристаллической решетки самого катализатора энергетический катализ или автоактивация превращаются в ярко выраженный каталитический эффект, способный при достаточно экзотермических реакциях повышать эффективность активных центров в десятки и сотни раз. Даже если допустить, что активны все атомы поверхности платиновой черни при разложении Н2О2, рассчитанная активность в 20—40 раз меньше экспериментальной. Главную роль играет повышение производительности каждого активного центра за счет выделяющейся энергии реакции. Вместе с тем не исключается возможность, что некоторые более слабо связанные атомы решетки сами приобретают каталитическую активность в результате энергетического возбуждения. [c.119]

    Основной метод восстановления ароматических углеводородов, в том числе и с кратными связями в боковых цепях,— каталитическое гидрирование. При этом ароматические кольца, стабилизированные энергией сопряжения, восстанавливаются в более жестких условиях, чем кратные связи боковых цепей. Это позволяет избирательно восстанавливать кратную связь, не затрагивая ароматическую часть молекулы. Для гидрирования кратной связи в качестве катализаторов могут быть использованы платиновая чернь, никель Ренея, никель на носителях и др. Обычно реакция идет уже при комнатной температуре и атмосферном давлении. [c.296]

    Одним из наиболее важных факторов при этом является природа и тип катализатора, то есть его селективность по отношению к различного рода связям в молекуле органического соединения. Обнаружение ряда селективно действующих катализаторов принадлежит к числу крупных успехов, достигнутых в области органического катализа за последние годы. В настоящее время наряду с катализаторами группы благородных металлов (Р1, Рс1 и др.), восстановленными никелем и медью широко применяется ряд элементарных и смешанных катализаторов, обладающих достаточной активностью и избирательностью. В отличие от катализаторов платиновой группы, они дешевы и могут использоваться промышленностью. К их числу принадлежат скелетные катализаторы (13, 27, 28), прежде всего никель Ренея, никель Бага, скелетная медь (29) и др., катализаторы на носителях (никель на кизельгуре, на АЬО.., и др.), а также окисные катализаторы, например, медно-хромовый и т. д. Кроме того, различные добавки к катализаторам (промоторы и ингибиторы) позволяют повышать их избирательность и использовать с успехом для специальных целей в тонком синтезе. Так например, прибавление ничтожных количеств 2п н Ре солей к платиновым катализаторам (РЮг, Р1 — чернь) даёт возможность осуществлять такие реакции, которые не были достижимы с чистыми катализаторами этого типа, в частности, избирательно гидриро- [c.90]

    Поскольку эффективность твердых К. часто определяется величиной их уд. пов-сти, К. готовят в виде тел с развитой пов-стью или порошков или наносят на носители, к-рыми служат высокодисперсные термостойкие в-ва (А12О3, ЗгОг, алюмосиликаты, кизельгур и т. п.). Осн. методы получ. оксидных К.— осаждение гидроксидов из р-ров солей непо-средств. разложение солей при высокой т-ре смешение исходных оксидов в виде водных суспензий или паст с послед. фильтрацией, сушкой и прессованием. К. на носителях получают гл. оор. пропиткой носителя р-рами солей, а также соосаждением металла и носителя иэ смеси р-ров их солей. В зависимости от состава реакц. смеси, условий процесса и т. п. К. часто получают разл. способами (см., напр.. Железные катализаторы. Никелевые катализаторы). Спец. методами получают скелетные катализаторы, черни платиновых металлов (см. Платиновые катализаторы) и нек-рые другие К. [c.248]

    ПАЛЛАДИЕВЫЕ КАТАЛИЗАТОРЫ, используют в виде черней и нанесенными на носителн. Модификаторы — соли s, Na, d, Pb. Уд. пов сть до 200 м /г (на АЬОз) и до 5,50 м г (на цеолите) объем пор до 0,4 см г. Получ. катализаторы на носителях — пропиткой носителя водными р-рами соед. Pd с послед, сушкой и восст. при 200° С (иногда 500 С) черни — по методу Адамса — Фрамптона или Зелинского (см. Платиновые катали.шторы). Примен. при избират. гидрироваиии ацетиленовых спиртов, очистке газообра. шых олефинов от диолефинов и ацетилена, дегидрогенизации алициклич. соед., окислении, крекинге, полимеризации. [c.421]

    РУТЕНИЕВЫЕ КАТАЛИЗАТОРЫ, используют в виде черней и нанесенными на носители. Часто модифицируют платиной. Уд. пов-сть черней — до 80 м /г, катализаторов на носителях — до 200 м /г объем пор до 0,4 см /г. Получ. катализаторы на носителях — адсорбцией или соосажде-нием металла и носителя из р-ров их солей с послед, сушкой и прокаливанием нри 200—500 °С черни — по методу Адамса — Фрамптона или Зелинского (см. Платиновые катализаторы). Примен. при гидрировании альдегидов и кетонон, производных фурана с кислородсодержащими функциональными группами, азотсодержащих гетероциклич. соед., нитросоединений, ароматич. к-т. [c.513]

    Для каждой партии низкотемпературных элементов готовится овеж нй раствор солей платины и палладия (0,0125 г Р1С14, растворенной в 0,75 мл дистиллированной воды, с добавлением 0,0125 г РёСЬ при тщательном перемешивании). Раствор наносится по капле (всего восемь капель) на белый шарик. После нанесения каждой капли шар ик прогревается при этом происходит восстановление металлов из солей раствора. В конечном итоге на шарике носителя образуется черная матовая [c.135]

    Палладиевые катализаторы были получены сплавлением хлористого палладия с азотнокислым натрием с целью получения окиси палладия восстановлением солей палладия щелочным раствором формальдегида -8, муравьинокислым натрием , гидразином , а также водородом Палладий был получен как в виде черни > , так и в виде коллоидального раствора в воде, содержащей защитный коллоид а также осажденным на носителях. В качестве обычно применяемых носителей можно назвать асбест , углекислый барий , сернокислый барий углекислый кальций уголь кизельгурсиликагель и углекислый стронций Приведенные выше методики получения катализаторов являются видоизменениями прописей Шмидта Розенмунда и Лангера а также Манниха и Тиле и Гартунга . [c.413]

    Печатная и писчая Б. воспринимают печатную краску, чернила, тушь, карандаш обладают достаточной прочностью и долговечностью (последнее требование не относится к газетной Б.). Упаковочные виды Б. характеризуются хорошими физ.-мех. св-вами высокой динамич. прочностью (мешочная Б.), жесткостью (гофрированный картон) и т. д. Фильтры из Б., имеющей заданную капиллярнопористую структуру и высокую жесткость, применяют для очистки газов и жидкостей, напр, масел и топлива в двигателях внутр. сгорания. Санитарно-гигиенич. Б. (туалетная, гигиенич. пакеты, пеленки, бумажные полотенца, белье одноразового пользования) имеют высокую впитывающую способность при достаточной мех. прочности и влагопроч-ности. Б., применяемая как носитель информации в электронно-вычислительной технике, отличается высокой мех. прочностью (перфолента), плоскостностью (перфокарта), стабильностью размеров. Б., используемая в кач-ве регистрирующей в системах вывода и размножения информации, имеет функциональные покрытия (свето- и термочувствительная, полупроводниковая Б. и др.). Б. со спец. липкими покрытиями употребляется для механизации упаковки и этикетирования, с аитиадгезионными покрытиями-для упаковки липких материалов. [c.323]

    П. используют для каталитич. синтеза HNO3, H2SO4, каталитич. очистки Hj. Платиновые катализаторы используют в виде сеток, черней и нанесенными на носители. [c.569]

    Рутенат(У1) калия K2RUO4-черно-зеленые кристаллы т. разл. 440 °С раств. в воде и р-рах щелочей, в к-тах диспропорционирует на Ru(IV) и Ruполучают сплавлением Р. с КОН и KNO3 или К2О2 промежут. продукт при аффинаже Р., используется также для приготовления катализаторов на носителях. [c.286]

    Примеяеяие. Легирующие добавки Р. значительно повышают прочность, твердость, термич. и коррозионную стойкость сплавов. Р.-компонент сплавов с Pt и Rh (для фильер, используемых в произ-ве стекловолокна л вискозы), с Ir, Os, W (для перьев авторучек), с Ir (для высокотемпературных термопар, эксплуатируемых до 2000 °С), с Pt и Pd (для изготовления износостойких деталей разл, измерит, приборов, электроконтактов, ювелирных изделий), Р. и его сплавы с Pd, нанесенные в виде черней на носители,-катализаторы гидрирования и дегидрирования орг. соединений. Р. используют также для нанесения защитных покрытий на электрич. контакты. Радиоактивш.1е ° Ru (Ti/2 39,8 сут) и (Ti/2 1 ч)-изотопные индикаторы. [c.287]

Рис. 3—35. Анализ пиперина (а) и экстракта черного перца (б). (Из работы [52] с разрешения издательства Elsevier.) Условия эксперимента стеклянная капиллярная колонка 25 м х 0,5 мм, НФ HTS OV-1 изотермический режим (250°С) газ-носитель водород (4,6 мл/мин). Внутренний стандарт — тетрагидропиперин (пик 1) пик 2 — пиперин. Рис. 3—35. Анализ пиперина (а) и экстракта черного перца (б). (Из работы [52] с разрешения издательства Elsevier.) <a href="/info/142855">Условия эксперимента</a> <a href="/info/1020945">стеклянная капиллярная колонка</a> 25 м х 0,5 мм, НФ HTS OV-1 <a href="/info/224339">изотермический режим</a> (250°С) газ-<a href="/info/39435">носитель водород</a> (4,6 мл/мин). <a href="/info/55170">Внутренний стандарт</a> — тетрагидропиперин (пик 1) пик 2 — пиперин.
    Кроме этого, азот в органических соединениях определяли и методом Кьельдаля с Сп804 в качестве катализатора. Образующийся сульфат аммония разлагали в кипящей серной кислоте в присутствии платиновой черни собирали выделяющиеся газы в шприцы объемом 20 мл и для определения азота вводили их в потоке водорода (газ-носитель) в газовый хроматограф с ката-эометром [59]. В работе [60] описан систематический анализ, имеющий целью различить 14 азотсодержащих функциональных групп молекул органических соединений. В этом анализе используются различные комбинации реакций разложения анализируемых соединений с измерением методом ГХ скорости образования газо- [c.297]


Смотреть страницы где упоминается термин Чернь как носитель: [c.185]    [c.241]    [c.122]    [c.292]    [c.307]    [c.377]    [c.448]    [c.510]    [c.172]   
Структура металических катализов (1978) -- [ c.275 , c.324 ]




ПОИСК





Смотрите так же термины и статьи:

Чернов

Чернь



© 2025 chem21.info Реклама на сайте