Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизация неравновесная

    Предлагаемая читателю монография представляет восьмую книгу в единой серии работ авторов под общим названием Системный анализ процессов химической технологии , выпускаемых издательством Наука с 1976 г. Семь предыдущих монографий 1. Основы стратегии, 1976 г. 2. Топологический принцип формализации, 1979 г. 3. Статистические методы идентификации объектов химической технологии, 1982 г. 4. Процессы массовой кристаллизации из растворов и газовой фазы, 1983 г. 5. Процессы измельчения и смешения сыпучих материалов, 1985 г. 6. Применение метода нечетких множеств, 1986 г. 7. Энтропийный и вариационный методы неравновесной термодинамики в задачах анализа химических и биохимических систем, 1987 г.) посвящены отдельным вопросам теории системного анализа химико-технологических процессов и его практического применения для решения конкретных задач моделирования, расчета, проектирования и оптимизации технологических процессов, протекающих в гетерогенных средах в условиях сложной неоднородной гидродинамической обстановки. [c.3]


    Все предложенные до настоящего времени теории зарождения и роста НК и пленок игнорируют реальное состояние поверхности раздела, участие во многих случаях химических реакций в процессе кристаллизации из газовой фазы, следствием которых является наличие слоя хемосорбированных молекул на поверхности раздела. При наличии хемосорбции непосредственный обмен между подложкой и средой практически отсутствует и хемосорбционный слой в известном смысле можно считать промежуточной двумерной фазой . Рост кристалла в этом случае, по-видимому, происходит в результате актов химического распада молекул хемосорбционного слоя, механизм которых совершенно не изучен. Особая трудность возникает при обсуждении возможных механизмов роста эпитаксиальных пленок сложных соединений при жидкофазном осаждении в связи с тем, что молекулярная форма нахождения большинства этих соединений в растворах и расплавах в настоящее время неизвестна. Поэтому единой достаточно удовлетворительной теории зарождения и роста НК и пленок при газофазном осаждении пока не существует. Необходимо дальнейшее накопление надежных экспериментальных данных о реальной структуре (атомной и электронной) поверхностей раздела, о явлении хемосорбции, о так называемой закомплексованности и других определяющих явлениях. Важным также в теории гетерогенного зародышеобразования пленок является установление соотношения между процессами статистического зародышеобразования на чистых подложках и на активных центрах. Имеются сведения (Л. С. Палатник и др. 1972 г.) об образовании и длительном существовании в тонких пленках термодинамически неравновесных фаз. Поэтому пределы применимости к тонкопленочным системам (приборы микроэлектроники, оптические покрытия и др.) диаграмм состояний, разработанных для систем массивных материалов, требуют подробного анализа и обсуждения. [c.485]

    В приложении 4 довольно подробно описаны диффузионные модели распределения примеси при направленной кристаллизации. Эти модели предполагают, что всегда возникает концентрационное уплотнение примеси в расплаве у фронта кристаллизации Пусть это уплотнение будет незначительным или исчезающе малым, но все диффузионные модели приводят к заключению по мере уменьщения скорости кристаллизации неравновесная кривая распределения приближается к равновесной медленнее в начальной части слитка, чем в средней. Иными словами, в предположении существования неоднородного распределения примеси в расплаве у фронта кристаллизации в любой диффузионной модели мы никогда не получим участка совпадения неравновесной кривой распределения с равновесной, т. е. точки г. Повторяем, этот вывод не зависит от того, велико ли концентрационное уплотнение или исчезающе мало в любом случае диффузионные модели не дают участка совпадения неравновесной кривой распределения с равновесной в начальной части слитка. [c.114]


    Как следует из данных табл. 4, предел прочности при растяжении при 100 °С для ненаполненных резин, получаемых на основе некоторых каучуков регулярного строения, выше, чем для наполненных резин на основе некристаллизующихся каучуков. Это объясняется тем, что в условиях неравновесного деформирования происходит кристаллизация каучука. Образующиеся при этом физические узлы (кристаллиты) достаточно стабильны до 100°С и выше, что и вызывает увеличение прочности резин. [c.88]

    К третьему уровню иерархии относятся явления, связанные с процессом взаимодействия системы кристалл — несущая (сплошная) фаза. Наглядную картину структуры связей ФХС демонстрирует обычно диаграмма взаимных влияний физических и химических явлений системы. При построении такой диаграммы ФХС представляем в виде набора элементов и их связей. При этом узлам диаграммы ставятся в соответствие отдельные явления или эффекты в системе, а дугам — причинно-следственные связи между ними (рис. 1). Растущая кристаллическая частица движется в объеме сплошной фазы под действием сил сопротивления, инерционных, тяжести, подвергаясь одновременно воздействию механизма переноса массы ПМ, энергии ПЭ и импульса ПИ через границу раздела фаз в направлении 1- 2 (где 1 означает принадлежность к сплошной фазе, 2 — к кристаллу). Процесс кристаллизации на частице идет при неравновесии химических потенциалов вещества в несущей фазе и в частице Д , неравновесности по температурам фаз Ат скоростной неравновесности А , т. е. при несовпадении скоростей фаз. Поэтому естественно принять, что рассматриваемая неравновесность гетерогенной системы и обусловливает совокупность явлений, составляющих механизм межфазного переноса при кристаллизации. Причем неравновесность гетерогенной системы в целом (по Ац, Ат, А ) обусловливает в качестве прямого эффекта (сплошные дуги) перенос массы через поверхность в направлении 1- 2 (дуги 1, 2, 3). Каждый вид неравновесности обусловливает прежде всего перенос соответствующей субстанции (дуги 4, 5) и одновременно оказывает перекрестное или косвенное влияние (пунктирные дуги) на перенос других субстанций (для ПЭ — дуги 6, 9 для ПИ — дуги 7, 8). [c.8]

    Математическое описание процесса зонной очистки. Рассмотрим диаграмму состояния бинарной системы с ограниченной областью твердых растворов. При равновесной кристаллизации из жидкости состава X при температуре выпадают первые кристаллы состава у. При дальнейшем охлаждении состав жидкости будет меняться в направлении, соответствующем аа, а состав кристаллов — в направлении ЬЬ (см. рис. 32). Если кристаллизация происходит в неравновесных условиях, то в сплаве сохраняется неоднородность состава. В реальных условиях при понижении температуры диффузия в кристаллах подавлена. Содержание тугоплавкового компонента оказывается больше в центре кристалла (зерна), а к его периферии уменьшается (ликвация или сегрегация). Можно рассчитать содержание примеси в твердой фазе после однократной зонной перекристаллизации. Для простоты расчетов допускают (приближение Пфаниа), что 1) диффузия в твердой фазе практически отсутствует D,, = 0 2) в расплавленной зоне происходит полное перемешивание D,, = оо 3) величина равновесного коэффициента распределения постоянна А о = onst = k 4) объем материала при плавлении и затвердевании не изменяется 5) можно пренебречь газообменом между твердой фазой, расплавом и паром. Тогда распределение примеси в основном веществе при к < 1 [c.91]

    Обычно при кристаллизации за счет охлаждений несущей фазы Та>Т. н с <с, (что следует из (1.247)). Наличие температурной неравновесности фаз фактически приводит к изменению концентрации насыщения (в рассматриваемом случае —к снижению). Это изменение приводит к увеличению пересыщения вблизи поверхности кристалла и, следовательно, к более вероятному появлению зародышей. Рассмотренный вариант является строгим обоснованием одной из гипотез [41] о появлении зародышей в окрестности затравочных кристаллов. [c.79]

    Роль дефектов в генезисе и поведении катализатора очень велика. При получении катализаторов дефекты возникают из-за неравновесного положения атомов и ионов, и по некоторым предположениям они и определяют активность. Деформации кристаллических решеток всегда возникают при адсорбции посторонних веществ или при быстрой кристаллизации. Такие деформации близки к пересыщенным системам Рогинского и являются причиной повышенной свободной энергии. Неравновесные состояния, полученные в результате суммирования дефектов и деформаций, имеют тенденцию к упорядочению решеток при рекристаллизациях и спекании поверхностей. [c.153]

    Поясним подход к расчету Л5 для реальных необратимых процессов, рассмотрев неравновесный фазовый переход, например кристаллизацию одного моля переохлажденной жидкости. [c.84]

    Избыточный запас внутренней энергии по сравнению с соответствующим веществом в кристаллическом состоянии. Стекла получают путем переохлаждения расплава, и поэтому они являются системами, находящимися в метастабильном неравновесном состоянии. Однако благодаря чрезвычайно высокой вязкости, затрудняющей внутреннюю диффузию, стекла в метастабильном состоянии могут существовать неопределенно долго без признаков перехода в устойчивое, кристаллическое состояние. Но вследствие избыточного запаса внутренней энергии кристаллизация стеклообразного вещества сопровождается выделением тепла и является экзотермическим процессом. [c.189]


    Построение калибровочной прямой. Строят кривые охлаждения индивидуальных веществ на миллиметровой бумаге в координатах ЭДС — время. Рекомендуемый масштаб по оси абсцисс 1 мм = 30с, по оси ординат 10 мм — 0,5 мВ. Полученные экспериментальные кривые, подобные представленным, на рис. 6,4, вследствие неравновесных условий охлаждения могут отличаться по виду от теоретических кривых (сравните кривые на рис. 6.1, б и 6.4). В частности, возможно явление переохлаждения, когда температура опускается ниже температуры кристаллизации, а выпадения кристаллов не наблюдается. Это приводит к появлению провалов на кривых охлаждениях. В этих случаях для определения ЭДС начала кристаллизации проводят интерполяцию линейного участка кривой, как показано на рис. 6.4. Строят график в координатах температура плавления (°С)—ЭДС кристаллизации индивидуальных веществ (рис. 6.5). Температуру плавления индивидуальных веществ находят в справочных таблицах (см. Приложение). [c.44]

    Разделительный эффект при кристаллизации из раствора обусловлен различием составов образующейся твердой фазы и остающегося раствора, который называют маточным. Рассматривая в общем случае систему основное вещество — примесь — растворитель как трехкомпонентную, это различие графически можно представить диаграммой фазового состояния в виде равностороннего треугольника, строящегося при условии постоянного давления (треугольник Розебома). Чаще, однако, для характеристики указанного различия пользуются аналитическим выражением, вид которого определяется способом выражения состава фаз и условиями соосаждения (равновесное или неравновесное соосаждение, сокристаллизация или адсорбция и т.д.). [c.152]

    Таким образом, изотермическая кристаллизация полимеров при температурах значительно ниже температуры плавления приводит к образованию неравновесных (метастабильных) кристаллов, средний размер которых вдоль оси макромолекулы зависит от температуры кристаллизации, возрастая с ее повышением. Монокристаллы полимеров, полученные как из растворов, так и из расплавов, неоднородны по строению. Участки макромолекул, находящиеся внутри кристаллов, образуют кристаллическую ре- [c.174]

    С термодинамической точки зрения, равновесие при температуре плавления должно быть обратимым, т.е. затрата энергии при плавлении (теплота плавления) равна скрытой теплоте кристаллизации — энергии, выделяющейся при образовании твердой фазы из жидкости. Однако, чтобы кристаллизация протекала с конечной скоростью, необходимо переохлаждение, компенсирующее затрату энергии на возникновение фазовой границы. Следовательно, кристаллизация в отличие от плавления является принципиально неравновесным процессом. [c.187]

    Общей чертой пересыщенных систем является их неравновесность. Стоит тем или иным путем снять затруднения при образовании новой фазы, как немедленно начнется интенсивное ее образование. Например, если в перегретую жидкость бросить стеклянный капилляр, содержащий пузырьки воздуха, затруднения, связанные с образованием зародышей газовой фазы, исчезают, и жидкость бурно вскипает. Кристалл растворенного вещества (затравка), помещенный в пересыщенный раствор, приводит к интенсивной кристаллизации этого вещества. [c.310]

    Неравновесные фазовые переходы. В реальных условиях достаточно часто фазовые переходы совершаются в неравновесных необратимых условиях (кристаллизация переохлажденных жидкостей, конденсация переохлажденного пара, превращение твердых кристаллических модификаций). Во всех подобных случаях изменение термодинамических функций вычисляют путем мысленной замены данного необратимого процесса совокупностью обратимых, с помощью которых осуществляют переход системы из заданного исходного состояния в заданное конечное. [c.122]

    TOB. До температуры 1473 К процесс агломерации протекает по схеме твердофазного спекания и путем агрегирования частиц в локальных объемах за счет поверхностного натяжения жидкости. Поскольку неравновесные точечные расплавы, растворяя компоненты, быстро кристаллизуются, их роль в процессе агломерации, по-видимому, непостоянна и случайна. Формирование крупных гранул клинкера начинается с появления в системе равновесного расплава — около 20—30%. Наиболее интенсивно растут гранулы в местах повышенного содержания расплава. Механизм роста гранул с участием расплава подчиняется общим закономерностям жидкофазного спекания. Процесс образования зерен клинкера в присутствии равновесного расплава условно можно разделить на три стадии стадию соединения и перегруппировки частиц, стадию уплотнения гранул за счет реакций растворения — кристаллизации и стадию охлаждения с кристаллизацией и застыванием расплава. Деление процесса жидкофазного спекания на стадии условно, поскольку в реальных условиях процессы соединения и перегруппировки и растворения — кристаллизации протекают параллельно и накладываются друг на друга. [c.230]

    Особенно велика роль сварочных процессов в создании неравновесных структур. Сварным соединениям присущи практически все виды гетерогенности- геометрическая, структурная, химическая и т.д. [13, 14]. Стремление системы эволюционировать в направлении более вероятных состояний приводит к развитию релаксационных процессов, проявляющихся в образовании сварочных дефектов как в процессе кристаллизации металла (горячие и деформационные трещины, газовые и шлаковые включения и т.д.), так и при вылеживании сварных конструкций [29, 30]. [c.19]

    В дальнейшем процесс кристаллизации может привести к образованию термодинамических равновесных единичных кристаллов или термодинамически неравновесных, но кинетически обусловленных сферолитов. Последние наиболее типичны для полимеров. [c.259]

    Уже в процессе плавки исходных компонентов м. б. созданы условия для получения после затвердевания С. с разл. структурой. Величина перегрева расплава, время выдержки при высокой т-ре влияют на кол-во и степень дисперсности нерастворимых в расплаве примесей тугоплавких соединений. При кристаллизации частицы этих примесей служат центрами зарождения зерен, поэтому чем больше примесных частиц (перед затвердеванием), тем мельче зерно в затвердевшем С. В процессе кристаллизации в слитке возникает хнм. микронеоднородность-дендритная ликвация, вызванная неравновесной кристаллизацией твердых р-ров. Эта неоднородность устраняется отжигом, в результате к-рого путем диффузии в твердой фазе происходит выравнивание концентрации по всем участкам С. (гомогенизирующий отжиг). [c.408]

    Вторая возможность образования фуллеренов в сплавах - в процессе первичной кристаллизации. Совокупность известных фактов позволяет рассматривать железо-углеродистые расплавы как среды, структурированные фуллереновыми кластерами. В этом случае оправдано использование принципов синергетики, описывающих поведение систем, далеких от равновесия, в точках неустойчивости системы, связанных с неравновесными фазовыми переходами. В этих точках реализуется принцип подчинения, в соответствии с которым, множество переменных подчиняется одной - параметру порядка. Это обусловливает, как уже отмечалось, взаимосвязь критических параметров, контролирующих границы стабильного развития процесса для предыдущей и последующей точки бифуркаций, с параметрами порядка, что позволяет использовать их для прогнозирования механических свойств. [c.35]

    Были развипы следующие мегоды неравновесной термодинамики метод термодинамических функций Ляпунова (вблизи и вдали от равновесия), вариационный принцип минимума производства энтропии, анализ производства энтропии дпя определения движущих сил и закономерностей в кристаллизации. Движущие силы кристаллизации помимо разности химических потенциалов содержат также энтальпийную составляющую, характеризующую тепловую неравновесность системы. Рассмотрена роль этих вкладов для систем с высокими тепловыми эффеетами при кристаллизации, например, ортофосфорной кислоты Анализ производства энтропии системы с фазовыми превращениями позволил подтвердить распределение Хлопина для макрокомпонента и примеси (случай полного термодинамического равновесия), получить новые закономерности (и проверить их на ряде систем) для распределения компонентов при частичном равновесии. На основе вариационного принципа минимума производства энтропии определены закономерности для стационарных форм роста кристаллов, предельного пересыщения и т.д. Используя метод избыточного производства энтропии нашли новый класс осцилляторов, роль которых могут играть процессы кристаллизации, протекающие за счет химической реакции Используя кластерную теорию пересыщенных растворов, методы нелинейной динамики, было создано математическое описание, учитывающее колебания (в том числе и на термодинамической ветви) в кристаллизации, определены причины их возникновения. Разработаны алгоритмы управления (с обратной связью и без неё) хаотическими колебаниями в системах с кристаллизацией [c.21]

    Как правило, растворимость большинства веществ с повышением температуры увеличивается. При понижении температуры такие растворы становятся пересыщенными и переходят в состояние неустойчивого равновесия, продолжительность которого определяется степенью отклонения от равновесия, свойствами растворенного вещества и растворителя. Переход из неравновесного состояния в равновесное сопровождается выпадением кристаллов, т.е. возникновением процесса кристаллизации. На величину предельного (максимального) пересыщения оказывают влияние свойства [c.292]

    Следует подчеркнуть, что данная методика расчета применима лишь к равновесной кристаллизации при бесконечно большой скорости переноса вещества к поверхности раздела фаз. Поскольку скорость реального процесса кристаллизации конечна, то в этом случае коэффициент разделения связывает составы неравновесных фаз и таким образом становится функцией кинетических параметров массообмена. [c.300]

    На первый взгляд может показаться, что рассмотренный механизм структурирования белковой цепи принципиально не отличается от кристаллизации низкомолекулярных соединений и образования у некоторых синтетических полимеров линейных регулярных форм. Это, однако, не так, хотя в обоих случаях процессы осуществляются посредством случайных флуктуаций и взаимодействий валентно-несвязанных атомов. Существенное различие состоит в том, что кристаллизацию малых молекул в насыщенном растворе и формирование ближнего порядка (одномерного кристалла) у искусственного полимера можно представить равновесными процессами, т.е. путем обратимых флуктуаций и непрерывных последовательностей равновесных состояний. Сборку же белковой цепи в трехмерную структуру нельзя даже мысленно провести только через равновесные положения системы и без привлечения бифуркационных флуктуаций. Механизм пространственной самоорганизации белка имеет статистико-детерминистическую природу и поэтому является принципиально неравновесным. Его реализация невозможна без необратимых флуктуаций, а его описание - без установления связи между свойствами макроскопической системы и внутренним строением ее микроскопических составляющих. С позиции равновесной термодинамики подобные явления просто не могут существовать. [c.99]

    В отличие от микропри-меси для макропримеси 5г(КОз)2 ниже области III проявляется влияние скорости кристаллизации на кривую распределения. Если концентрация примеси и скорость кристаллизации значительны, то вся кривая распределения не совпадает с равновесной. По мере уменьшения скорости кристаллизации при одинаковой исходной концентрации примеси неравновесная кривая распределения приближается к равновесной. При этом разные участки кривой ведут себя неодинаково сближение идет быстрее в начальной части слитка, и при соответствующем уменьшении скорости кристаллизации неравновесная и равновесная кривые распределения образуют участок совпадения в начальной части слитка (рис. III.3). Кривая распределения 1 относится к такой скорости кристаллизации, когда вся кривая отличается от равновесной. Кривая распределения 2 относится уже к меньшей скорости кристаллизации и на участке [c.80]

    В ряде работ экспериментально оценивался вклад Ру, главным образом при исследовании деформации сшитого натурального каучука. Авторы делают вывод, что вклад энергетической составляющей силы составляет 18—23%- Эти данные, однако, нельзя считать окончательным, так как еще недостаточно выяснено, что вносят неравновесность деформации и возможные кристаллизация и предкристаллизация в их опытах. Поэтому опыты следует проводить не с натуральным каучуком, а с эластомером, заведомо не кристаллизующимся при растяжении. Кроме того, не выяснено, [c.74]

    Вследствие захвата молекул дисперсионной среды при образовании аморфных частиц и рыхлости их упаковки создаются условия,- при которых молекулы, атомы или ионы, вошедшие в состав аморфной частицы, сохраняют достаточную подвижность внутри этих частиц. Так как образовавшаяся система неравновесна, частицы будут кристаллизоваться, что приведет к уменьшению свободной энергии Системы. Благодаря возникновению кристаллических образований внутри аморфной частицы в ней создаются напряжения, и частица распадается на множество отдельных мелких, но уже кристаллических частичек. Таким образом, размер образовавшихся кристаллических частиц связан не с условием роста их из раствора, как предполагалось ранее, а с кристаллизацией при распаде первичных аморфных частиц. Весьма вероятно, что описанный механизм образования новой кристаллической фазы в коллоидных системах имеет очень широкое распространение. [c.231]

    Образование таких кристаллов в расплавах обычных высоко-полимеров и при обычных скоростях кристаллизации, далеких от равновесных, хотя и выгодно термодинамически, но недостижимо кинетически. Гибкие макромолекулы в процессе начавшейся кристаллизации не успевают выпрямиться, а, наоборот, складываются гармошкой , образуя кристаллические пластинки — ламели (рис. 12.2). Из рис. 12.2 понятно, почему н условиях неравновесной, т. е. относительно быстрой, кристаллизации легче образоваться кристаллу из сложенных цепей (КСЦ), чем кристаллу из выпрямленных цепей. Не вошедшие в кристалл части макромолекулы образуют петли разной длины. Эти петли вне кристалла. Если бы к[)исталлизапия шла по типу КВЦ, то все петли оказались Оы п и у т р и кристалла и он не мог бы образоваться. [c.173]

    Иногда его называют коэффициентом сегрегации или коэффициентом ликвации. Коэффициент распределения — очень важная характеристика примеси. Он определяет поведение примеси при кристаллизации и характер распределения ее в вырап енном кристалле, а также позволяет оценить эффективность очистки вещества в процессе кристаллизации. Величина к зависит от природы примеси и основного вещества, типа фазовой диаграммы соответствующей системы, условий кристаллизации, скорости перемещения расплавленной зоны, интенсивности перемешивания и т. п. При кристаллизации из расплава различают равновесный и эффективный коэффициенты распределения. Равновесный коэффициент распределения к применим к бесконечно медленной кристаллизации при равновесии между соприкасающимися фазами. Эффективный коэффициент распределения характеризует процессы кристаллизации с измеримой скоростью (состояние системы неравновесно). Величина /г для различных примесей в одном и том же веществе может меняться в очень широких пределах. Примеси, понижающие температуру плавления, имеют к <. 1, а примеси, повышающие температуру,— к > 1, На рис. 32 показаны участки фазовых диаграмм в области небольших концентраций примеси. При этих концентрациях можно использовать для описания состояния системы законы разбавленных растворов и считать, что шнии солидуса и ликвидуса близки к прямым. Тогда коэффициент распределения легко рассчитать. Он равен отношению отрезков горизонтальных линий от оси температур до их пересечения с линиями солидуса и ликвидуса. Если угол между линиями солидуса и ликвидуса мал и концентрации и [c.61]

    Однако при температуре ниже температуры кристаллизации это же вси[ество можно получить в жидком, так называемом переохлажденном состоянии. Переохлажденная жидкость находится всегда в неравновесном состояи иногда достаточгю незначительных изменений внешних условий, чтобы вызвать в ней процесс кристаллизации. [c.129]

    Для полимерных веществ газообразное состояние не реализуется, так как температура их разложеиия лежит ниже температуры кипения. По строению они могут быть аморфными нли кристаллическими. С термодинамической гочки зрения аморфная структура считается неравновесной, так как свободная энергия системы больше, чем у кристаллической (не выделяется скрытая теплота кристаллизации). Однако кинетически она часто бывает более вероятна, а иногда и единственно возможна. [c.244]

    Строение реальных К. Неравновесные условия кристаллизации приводят к разл. отклонениям формы К. от плоских граней-к округлым граням и ребрам (вициналям), возникновению пластинчатых, игольчатых, нитевидных (см. Нитевидные кристаллы), ветвистых (дендритных), К. типа снежинок. Если в объеме расплава образуется сразу большое число центров кристаллизации, то разрастающиеся К., встречаясь друг с другом, приобретают 4юрму неправильных зерен. Нерелко возникают микроскопич. двойники и др. сростки. При выращивании К. не стремятся обязательно получить их в правильной кристаллографич. огранке, главный критерий качества - однородность и совершенство [c.539]

    Осн. понятие Т. и. с.-частная эволюция [i-й процесс в ф-ле (1)], т.е. агрегация f ,-x компонентов системы, участвующих в /-М процессе, на j-m уровне иерархии. В случае закрытой (простой) физ.-хим. системы агрегация структурных элементов - неравновесный самопроизвольный процесс, для к-рого убыль ф-ции Г иббса можно определить согласно второму началу термодинамики. Так, неравновесную кристаллизацию жидкости ниже т-ры плавления можно рассматривать как агрегацию зародышей кристаллизации (верх, иерархич. уровень) в объеме однородной жидкости (ниж. иерархич. уровень). Убыль ф-ции Гиббса системы можно вычислить по приближенному ур-нию Гиббса-Гельмгольца AG = АН АТ/Т ), где ДЯ-изменение энтальпии системы при кристаллизации, АТ=Т — Т>0 (Т -т-ра плавления в-ва, Т-т-ра кристаллизации переохлажденного в-ва). Аналогично можно вычислить убьшь ф-ции Гиббса для процессов агрегации структурных элементов при спирализации цепей ДНК, агрегации молекул белков или полисахаридов с образованием надмолекулярных структур, [c.536]

    В первую очередь следует различат , раЕновесное и неравновесное проведение процесса кристаллизации. Под равновесной кристаллизацией условно подразумевается процесс, осуществляемый таким образом, что пересыщение в каждый момент кристаллизации поддерживается очень малым (величина относительного пересыщения Дс очень близка к нулю, а коэффициента относительного пересыщения г — к единице). [c.94]

    Все приведенные ранее формулы фракционирования истин-ноизоморфных микропримесей для ра.чных вариантов равновесной кристаллизации применимы также и к аналогичным вариантам неравновесной кристаллизации. Только в этих формулах будут фигурировать вместо коэффициентов .раЕи прак]И-ческие коэффициенты которые являются ф ункцией не только температуры, но и других параметров, определяющих условия 1 1.и еления твердой фазы в каждый момент кристаллизации. [c.104]

    В последние годы интенсивно разрабатывают методы получения порошков для керамических изделий из твердых раствороа солей и гидроксидов. В таких растворах, а также в продуктах их термического разложения керамикообразующие компоненты находятся в более высокой степени смешения, чем в системе, образованной из смеси солей или оксидов. При этом существенное развитие получили как способы равновесной кристаллизации из растворов, так и методы неравновесной кристаллизации, в том числе 1) соосаждение в форме малорастворимых соединений 2) образование осадков методом замены растворителя (высаливание)  [c.163]


Смотреть страницы где упоминается термин Кристаллизация неравновесная: [c.211]    [c.220]    [c.105]    [c.13]    [c.30]    [c.23]    [c.62]    [c.25]    [c.632]    [c.119]    [c.96]    [c.105]   
Основы физико-химического анализа (1976) -- [ c.123 , c.124 ]




ПОИСК





Смотрите так же термины и статьи:

Неравновесный ЯЭО



© 2025 chem21.info Реклама на сайте