Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород образование при метана

Рис. 3-8. Модели, показывающие степень сжатия атомов, необходимую для достижения атомами хлора расстояния, при котором возможно образование связи с атомом водорода в метане (ср. с рис. 3-7). Рис. 3-8. Модели, показывающие <a href="/info/26987">степень сжатия</a> атомов, необходимую для достижения атомами хлора расстояния, при котором <a href="/info/1625446">возможно образование связи</a> с <a href="/info/1117693">атомом водорода</a> в метане (ср. с рис. 3-7).

    Механизм метанового брожения. Механизм образования метана давно интересовал исследователей. Впервые в XVIII в. ученые обратили виимапне, что из влажных почв, богатых органическими веществами, выделяется горючий газ — метан. В 1875 г. Л. Попов, исследуя брожение гуммиарабика, установил, что в результате этого процесса образуются двуокись углерода, водород и метан. Метановое брожение кальциевых солей уксусной и масляной кислот наблюдал Гоппе — Зейлер в 1887 г. Это брожение сопровождалось выделением метана и двуокиси углерода. Возбудители его были внесены в среду с коровьим навозом. [c.313]

    Пробу вешества вводили в потоке двухкомпонентного газа (аргон, содержащий 8% водорода) в кварцевый реактор с активным углем, в котором при 1100°С происходила термодеструкция вешества с образованием оксида углерода, водорода и сажи. Количество оксида углерода соответствует содержанию кислорода б анализируемом вешестве. Затем оксид углерода отделялся от других продуктов пиролиза при комнатной температуре на короткой колонке (50X0,4 см), заполненной молекулярными ситами 5А. Зона оксида углерода в потоке смешанного газа-носителя поступала в реактор, заполненный 10 /о никеля на хромосорбе В реакторе при 400— 500 °С количественно происходила реакция образования метана из оксида углерода и водорода. В качестве второго продукта реакции образовалась вода. Вода поглощалась молекулярными ситами, слой которых был расположен после реактора. Поскольку теплопроводность метана близка к теплопроводности используемого смешанного газа-носнтеля (аргон с 8% водорода), то метан не регистрируется катарометром. Катарометр регистрирует только изменение (уменьшение) концентрации водорода в газе-носителе (за счет реакции гидрирования оксида углерода). Поскольку на одну молекулу оксида углерода в данной реакции расходуется три молекулы водорода, то, в общем, данный метод обеспечивает повышение чувствительности детектирования в 15 раз [18]. [c.245]

    Валентность элементов, проявляющаяся в ковалентных соединениях и простых веществах, часто называют ковалентностью. Ковалентность атома равна числу электронов, затраченных им на образование электронных пар с электронами других атомов. Сколько электронов затрачено атомами на образование электронных пар, столько пар и образовалось. Поэтому ковалентность атома измеряется количеством электронных пар, связывающих его с другими атомами. Так, в молекуле метана СН4 каждый атом водорода связан с атомом углерода лишь одной электронной парой валентность водорода в метане равна 1. А атом углерода связан с присоединенными к нему атомами водорода четырьмя электронными парами ковалентность углерода в метане равна 4..  [c.80]


    Кинетические и диффузионные пламена. Сжигание жидких углеводородов осуществляется с обязательным предшествующим испарением и, следовательно, с образованием диффузионного пламени, которое по своему характеру может быть турбулентным и светящимся, а сжигание газообразных углеводородов может осуществляться в двух совершенно отличных друг от друга типах горелочных устройств. При сжигании с предварительным смешением в устройствах осуществляется предварительная (до воспламенения) подготовка смеси первичного воздуха с топливным газом. Степень перемешивания различна от нескольких процентов до 100 % сте-хиометрической смеси. Диффузионное горение возникает при взаимодействии струи газа с окружающей атмосферой, когда весь необходимый воздух поступает непосредственно во фронт горения пламени до перемешивания с газом. Горючие газы и кислород должны диффундировать в противоположных направлениях из зоны горения и в нее. Вполне понятно, что устойчивость такого пламени будет тем выше, чем дольше сохраняется неизменным соотношение газ—окислитель, а сжигание в нем тем полнее, чем больше в топливе легких углеводородов (в этом случае необходимое соотношение газ—воздух достигается быстрее и легче, чем при сжигании углеводородов с более сложными и тяжелыми молекулами). На практике в атмосферном воздухе по этой схеме могут сжигаться только водород и метан. Во всех других случаях, если не осуществлять предварительной подготовки, будут наблюдаться интенсивная турбулентность в пламени, шум и неполное горение с образованием углерода. [c.100]

    Первоначально термин окисление был введен в химию, как присоединение к элементам кислорода. Понять взаимосвязь приведенного в начале параграфа определения с исторически первым определением нетрудно, если вспомнить, что кислород — наиболее электроотрицательный элемент после фтора, и, следовательно, во всех соединениях кислорода, кроме РзО, электронная пара, образующая химическую связь кислорода с каким-либо другим атомом, оттянута в сторону кислорода. Таким образом, связанный с кислородом атом частично лишен своего электрона (в случае кратной связи — двух электронов) и поэтому может считаться окисленным. Число электронов, отданное атомом полностью (в случае образования иона) или частично (в случае образования связи с более электроотрицательным элементом), называют степенью окисления элемента. Чаще всего этим понятием пользуются применительно к соединениям кислорода и галогенов, хотя в принципе можно его распространить и на другие элементы и считать, например, водород в метане окисленным, а углерод — восстановленным, поскольку электроотрицательность углерода несколько выше, чем у водорода (соответственно 2,5 и 2,1). [c.252]

    С целью исследования влияния водорода на пиролиз метана нами были проведены опыты в реакторе из кварца, с наружным электрообогревом, заполненном кварцевой насадкой (величина зерна 3,5 мм) со смесями 50% СН -Ь 50% На и 50% СН + + 50% Не. Природный газ очищали от высших углеводородов активированным углем при температуре 55° С, газ очищали также от СО2 и осушали, в результате чего получали метан, содержащий не более 2 об.% примеси азота. Внутренний диаметр реактора составлял 14 жлг, длина рабочей зоны — 50 мм. Время пребывания газа вне рабочей зоны было минимальным за счет весьма небольшого проходного сечения подводящей и отводящей трубок. Работу реактора осуществляли в прямоточном режиме, что было доказано специальными опытами по изучению гидродинамики течения. Внутреннюю поверхность реактора покрывали слоем пироуглерода. Анализ продуктов реакции производили на хроматографе ХЛ-4, количество пироуглерода определяли взвешиванием на аналитических весах. Образования значительных количеств сажи не наблюдали. Температуру в реакторе поддерживали с точностью + 2° С. Из рис. 4, на котором представлены результаты опытов в виде зависимости состава пирогаза от расхода смесей, подаваемых на пиролиз при температуре И00 С, видно увеличение количества непрореагировавшего метана при замене гелия на водород, что свидетельствует о общем торможении процесса водородом. Торможение водородом образования пироуглерода намного сильнее (в 3—4 раза), чем торможение общего реагирования метана. [c.226]

    Каталитические свойства этих металлов связаны с их адсорбционными характеристиками. Выдающаяся активность рутения в реакции образования метана объясняется меньшим сродством окиси углерода к этому металлу, чем к другим элементам семейства платины. Так, хемосорбированную на рутении окись углерода можно полностью удалить восстановлением или эвакуацией при 150° С в ее присутствии адсорбция водорода увеличивается метан с заметной скоростью образуется уже при температуре около 100° С. Напротив, на платине окись углерода адсорбируется предпочтительно из смеси с водородом и ее не удается полностью удалить указанными способами при 150° С. Промежуточное положение занимают родий и иридий, в отношении которых имеются некоторые доказательства взаимодействия окиси углерода с водородом незначительное количество метана в присутствии этих контактов обнаружено при 200° С. [c.124]


    На основании этого следовало бы ожидать, что он будет образовывать с двумя атомами водорода соединение СНа. Но в метане углерод соединен с четырьмя атомами водорода. Образование связи представляет собой энергетически выгодный процесс, и имеется тенденция к образованию максимально возможного числа связей — даже если это приводит к орбиталям связей, мало похожим на атомные орбитали, о которых говорилось выше. Если применять наш метод мысленного построения молекул к соединениям углерода, то предварительно его следует изменить. Необходимо придумать воображаемый тип атома углерода, который связан с четырьмя водородными атомами. Про такой атом углерода говорят, что он находится в определенном валентном состоянии. [c.19]

    Простейший алкан — метан — известен с давних пор как основной компонент болотного газа, который образуется при бактериальном разложении органических веществ в анаэробных условиях. Метан присутствует также в угольных пластах. Освобождаясь в процессе добычи угля, метан может скапливаться в количествах, достаточных для образования взрывчатой смеси с воздухом ( рудничный газ ). Атомы водорода в метане СН4 расположены вокруг атома углерода в вершинах правильного тетраэдра. Последовательным замещением атомов водорода в метане на метильные группы можно образовать алканы. Таким образом, все алканы построены на основе скелета, в котором валентные углы близки [c.56]

    При исследовании термодеструкции хлоркаучука аллопрен, содержащего 64,5% хлора, установлено, что 95% хлора теряется в виде хлористого водорода при нагревании до 400 °С. Кроме хлористого водорода образуются-метан, этилен, оксиды углерода и водород. Уже при уменьшении массы полимера на 1 % наблюдается его окрашивание, указывающее на образование системы сопряженных двойных связей в цепи. Уменьшение растворимости свидетельствует об образовании сшитых структур. [c.51]

    При температуре выше 230° карбид кобальта реагирует с водородом, образуя метан при 250° эта реакция протекает количественно с образованием металла и метана. [c.336]

    Отложение кокса можно значительно уменьшить, рационально подобрав условия процесса. Из данных табл. И видно, что с повышением парциального давления водорода образование кокса значительно уменьшается. В одном из патентов [461 отмечается необходимость поддержания достаточно высокого соотношения водород метан, чтобы отношение количеств метана, термодинамически равновесного к фактически содержащемуся в газах, выходящих из реактора, превышало 1,7. [c.218]

    Помимо того исходным материалом для получения синильной кислоты служит отход сахарного производства — паточная барда. Азотсодержащие соединения, входящие в состав паточной барды, при ее нагревании разлагаются с образованием триметиламина (СНз)дМ. Последний при нагревании до 800 — 1000° распадается на цианистый водород и метан  [c.137]

    Из той же табл. 10 видно, что выделение углекислоты происходит при самых низких температурах, без образования конденсата (фракция 1). Повидимому, в этих условиях разлагается главная масса органических кислот (судя по составу газа). В дальнейшем кислоты разлагаются во все уменьшающемся количестве. Появление водорода и метана в газе можно объяснить только распадом карбонильных соединений, так как только эти вещества могут образовать водород и метан при температуре 250—300°, когда все без исключения углеводороды еще совершенно устойчивы. Тот факт, что распад карбонильных соединений наблюдается в широком температурном диапазоне, говорит [c.29]

    При действии атомов водорода на толуол при высоких температурах (680—850 °С) образуются й водород и метан [32], Образование метана, вероятно, происходит не путем замещения фениль- [c.90]

    Механизм синтеза. Первоначально предполагали, что при синтезе из окиси углерода и водорода СО взаимодействует с металлическим катализатором, образуя карбид (например РегС, Ге С, СОаС), который затем в присутствии водорода восстанавливается с образованием метиленовых групп СНз последние в свою очередь полимеризуются в углеводороды различного молекулярного веса [357, 358]. Эта теория, однако, пе в состоянии объяснить образование кислородсодержащих соединений [393]. Вдобавок предполонгение о том, что восстановление карбидов приводит к получению полимеризующихся метиленовых радикалов, противоречит опыту. Известно, что при восстановлении карбида железа водородом образуется метан, а не соединения типа (СНз) - [c.596]

    Если перекрывание двух атомных орбиталей происходит вдоль их главных осей, то возникающую при этом связываю-ш,ую молекулярную орбиталь называют а-орбиталью, а обра зующуюся связь — соответственно о-связью а-Молекуля,риая орбиталь и находящиеся на ней электроны локализованы симметрично относительно линии, соединяющей ядра атомов, участвующих в образовании связи. Так, например, при образовании связей с атомами водорода в метане четыре гибридных 5р -атомных орбиталей атома углерода перекрываются с 15-атомными орбиталями четырех атомов водорода, образуя четыре идентичных прочных а-связи под углами 109°28 (тетраэдрический угол). Сходная, строго симметричная тетраэдрическая структура возникает также при образовании ССЦ. В случае же СН2С12 структура будет уже несколько отличаться от полностью симметричной, хотя в целом она останется тетраэдрической два объемистых атома хлора будут занимать несколько большую часть пространства, чем атомы водорода, и углы между связями Н—С—Н и С1—С—С будут несколько отличаться от величины 109" 28 и один от другого. .  [c.22]

    Реакции, лимитирующие стабильность растворов ацетонитрила, изучались разными исследователями. Вийон [7] сообщил, что в растворах солей натрия стабильность при катодной поляризации платиновых электродов обусловлена реакцией восстановления ионов натрия, которые в дальнейшем реагируют с растворителем или со следами воды, образуя цианид натрия, газообразный водород и метан. Автор настоящего обзора также наблюдал указанные реакции. В случае ртутных катодов образуется амальгама натрия, не взаимодействующая с ацетонитрилом. Вийон [7] утверждает, что нон лития восстанавливается до металла, который не реагирует с ацетонитрилом. Мейелл и Вард [15], исследуя восстановление четвертичных аммониевых солей, содержащих фенильную группу, нашли, что процесс восстановления протекает до образования третичного амина. [c.8]

    Первичные продукты, образующиеся ири горении и термическом разложении толуола, одинаковы. Так, по данным Шварца (1947 г.) и Макото [35], при термическом разложении толуола в инертной среде из устойчивых газообразных продуктов образуются тоже только водород и метан. Шварцем предложен механизм разложения толуола, объясняющий образование водорода и метана. [c.116]

    При синтезе на кобальтовом катализаторе принимается, что первично образующиеся а-олефины могут гидрироваться в парафины, изомеризоваться в олефины со средним положением двойной связи, сочетаться в большие молекулы или расщепляться иа меньшие. Такой механизм был предложен в начале 70-х годов, однако, как показали более поздние исследования (Ха-нус и др.), эта точка зрения имеет ряд существенных недостатков. Во-первых, предусмотренный этим механизмом комплекс (А) представляет собой как бы особую форму гидрида карбонила металла, образование которой характерно для железа [РеН2(СО)4] и кобальта [СоН(СО)4]. Эти соединения чрезвычайно нестабильны и разлагаются при температурах ниже 0°С. Кроме того, образование карбонилов металлов при аналогичных карбонильных структурах со многими молекулами СО на поверхностных атомах металла-катализатора мало вероятно из-за их нестабильности в условиях ФТ-синтеза. Во-вторых, метильная группа, связанная в реакционном комплексе(III) с поверхностным атомом металла, при ослаблении этой связи, видимо, будет реагировать с активным водородом, образуя метан, причем в результате должно было бы регенерироваться исходное соединение (А). Адсорбция метильной группы идет путем, ведущим к образованию метана, в то время как по конденсаци-онно-полимеризационному механизму образование метана является побочной реакцией. [c.279]

    Влияние давления на процесс газификации в угольном канале изучено Альтшулером и Шафир [384]. Опыты проподились на паро-кислородном и паро-воздушном дутье при давлениях до 100 ата и температурах от 800 до 120О°С. Опытами установлено, что давление не влияет на механизм газообразования, но увеличение давления ускоряет протекание как гетерогенных, так ц гомогенных реакций, в результате чего увеличивается степень выгорания угля по длине канала (рис. 806) в большей мере в кислородной зоно и в меньшей—в восстановительной. В выходящем газе, несмотря на повышение давления, практически отсутствовали водород и метан, что можно объяснить ускорением реакций их догорания, а также неблагоприятными термодинамическими условиями при высоких температурах для образования СН при высоких давлениях и для И,. [c.347]

    Деметанирование как элементарная стадия процесса поликонденсации пропилена наблюдалось в условиях дегидратации зо-пропилового спирта на катализаторе медь на силикагеле при 600—800° [68]. В ходе поликонденсации пропилена освобождался метан и водород с 2-3-кратным преобладанием мольных выходов метана по сравнению с водородом. При этом между скоростью углеобразования и скоростью метанообразования существует пропорциональная зависимость, и нет никакой корреляции для скоростей углеобразования и водородо-образования. Из этого следовало, что основной элементарной стадией процесса поликонденсации пропилена, приводящей к обезводороживанию продуктов уплотнения, является стадия деметанирования, а не дегидрогенизации, как бывает обычно в других случаях. Приведенная на рис. 11 схема поликонденсации согласуется с фактом нахождения в смолах нафталина, фенантрена, перилена, коронена и других углеводородов и с результатами анализов углистого вещества. [c.302]

    В. А. Ройтер [412], исходя из других соображений, также нашли существование кривых вулканообразного типа для ряда реакций. Эти соображения состоят в том, что для ступенчатых реакций наиболее выгодным предполагается такой путь, на котором теплоты реакции каждой ступеньки приблизительно равны (ср. [413]). Такие кривые были получены для реакций окисления водорода, окиси углерода, метана и аммиака кислородом, реакции синтеза аммиака, конверсии окиси углерода, восстановления окиси углерода водородом в метан и др. (по собственным и литературным данным). По оси ординат откладывается логарифм удельной каталитической активности при определенной температуре, а по оси абсцисс — изменение энтальпии предполагаемой промежуточной стадии (большей частью — образования окислов из элементов). Авторы указывают на аналогию их результатов с результатами, полученными на основании мультиплетной теории. [c.224]

    Рассмотрим подробнее некоторые реакции, представляющие особый интерес. Положительные величины AGr° реакций 2—4 указывают на устойчивость метана в присутствии водорода по отношению к распаду на углеводороды Сг. Отрицательные значения AGr° реакций 6а, 7а, 8а и 9а свидетельствуют о самопроизвольном протекании замещения атомов водорода в метане на атомы хлора однако из величин AGr° реакций 66, 76, 86 и 96 видно, что с увеличением числа атомов водорода, замещенных хлором, этот процесс постепенно становится все менее благоприятным. Величины AGr° реакций 11 и 37 свидетельствуют о возможности использования метана в качестве исходного сырья для синтеза углеводородов. Отрицательные значения AGr° реакций 14, 18 и 43 указывают на возможность образования Н2О2 в процессе окисления метана. Термодинамические параметры реакции 23 подчеркивают трудность осуществления синтеза уксусной кислоты из двуокиси углерода и метана и свидетельствуют о легкости протекания обратной реакции. Реакцию 32, представляющую собой мягкий метод хлорирования метана, можно использовать для замещения атомов водорода в молекуле метана на атомы хлора и получения таким путем любого хлорзамещенного метана. Сравнение окислительной способности различных веществ при взаимодействии с метаном связано с рассмотрением целого ряда родственных реакций. Так, реакции 59—62 представляют собой весьма жесткий метод хлорирования метана. Реакции 63—65 описывают взаимодействие с метаном бифункционального реагента значе- [c.187]

    При крекинге высокопарафишютого сырья наблюдается тенденция к образованию больших количеств газа, богатого соединениями Сз и 4. Выходы бензина и кокса при этом сравнительно низкие. При крекинге в тех же условиях нафтенового сырья при одинаковой степени превращения газ образуется в меньших количествах, а выходы бензина возрастают. Газ содержит больше водорода, метана и углеводородов Са, хотя по-прежнему доминирующее положение занимают соединения Сз и С4. Можно предполагать, что нефтяные фракции с высоким содержанием ароматических углеводородов дадут промежуточные по величине выходы бензина, значительные отлогке-ния кокса и газ, богатый водородом и метаном [115]. Идеальным сырьем для производства бензина следует считать газойль нафтеновой природы. На основании данных по молекулярному весу и распределению атомов углерода в парафиновых, нафтеновых и ароматических структурах можно с достаточно высокой степенью достоверности определить выходы бензина прн крекинге разнообразного сырья [115]. В качестве основных показателей прн [c.454]

    Из литературы известно, что в результате действия радиации на бензол получается молекулярный водород, ацетилен и продукт полимеризации. Причем О (Н2)=0,035 и 0(С2Нг) == 0,020 13], а выход продукта полимеризации 0,75 [4]. Продуктами радиолиза изооктана являются молекулярный водород и метан, а в присутствии кислорода перекисные соединения [5, 6]. Облучение четыреххлористого углерода приводит к образованию молекулярного хлора и гексахлорэтана с выходами в среднем 0,80 молекул/100 эв [7]. В присутствии кислорода при этом образуется также значительное количество фосгена [8]. [c.156]

    Имеются доводы в пользу той и другой схемы реакции. Диазометан при фотолизе в отсутствие водорода дает метан с выходом 4%, тогда как наличие эквимолекулярного количества водорода вызывает повышение выхода метана до 14% [48]. Реакция газообразного бромистого метилена с парами натрия в атмосфере водорода приводит к метану, но не к этилену [81—83]. Под действием электрического разряда из смеси СН4 и Ва в качестве главного продукта реакции образуется СНаВа наряду с небольшими количествами СНдВ и СНВд [74]. Этот факт хорошо объясняется механизмом (23). Следует, однако, помнить, что образование метилена однозначно установлено только нри фотолизе диазометана. [c.29]

    В большинстве обзоров по равновесиям химических реакций и, в частности, по реакциям углеводородов [10] делаются ссылки на работу Майера и Альтмайера 9]. Однако, как мы увидим ниже, в этой работе, как и в большинстве других, равновесие в смеси водорода с метаном устанавливалось над не вполне определенной и неравновесной модификацией углерода. Опыты ставились в проточной системе над никелевым или кобальтовым катализатором, к равновесному состоянию подходили как со стороны синтеза, так и со стороны разложения. Результаты приведены в табл. 3. Как видно из табл. 3, равновесие не достигалось ни со стороны синтеза, ни со стороны распада. На фиг. 3 и 4 мы нанесли данные для логарифмов констант равновесия образования метана, полученные в различных работах и над различными образцами углерода или вызывающих его образования веществ. Выводы из этих рисунков мы сделаем в конце этого раздела, сейчас же только укажем, что данные Майера и Альтмайера, как явствует из фиг. 3, являются [c.321]

    Хлор И бром на рассеянном свету замещают атомы водорода в метане, образуя, например, соединения СНзС1, СНгСЬ, СНС1з и ССи. Под действием прямых солнечных лучей, а также при зажигании смеси метана с хлором происходит выделение углерода и образование хлористого водорода по уравнению [c.170]

    Если две атомные орбитали перекрываются вдоль их главных осей, то возникающую при этом связывающую орбиталь называют о-орбиталью , а образующуюся связь — о-связью. Молекулярная ст-орбиталь и находящиеся на ней электроны локализованы симметрично относительно линии, соединяющей ядра атомов, участвующих в образовании связи. Так, при образовании связей с атомами водорода в метане четыре гибридные 5у0 -орбитали атома углерода перекрываются с Ь-орбиталями четырех атомов водорода, образуя четыре идентичные прочные ст-связи, располагающиеся под углом 109°28 друг к другу (стандартный тетраэдрический угол). Сходная строго симметричная тетраэдрическая структура возникает также, например, при образовании ССЦ если же атомы, образующие связи с углеродом, неодинаковы, например в случае СНгСЬ, пространственная структура будет несколько отличаться от полностью симметричной, хотя по существу она остается тетраэдрической (ср. разд. 1.2). [c.15]

    На том же рис. 132 мы видим точки соединений, получающихся при неполном замещении фтором водорода в метане. Упрочнение, которому подвергаются углеводороды и другие органические соединения при частичной и тем более при полной замене водорода на фтор, таково, что точки, отображающие энтальпии образования громадного числа непредельных соединений, передвигаются из эндообласти в экзообласть диаграммы, что характеризует фторопроизводные как более устойчивые вещества. Бесчисленное множество изомеров, возникающих при замене атомом фтора того или иного водородного атома в исходной молекуле, увеличивает список различных возможных фторсодержащих соединений. [c.283]

    К принципу аналогии в реакциях Вант-Гофф отнес также примеры с применением данных по тепловым эффектам ж скоростям реакций. Говоря о скоростях реакций, Вант-Гофф безусловно мог иметь в виду рассмотренные в главе УП1 работы Меншуткина (1877 г. и след.), который обнаружил влияние строения органических соединений на скорость протекания органических реакций. Применение данных о тепловых эффектах реакций ддя суждения о продуктах реакции Вант-Гофф иллюстрирует примером теоретически возможного (опять-таки с точки зрения формальной валентной схемы) хлорирования уксусной кислоты и получения двух продуктов замещения СНзСЮОаН и СНдСОзС . В пользу получения хлоруксусной кислоты говорит то, что теплота образования ее больше, а теплота образования продукта замещения хлором карбоксильного водорода меньше, чем самой уксусной кислоты, что следует также из аналогии с реакциями замещения хлором водорода в метане и воде. При этом Вант-Гофф делает ссылку на работы Томсена (1880), который определение строения углеводородов строит по тому же принципу. [c.297]


Смотреть страницы где упоминается термин Водород образование при метана: [c.238]    [c.299]    [c.92]    [c.219]    [c.38]    [c.1652]    [c.598]    [c.447]    [c.248]    [c.70]    [c.121]    [c.295]    [c.300]    [c.134]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.1002 , c.1063 ]




ПОИСК





Смотрите так же термины и статьи:

Водород образование из метана действием

Водород образование при пиролизе метана

Водород образование при при частичном сгорании метана

Метан водорода

Метан образование водорода из него при

Образование ацетилена и водорода из метана или этана

Образование метана из оксида углерода и водорода

Хлористый водород как использование энергии его образования для превращения метана в ацетилен

Цианистый водород, образование из метана в вольтовой дуге

Цианистый водород, образование из метана в вольтовой дуге азота



© 2024 chem21.info Реклама на сайте