Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан образование водорода из него при

    Количество данных, касающихся биосинтеза аминокислот, очень велико, но о ранних стадиях биосинтеза известно меньше, чем о более поздних. Современные представления о механизмах превращения газообразного азота в аммиак у растений изложены в специальной монографии [1]. Миллер [2] сделал очень интересную попытку подойти к решению проблемы первичного образования органических веществ на земле он показал образование аминокислот (глицин, саркозин, ОЬ-аланин, р-аланин, ОЬ-а-аминомасляная кислота и а-аминоизомасляная кислота), а также других соединений (молочная, муравьиная и уксусная кислоты) в системе, содержащей метан, аммиак, водород и воду. Эту смесь, близкую к предполагаемому составу земной атмосферы на ранних стадиях ее образования, подвергали в течение недели и дольше воздействию электрических разрядов. Было найдено, что аминокислоты образуются путем гидролиза нитрилов последние в свою очередь возникают в результате реакции между альдегидами и синильной кислотой, образующимися под действием электрических разрядов. Миллер высказал любопытное предположение о возможном синтезе первых живых организмов из аминокислот и других соединений, образовавшихся в результате взаимодействия между альдегидами, синильной кислотой и аммиаком в первичном океане. [c.307]


    Паровая конверсия метана без катализатора протекает с приемлемой скоростью и глубиной превращения на шамотной насадке только-при температурах 1250—1350 °С [19]. Опыты, выполненные в пустотелом кварцевом реакторе [20], показали, что при объемной скорости 200 ч , отношении пар газ, равном 2 1, и атмосферном давлении даже при 1000 °С степень конверсии метана не превышает 8—9%, а при 900 °С она равна всего 1,1%. При температурах 760—800 °С паровая конверсия метана вообще не протекает [21]. В случае нагревания гомологов метана в смеси с водяным паром без катализатора выше 500—600 °С протекают с большой скоростью процессы пиролиза с образованием непредельных углеводородов (этилена, пропилена и др.). В процессе пиролиза образуются также метан, этан, пропан п в относительно небольших количествах — водород. [c.79]

    Когда все четыре из этих орбит использованы таким способом для образования связей, они претерпевают гибридизацию . с образованием новых орбит, называемых тетраэдрическими орбитами и обозначаемых символом sp . Следовательно, четыре связи в метане СН включают четыре пары электронов, которые занимают четыре орбиты Is четырех атомов водорода и перекрывают четыре тетраэдрических орбиты атома углерода. [c.393]

    В то время когда Дэви, заменив метан, использовал в качестве горючего газа водород, он неизменно наблюдал на нагретой платине образование воды. Циан в этих же условиях тоже легко соединялся с кислородом воздуха и образовывал желтые пары двуокиси азота. [c.23]

    В связи с тем что степень превращения влияет на эффективность процесса по водороду, это объяснение представляется вполне вероятным. Повышение степени превращения (оцениваемой по увеличению расхода водорода) приводит к снижению эффективности по водороду, хотя и не всегда по тем же причинам, которые отмечались при рассмотрении каталитического крекинга. О том, насколько важна жесткость условий гидрирования — гидрокрекинга, можно судить по данным табл. 10. Поскольку в этом случае сравниваются результаты переработки сырья с различным содержанием водорода, необходимо ввести новое понятие — эффективность использования добавочного водорода. Она показывает долю расходуемого в процессе водорода, используемую на образование целевых продуктов. Другими словами, эффективность использования добавочного водорода равна отношению общего расхода водорода за вычетом потерь к общему расходу водорода. Сравнение процессов гидрирования и гидрокрекинга показывает, что эффективность использования добавочного водорода в процессах этого типа определяется его количеством (табл. 10). Справедливость этого утверждения в предельном случае совершенно очевидна, так как конечным продуктом гидрокрекинга в весьма жестких условиях является метан. По-видимому, для любого катализатора или сочетания катализаторов можно найти зависимость эффективности использования добавочного водорода от общего его расхода. Характер этой зависимости неизбежно будет зависеть от активности и избирательности применяемого катализатора. [c.46]


    Некоторые авторы пытались сопоставить радиационно-химические выходы с масс-спектрометрическими. Так, Дорфман [711 считает, что с масс-спектрометрическими данными можно сравнивать молекулярные выходы (выход молекулярных продуктов, определяемых без акцептирования свободных радикалов), а не общие выходы, так как последние часто изменяются по мере образования продуктов радиолиза. Кроме того, молекулярный выход определяется меньшим числом вполне конкретных процессов поэтому менее вероятно, что экспериментатор для расчета выходов будет подбирать подходящие реакции. Дорфман [71] определил молекулярный выход водорода из метана (Он, = 3,3 0,2), а также его вклад в общий выход, найденный в присутствии акцептора. Если в облученном метане молекулярный водород образуется по реакциям (7.102) — (7.108), то, полагая Wqh равным 27,3 эв/пара ионов, рассчитанное значение молекулярного водорода (оценивается по избытку ионов HI, HI и СН ) составляет 3,5, что хорошо совпадает с экспериментально найденной величиной 3,3 0,2. Затем можно определить свободнорадикальный выход (по экспериментам с акцепторами) [72], и тогда общий выход продуктов согласуется с масс-спектрометрическими данными. [c.192]

    Подобно никелю рений действует каталитически при гидрировании ненасыщенных углеводородов. Так, равномолекулярную смесь этилена и водорода он легко превращает в этан при 300—400°. Кроме того, указывалось [11] на каталитическое действие этого элемента, одного или в комбинации с медью, при превращении смеси окиси углерода с водородом в метан. Однако нри высших темпе-.ратурах окись углерода количественно разлагается на углекислый газ и углерод, и происходит образование некоторого количества карбида рения.  [c.27]

    Приходится осваивать этот метод непосредственно в ходе проведения эксперимента. Поскольку манометрические методы позволяют осуществлять прямую и непрерывную регистрацию выделения или поглощения различных газов, таких, как кислород, водород, СОг, метан, а также ионы водорода, они находят широкое применение при исследовании гомогенатов тканей, клеточных и бактериальных суспензий и препаратов ферментов. Этот список можно дополнить косвенными методами, к которым относится, например, определение киназ на основе образования ионов водорода. [c.279]

    В интервале температур от 800 до 1100° С при пиролизе бензола наблюдаются небольшие количества метана и следы ацетилена. Количество образующегося метана, примерно, такого же порядка, как и при нагревании углерода с водородом по-видимому, такая реакция, сопровождающая разложение бензола при высоких температурах, является основным источником образования метана. Интересно, что при нагревании так называемого аморфного углерода с водородом не получаются ароматические углеводороды, а вместо них благодаря реакции на ребрах кристаллов графита образуется метан. Можно считать, в свою очередь, что следы ацетилена, образующегося в процессе пиролиза бензола при высоких температурах, обусловлены скорее вторичным разложением метана, чем прямой диссоциацией бензола до ацетилена. Последняя реакция лишь предполагается некоторыми исследователями [4], однако она трудно доказуема. Ацетилен почти полностью разлагается при 750° С при этом получаются ароматические углеводороды, (в значительных количествах бензол) кокс и газы, среди которых обнаруживаются в убывающем порядке водород, метан и этилен [10]. Поскольку этилен является важным продуктом разложения ацетилена, а не самого бензола, то есть основания предполагать, что разложение бензола до ацетилена не относится к одной из основных реакций этого углеводорода. С другой стороны, [c.96]

    Для рещения этого вопроса на рис. 20 приведена зависимость изменения свободной энергии образования- некоторых углеводородов от температуры в пределах 300—1200 К. Эти данные позволяют установить относительную стабильность углеводородов. Повыщение температуры снижает прочность углеводородов. Как видно из рис. 20, метан при всех температурах устойчивее других соединений термическая устойчивость парафиновых углеводородов понижается при переходе к высшим членам гомологического ряда. Следовательно, при нагревании в первую очередь расщепляются углеводороды с длинной цепью. Место разрыва связи с повышением температуры сдвигается к краю цепи, и образуются более устойчивые углеводороды с короткими цепями вплоть до метана. Однако и метан выше 820 К начинает разлагаться на углерод и водород. Метановые и нафтеновые углеводороды при низких температурах (ниже 500 К) более стабильны, а при высоких температурах более устойчивы ароматические углеводороды и олефины и поэтому при высоких температурах они будут накапливаться в продуктах расщепления. [c.63]

    Тем не менее в нижних зонах земной коры, в ее магматических породах, там где температурные условия благоприятны, возможно образование некоторых количеств углеводородов в результате реакций синтеза из водорода, окиси углерода, углекислого газа, воды ж углерода. Концентрации этих углеводородов невелики. Они представлены главным образом метаном, так как жидкие углеводороды при высокой температуре (выше 200 — 250° С) не могут сохраняться. Образуются при этом некоторые битуминозные вещества. Следует, однако, иметь в виду, что жизнь на Земле возникла 2 — 3 млрд. лет назад и органические остатки и образовавшиеся из них углеводороды могут находиться в рассеянном состоянии в очень древних метаморфических породах. [c.80]


    По мере повышения температуры усиливается распад пропана в сторону образования пропилена и водорода. Этот вывод нельзя счи- тать достаточно надежным из-за весьма ограниченного количества имеющегося экспериментального материала. Если же он подтвердится, то это будет означать, что энергия активации первого направления распада пропана, т. е. на пропилен и водород, больше энергии активации распада пропана на метан и этилен, что вполне соответствует существующим представлениям. [c.48]

    На основании этого следовало бы ожидать, что он будет образовывать с двумя атомами водорода соединение СНа. Но в метане углерод соединен с четырьмя атомами водорода. Образование связи представляет собой энергетически выгодный процесс, и имеется тенденция к образованию максимально возможного числа связей — даже если это приводит к орбиталям связей, мало похожим на атомные орбитали, о которых говорилось выше. Если применять наш метод мысленного построения молекул к соединениям углерода, то предварительно его следует изменить. Необходимо придумать воображаемый тип атома углерода, который связан с четырьмя водородными атомами. Про такой атом углерода говорят, что он находится в определенном валентном состоянии. [c.19]

    Для эндотермической реакции атома иода с метаном не может быть меньше 31 ккал (129,79-10 Дж), а вероятно, она еще больше. Даже для этого минимального значения 31 ккал (129,79-10 Дж) атом иода должен столкнуться с огромным числом молекул метана (10 при 275 °С) прежде, чем произойдет реакция. В действительности атомы иода ие живут так долго — они рекомбинируются с образованием молекул иода, поэтому реакция протекает с незначительной скоростью. Атомы иода легко образуются, но они не могут отщепить водород от молекулы метана, и поэтому реакция иодирования не идет. [c.60]

    С формированием последней связано и образование атмосферы первобытной Земли, которая принципиально отличалась от современной атмосферы. По существующим представлениям атмосфера древней Земли, т.е. та атмосфера, в которой развивалась жизнь, имела восстановительный характер. Она содержала главным образом водород и его соединения (метан, аммиак, пары воды), в меньшем количестве — сероводород, азот, двуокись углерода и благородные газы. Эта атмосфера была лишена свободного кислорода. [c.189]

    Как отмечалось выше, Браун , исследовавший расщепление (термическое и в присутствии водорода) различных диоксидифенил-метанов, установил, что оно происходит с образованием ароматических и алкенилароматических оксисоединений. При расщеплении дифенилолпропана выделить алкенилароматическое оксисоединение (п-изопропенилфенол) не удается, так как оно вследствие диспро-порционирования превращается в п-изопропилфенол и смолообразные продукты. Однако при расщеплении других диоксидифенилме-танов алкенилароматические оксисоединения выделить можно. Так, например, Брауном был выделен п-изобутенилфенол при расщеплении метилэтил-бис-(оксифенил)-метана и 1-(п-оксифенил)-цикло-гексен-1 при расщеплении 1,1-бис-(п-оксифенил)-циклогексана. [c.80]

    Продуктами разложения этана в кварцевой колбе при 575 °С по данным Фрея и Смита (1928 г.) являются водород, этилен и лишь следы метана, т. е. практически происходит только дегидро-гени ация этана. Продуктами крекинга этана, проведенного Фростом с сотр. в 1937 г. при 635 °С и давлении от 0,1 до 2,6 МПа В динамических условиях являются водород, метан и этилен. С уве-. йичением давления повышается выход метана при высоких давлениях он является главным продуктом крекинга. Авторы работ [14] установили образование водорода, метана и этилена при пиролизе этана в трубчатом промышленном реакторе при 760—880 °С. [c.157]

    Наличие бентосных организмов в открытых водных источниках имеет весьма существенное значение для характеристики этих источников. В зависимости от экологических факторов эти микроорганизмы подразделяют на морские, пресноводные, микроорганизмы соленых озер, болот, ручьев, рек, водопадов, горячих ключей и минеральных источников. В пресноводных источниках бентосные микроорганизмы принимают участие в очистке воды органические вещества они минерализуют, а восстановленные вещества неорганического происхождения окисляют доминирующая роль в этих процессах принадлежит микробам. Самым богатым на бактерии является поверхностный слой ила, который оказывает весьма существенное влияние на развитие и жизнедеятельность микроорганизмов в водоемах и водотоках. В самоочищении вод значительная роль принадлежит нитчатым серо- и железобактериям. Первые окисляют сероводород в соли серной кислоты, чем предохраняют рыбу от гибели вторые — железо (П) в железо (П1). На дне водоемов происходят также процессы брожения с образованием метана и углекислоты.В 1 г ила содержится от 100 тыс. до 1 млн. бактерий, восстанавливающих сульфаты от 10 до 100 тыс. тионовых, около 1000 нитрифицирующих, от 10 до 100тыс. денитрифицирующих бактерий около 100 анаэробных и такое же количество аэробных разрушителей клетчатки, В иле встречаются также бактерии, окисляющие метан и водород, возбудители брожения, анаэробный фиксатор атмосферного азота и др. [c.193]

    Если катализатор очень насыщен углеродом, то преобладает реакция III вместо реакции I. Энергия активации реакции образования метана из этана и водорода на никелевом катализаторе определена в 43 ккал. Если с никелевым катализатором нагревать до 218° один этан, то образуются метан и углерод согласно схеме II. Полученные в этом исследовании результаты, повидимому, указывают на то, что этан в присутствии избытка водорода подвергается адсорбции, сопровсждающейся диссоциацией на радикалы, которые адсорбированным водородсм количественно превращаются в метан. При недсстатке водорода адсорбция, сопровождающаяся диссоциацией, идет дальше, из метила получается метилен, метин и, наконец, углерод с одновременным образованием атомного водорода, который с метильными радикалами дает метан. То, что происходит реакция обмена с образованием дейтероэтана в температурном интервале, в котором адсорбция, сопровождаемая диссоциацией, все еще идет в направлении образования метильного радикала, показывает, что адсорбция с диссоциацией на этильный радикал и водород оказывается процессом с меньшей энергией активации, чем адсорбция с образованием метильного радикала. Энергия активации процесса адсорбции, сопровождаемого диссоциацией этана и образованием метильного радикала, определена приблизительно в 19 ккал, между тем как для процесса адсорбции, сопровождаемого образованием этильного радикала и водорода, она около 15 ккал. [c.604]

    На основании экспериментальных данных, полученных по окислению метана, этана, этилена, ацетилена и других газообразных углеводородов, Вопе и его сотрудник сформулировали теорию гидроксилирования Эта теория постулирует последовательное окисление атомов водорода молекулы углеводорода в гидроксильные группы. Образующиеся соединения теряют затем молекулу оды или разрьгваются тем или иным путем. Например метан должен сначала окислиться в метиловый спирт, затем в метиленгликоль, который в свою очередь разлагается на формальдегид и воду. Формальдегид затем реагирует по одному из двух путей, зависящих от условий, главным образом от температуры, при котО)рой ороисходит окисление 1) он разлагается с образованием водорода и О КИСИ углерода, которые окисляются соответственно в воду и углекислоту, или 2) он может окисляться в муравьиную юислоту и затем в угольную, которая переходит в воду и двуокись углерода. Это может быть представлено следующим образом  [c.927]

    По данным Розенблюма [97], а также Джессера и Стиси [98], фотолиз смеси кетена с водородом при комнатной температуре или вовсе не приводит к получению метана, или же метан образуется в небольших количествах. При температурах выше комнатной авторы наблюдали образование метана наряду с другими продуктами (например, этилметилкетоном), получение которых можно представить как результат атаки кетена метильнымн радикалами. Эти данные согласуются с механизмом, включающим отрыв радикального водорода [уравнение (24)]. Совершенно иные выводы сделаны Чэнмугемом и Бартоном [99] на основании исследования фотолиза смесей кетен—дейтерий и кетен—водород. Они установили, что при комнатной температуре преобладает реакция присоединения [уравнение (23) ], а фотолиз смеси кетена, водорода и дейтерия не приводит к образованию этана-В . Последнее обстоятельство является доводом против механизма, допускающего промежуточное образование метильных радикалов. [c.29]

    В метане на группу —ОН с образованием метилового спирта НзС—ОН образуются одинаковые молекулы независимо от того, какой из атомов водорода был замещен. Аналогично замещение любого водорода в этане на группу —ОН приводит к образованию одинаковых молекул этилового спирта Н3ССН2—ОН так как вокруг простой связи С—С при комнатной температуре существует свободное вращение, конформеров этого соединения, естественно, не наблюдают (рис. 21.7). Однако в пропане существуют два типа атомов водорода присоединенных к концевы.м метпльпым группам и к центральной метиленовой группе —СН-—. Молекулы, образующиеся при замещении. метильных водородов пропана, Н3ССН2СН2—ОН уже отличаются от молекул, образующихся прп замещении метиленовых водородов. [c.134]

    Рассмотрим молекулу метанола Н3С-ОН (или НдС—В). В спектре его. паров наблюдаются характерные полосы при Х = = 159 нм (а о -переход) и при X = 183 нм (п а -переход), в то время как для метана наблюдается одна длинноволновая полоса при X — 125 нм (а о -переход). В метаноле атом углерода, как и в метане, находится в 5р -гибридном состоянии. Атом кислорода в гидроксильной группе имеет электронную структуру 25 2рх 2р1 2рг). С атомом углерода кислород образует а-связь с участием 2рг-электронов (вдоль оси г). Вторая о-связь образуется атомом кислорода с атомом водорода с участием 2р -электронов. Электроны на 2рг -орбитали не участвуют в образовании связей. Они не взаимодействуют с а-электронами, и их энергия мало изменяется при образовании молекулы спирта. Поэтому неподеленная пара электронов на 2ру-А0 находится на отдельной несвязывающей орбитали (п). [c.64]

    Приведенные выше рассуждения дают объяснение образованию олефиновых и парафиновых углеводородов из высшего парафина. Это объяснение относится к продуктам от Сз и выше. Продуктами, образование которых этот механизм непосредственно не объясняет, являются водород, метан, этан, а также ароматические и нафтеновые углеводороды. Образование водорода, несомненно, связано с дегидрогенизацией нафтенов, образующихся при побочных реакциях циклизации, а также с реакциями конденсации, приводящими к образованию бедных водородом углистых отложений . Метан и этан, вероятно, скорее образуются [1] путем менее избирательного крекинга, чем путем термического крекинга. Образование метил- и этилкарбониевых ионов идет с большим трудом, но все же оно не исключено. [c.175]

    Газификация твердого топлива. Схема газогенератора изображена на рис. 53. В генератор непрерывно подаются измельченный уголь и дутье — смесь водяного пара и кислорода или обогащенного кислородом воздуха. В нижней части генератора слой топлива приводится в кипящее состояние. В аппарате нет типичных для обыкновенгюго генератора зон,— во всем слое устанавливается приблизительно одинаковая температура. Продукты сухой перегонки природного топлива здесь же, в слое, вступают в химические реакции, в результате которых метан и другие углеводороды почти полностью расходуются на образование водорода и окислов углерода. Частицы топлива, газифицируясь и уменьшаясь, выносятся из слоя. Эти частицы содержат до 90% золы. В генератор подается вторичное дутье, в котором они окончательно газифицируются. Таким образом, в генераторе комбинируется газификация в кипящем слое с газификацией в газовом потоке. Производительность таких генераторов в [c.62]

    Следующими были теории, предполагающие образование в качестве промежуточных продуктов свободных радикалов. Так, Бон и Кауорд [6] предположили образование радикалов —СНз, = СН2 и =СН ири термическом разложении этана. Эти радикалы, по мнению авторов, могли гидрироваться в метан, разлагаться до углерода или снова рекомбинироваться. Хэг и Уилер [16] утвер/кдали, что метан расщепляется при термическом разлон снии на метилен и молекулу водорода. Теория свободных радикалов нррюбрела особое значение в работах Райса [35], который рассматривал метил, этил, пропил и аналогичные высшие радикалы как единственные промежуточные продукты реакции он разработал детально этот механизм с учетом наден ных данных по энергиям активации указанных реакций. Райс подтвердил свою теорию экспериментальными кинетическими данными. [c.7]

    Наряду со стиролом и водородом при дегидрировании этилбензола образуются такие побочные продукты, как метан, окись и двуокись углерода, этилен, бензол, толуол, ксилолы, изопропил-бензал, а- и р-метилстиролы, дибензил, стильбен, антрацен, флуо-рен и др. Бензол и толуол, как было доказано с помощью меченых -атомов [14], возникают непосредственно из этилбензола, а также и из стирола. Они представляют собой главные побочные продукты, в основном определяющие селективность процесса. Высказывалось немало предположений о том, что реакция образования бензола и толуола является обратимой и что добавки этих углеводородов могут увеличить выход целевого продукта. Однако на практике это приводило лищь к уменьщению производительности и отравлению катализатора сопутствующими примесями. [c.735]

    Это явление называют водородной коррозией. Оно характерно, например, для процесса синтеза аммиака, в котором водород, кроме обезуглероживания стали, диффундирует в металл, вызывая в нем глубокие изменения, свя-зииные с образованием гидритов и их разложением. Наряду с этим предии-лагается образование в стали вместо а-фазы более хрупкого твердого раствора подорода в железе. Снижение механической прочности стали объяс11яется также тем, что образовавшийся при обезуглероживании стали метан и растворенный водород вызывают дополнительные внутренние напряжения, приводящие к возникновению микро- и макротрещин. [c.460]

    Прп воздействии высоко температуры на газообразные парафиновые углеводороды их объем увеличивается в результате образования новых ве-1цеств. В первую очередь протекают реакции крекинга и получаются олефины и парафины с числом углеродных атомов, меньшим, чем в исходных углеводородах. Исключение представляют метан и этан. Этан, как уже было сказано, претерпевает преимущественно дегидрирование с образованием этилена и водорода. Метап, наиболее нрочпый газообразный углеводород, нрн пиролизе в производственных условиях оказывается стабильным до. 500. ( днако при длительном воздействии теила (в проиыпгленпых процессах этого никогда не бывает) он расщепляется уже при низкой температуре (табл. 68 [421). [c.75]

    Сложные гетероциклические соединения, многообразные формы веществ со смешанными функциями являются первичной формой превращения погребенного органического вещества. Часть смолистых веществ нефти является примером подобного рода соединений. Они, с одной стороны, превращаются в более простые углеводородные, сперва также очень сложные соединения, с другой — переходят в результате диспропорционирования водорода в еще более сложные нолициклические соединения, являющиеся, так сказать, отходами нефтеобразовательного процесса. С химической точки зрения одинаково невозможно представить себе ни прямое превращение погребенного органического вещества в углеводороды, ни образование при этом метановых углеводородов. Последние знаменуют собой не начальные, а конечные стадии превращения, предшествующие окончательной гибели нефти и преврахцению ее в метан и графит. Иной порядок превращения исходного материала в нефть, т. е. переход от простейших метановых углеводородов в сложные нолициклические системы химически невозможен в условиях нефтеобразовательного процесса. < [c.203]

    Далее, вызывает возражения и тримолекулярная реакция Т. Дело в том, что из-за значительно большей концентрации углеводорода и кислорода по сравнению с альдегидом гораздо более вероятна реакция 8, приводящая к образованию радикала НОа- При высоких температурах окисления метана радикал НО2 будет реагировать с метаном и формальдегидом. Это, как мы видим, совершенно пе учтено в схеме, хотя в продуктах окисленпя метана перекись водорода действительно обнаружена. Реакция 7 мало вероятна еще и потому, что она слишком сложна, чтобы протекать в один элементарный акт (рвутся четыре связи, образуются 3 связи и кроме того углеродный атом переходит из 4-х в 2-валеитпое состояние). [c.280]

    В качестве простейшего карбида — соедниеиия углерода, и котором он имеет отрицательную степень окисления, можно рассматривать метан СН4. Он входит как составная часть в природииГ газ ( 94% СН4). При нагреван/1и углерод взанлюдействуег с водородом с образованием метана. В лабораторной практике СН4 получают при нагревании безводного ацетата со щелочью  [c.289]

    В органической химии особое значение имеют так называемые СН-кислоты, в которых атом водорода связан с атомом углерода. Кислотность такого атома водорода увеличивается при подходящем замещении у атома углерода. Так, кислотность водородных атомов в метане чрезвычайно мала, но она возрастает на много порядков, если заменить один из атомов водорода в молекуле метана на группу, способную поляризовать связь С—Н (—/-эффект) и сопрягаться со свободной электронной парой, остающейся на атоме углерода после отщепления рассматриваемого протона. Такими активирующими группами являются, например, карбонил, нитрогруппа, нит-рильная или алкилоксикарбонильная (— OOR). Сопряжение свободной электронной пары с соответствующей группой делает возможным образование я-связи у рассматриваемого ато- [c.113]

    Первые синтезы органических веществ удалось провести немецкому химику Ф. Вёлеру. В 1824 г. он наблюдал образование щавелевой кислоты из дициана, а в 1828 г.— образование мочевины из цианата аммония. Были разработаны методы для элементного анализа органических соединений Ж- Дюма разработал метод количественного определения азота, а Ю. Либих — метод определения углерода и водорода в органических соединениях. В середине XIX в. быстро расцвел органический синтез. В 1845 г. Г. Кольбе синтезировал уксусную кислоту, в 50-е годы М. Бертло из простых неорганических веществ синтезировал муравьиную кислоту, этиловый спирт, ацетилен, бензол, метан, а из глицерина и жирных кислот получил жиры. [c.10]

    Если перекрывание двух атомных орбиталей происходит вдоль их главных осей, то возникающую при этом связываю-ш,ую молекулярную орбиталь называют а-орбиталью, а обра зующуюся связь — соответственно о-связью а-Молекуля,риая орбиталь и находящиеся на ней электроны локализованы симметрично относительно линии, соединяющей ядра атомов, участвующих в образовании связи. Так, например, при образовании связей с атомами водорода в метане четыре гибридных 5р -атомных орбиталей атома углерода перекрываются с 15-атомными орбиталями четырех атомов водорода, образуя четыре идентичных прочных а-связи под углами 109°28 (тетраэдрический угол). Сходная, строго симметричная тетраэдрическая структура возникает также при образовании ССЦ. В случае же СН2С12 структура будет уже несколько отличаться от полностью симметричной, хотя в целом она останется тетраэдрической два объемистых атома хлора будут занимать несколько большую часть пространства, чем атомы водорода, и углы между связями Н—С—Н и С1—С—С будут несколько отличаться от величины 109" 28 и один от другого. .  [c.22]

    В 40-х гг. 19 в. была создана т. н. унитарная система (О. Лоран, Ш. Жерар, Дюма), в основу к-рой, в противоположность дуалистич. системе, легло представление о молекуле как едином целом, образованном иэ атомов хим. элементов. Вместе с законом Авогадро эта система позволила разграничить понятия атом, молекула, эквивалент. Она окончательно утвердилась в X. после упомянутого выше конгресса в Карлсруэ и составила основу атомно-мол. учения. В 1853 Жерар изложил в законченном виде теорию типов, согласно к-рой все в-ва построены подобно немногим неорг. соед., или типам, и м. б. произведены от последних путем замещения атомов водорода атомами др. элементов илп радикалами. Осн. типами в-в Жерар предложил считать водород, воду, хлористый водород и аммиак в 1857 А. Кекуле добавил к ним метан. В 1852 Э. Франкланд ввел представ- [c.652]

    Нефть и все другие горючие полезные ископаемые, так же как рассеянное органическое вещество осадочных пород, генетически связаны с живым веществом нашей планеты, с биосферой прошлых геологических эпох. Проблема происхождения нефти, нижний возрастной предел ее образования тесно связаны с возрастом возникновения жизни на Земле. Согласно наиболее распространенной гипотезе. Земля возникла 4,8-5 млрд лет назад в результате слипания первичного вешества холодных тел - плане-тозималей, затем произошел ее разогрев вследствие повышенной теплогенерации. Источники энергии — радиоактивный распад, импактные воздействия, ультрафиолетовое излучение, сейсмичность, приливные возмущения и др. В результате произошла дифференциация вещества первичной Земли и сформировались ядро, мантия и земная кора, близкая по составу к современной. Дифференциация вещества вызвала выделение газов и формирование первичных океанов и атмосферы. Первичная атмосфера отличалась от современной. Она имела восстановительный характер, в ее составе были гелий и вОдород, которые быстро улетучились, метан, пары воды, аммиак, СО, СО2. Свободный кислород отсутствовал. За счет высокой активности этих веществ, очевидно, образовывались полимеры, содержащие С, К, О и другие биофильные элементы, т.е. первые органические вещества возникали путем абиогенного синтеза. [c.104]

    Для снижения энергии возбуждения ионизируемых молекул применяют методы мягкой ионизации. Одним из важнейших методов низкоэнергетической ионизации является химическая ионизация [38]. ХИ обычно осуществляется путем ионно-молекулярной реакции между нейтральными молекулами анализируемьгх веществ и ионами газа-реагента (реактанта), в качестве которого используют водород, метан, пропан, изобутан, аммиак и другие газы (табл. 7.5). Ионы газа-реагента получают бомбардировкой молекул газа электронами с энергией 100-500 эВ при давлении в источнике ионов 10-10 Па. Образовавшиеся ио-ны-реагенты взаимодействуют с нейтральными молекулами этого же газа, что приводит к образованию ионов типа СН5ИС2Н5 из метана, С Н, —из изобутана, МН —из аммиака. Эти ионы затем вступают в реакции с молекулами анализируемых веществ (М), протонируют их или образуют с ними ионы-аддукты, например СН + М -> СН4 + + (М + Н) СНз (М + СНз) . Количество М, как примесь в газе-реагенте, должно быть малым и составлять не более 0,1%. В этом случае можно пренебречь их ионизацией бомбардирующими электронами и считать, что ионы исследуемого газа (и протонированные, и аддукты) образуются только за счет ХИ. Результаты, полученные методами ХИ, показывают, что квазимолеку-лярные ионы не обладают большой избыточной внутренней энергией. Поэтому осколочных ионов в спектре очень мало или они вообще отсутствуют. Это является заметным преимуществом, особенно при анализе биологически важных соединений, таких, как терпены, стероиды, сахара и т.п., которые образуют ионы (М+Н)". В зависимости от газа-реагента можно изменять картину масс-спектра и наблюдать тонкие различия [14, 38]. [c.847]


Смотреть страницы где упоминается термин Метан образование водорода из него при: [c.85]    [c.704]    [c.104]    [c.295]    [c.331]    [c.431]    [c.149]    [c.148]    [c.330]    [c.7]    [c.7]    [c.242]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Водород образование при метана

Метан водорода



© 2024 chem21.info Реклама на сайте