Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Крекинг получение бутилена при нем

    Бутадиен-1,3 может быть получен также из бутан-бутиленовой фракции газов крекинга путем каталитического дегидрирования содержащихся в ней бутана и бутиленов [c.82]

    Для получения бутадиена применяется каталитическое дегидрирование как н-бутана, так и -бутиленов. При одной и той же температуре в условиях, не благоприятствующих реакциям крекинга, дегидрирование бутиленов дает болео высокие равновесные выходы. Например, при температуре 650° С и атмосферном давлении конверсия до бутадиена для нормальных бутиленов составляет от 47 до 57%, а для и-бутана всего 14%. Однако с уменьшением давления до 0,167 ат равновесное превращение -бутана в бутадиен увеличивается до 49% (рис. 2). [c.200]


    В 30-х годах широкое распространение в мировой нефтепереработке получили процессы каталитической полимеризации бутиленов, позднее пропилена, содержащихся в газах каталитического крекинга (с последующим гидрированием димеров), с целью получения высокооктанового компонента авиабензина (полимеризацию проводили на катализаторе фосфорная кислота на кизельгуре при 200 — 230 °С, 6 — 7 МПа и объемной скорости сырья [c.136]

    Производство бутиленов и дивинила в период 1966—1970 гг. будет осуществляться каталитическим дегидрированием бутанов. Дополнительным крупным источником сырья для получения бутиленов и дивинила являются продукты комплексной переработки фракций С4 пиролиза и крекинга жидких углеводородов. Пиролиз 1 млн. т низкооктановых бензиновых фракций в трубчатых печах обеспечивает получение наряду с другими углеводородами примерно 30 тыс. г дивинила, 29 тыс. г нормальных бутиленов и 29—42 тыс. т изобутилена. Переработка всех ресурсов фракции С4 пиролиза жидкого сырья позволит резко увеличить объем производства бутиленов и дивинила в нашей стране. [c.210]

    Первоначально источником олефиновых углеводородов являлись газы крекинга и пиролиза нефтяных фракций и мазута, а также частично коксовый газ. По мере развития потребности в олефинах для различных синтезов, главным образом в этилене и бутиленах, стали применяться методы получения олефиновых углеводородов из парафинов получение этилена пиролизом этана и пропана, получение бутиленов каталитическим дегидрированием бутанов. [c.382]

    Один из наиболее ранних промышленных процессов переработки газа — получение изооктана методом каталитической полимеризации бутиленов и последующего гидрирования октиленов. Установки этого типа строили на базе процесса термического крекинга в середине 30-х годов, несколько позднее, по мере развития процесса каталитического крекинга, они стали уступать место установкам каталитического алкилирования. [c.17]

    Там, где крекинг нефтяного сырья не производят, пропилен может быть получен дегидрированием пропана. Поскольку в условиях чисто термического разложения реакция разрыва цепи с образованием метана происходит несколько быстрее, чем дегидрирование (см. стр. 90), для получения пропилена из пропана следует применять катализаторы, ускоряющие реакцию дегидрирования. Процесс дегидрирования используют для производства пропилена не в очень широких масштабах, однако он имеет большое значение для получения бутиленов (см. ниже). [c.112]


    Бутилены (бутен-1 и бутен-2) — бесцветные газы вместе с бутаном их выделяют из газов крекинга (бутан-бутиленовая фракция, табл. 8). Путем дегидрирования эту смесь превращают в бутадиен (стр. 82) — исходное вещество для получения одного из видов синтетического каучука. Температуры кипения бутиленов см. на стр. 65 и 68. [c.77]

    Вторичный и третичный бутиловые спирты получают в настоящее время сернокислотной гидратацией олефинов С4 (соответственно н- и изобутилена). Сырьем для получения этих спиртов служит обычно бутан-бутиленовая фракция нефтезаводских газов, содержание бутиленов в которой колеблется от 15 до 40% вес. Содержание бутиленов и соотношение между изомерами зависит от источника ползгчения жирных газов, перерабатываемых на газофракционирующих установках. Основными источниками олефин-содержащих газов на современных нефтеперерабатывающих заводах (НПЗ) являются газы процессов термического и каталитического крекингов [50]. [c.81]

    Окисление более тяжелых углеводородов, начиная с гексана, приводит к образованию весьма сложной смеси продуктов, из которой очень трудно выделить индивидуальные соединения. Поэтому углеводороды тяжелее Се подвергают окислению только в том случае, когда продукт реакции находит применение непосредственно в виде смеси. В самом деле, даже некаталитическое окисление пропана и бутана в паровой фазе при 270—350 " С и давлении от 3,5 до 200 атм приводит к получению очень широкой гаммы продуктов, что наглядно иллюстрируется табл. ХП1 . Помимо продуктов, перечисленных в этой таблице, реакционная смесь содержит кислоты Сх—С4, спирты Сг—С,, кетоны С3—С,, окись этилена, простые эфиры, ацетали, альдоли и т. д. [306, 307]. Соотношение между отдельными соединениями и классами соединений в реакционной смеси может колебаться в широких пределах и зависит от условий реакции. Наибольший выход продуктов окисления соответствует температуре реакции 150—250° С. При более высоких температурах интенсивнее протекают не только реакции окисления, но и реакции крекинга и пиролиза. Так, образование бутиленов достигает максимума нри 375° С, а образование этилена и пропилена — при 700° С (давление во всех случаях атмосферное). С ростом температуры одновременно происходит падение выходов продуктов окисления [307]. [c.585]

    Каталитический крекинг сыграл выдающуюся роль во время второй мировой войны — иа базе бензина каталитического крекинга было налажено массовое производство высокооктанового авиационного топлива. В этот же период часть установок работала на режиме глубокого превращения сырья с целью получения больших выходов газа, богатого бутиленом, который использовался для производства бутадиенового каучука. В качестве сырья применяли керосино-газойлевые фракции. По окончании войны, когда потребность в авиационном бензине упала, а спрос на керосино-газойлевые дизельные фракции возрос, установки каталитического крекинга перевели на режим переработки утяжеленного сырья с целью получения в качестве основного продукта высокооктанового автомобильного бензина. В настоящее время в отечественной и зарубежной [c.16]

    Выделение бутадиена из смесей углеводородов С4 является одной из крупных промышленны х проблем, решенных с помощью метода экстрактивной ректификации. Имеются два пути получения бутадиена на основе использования метода экстрактивной ректификации. Первый путь заключается в непосредственном выделении бутадиена из газов крекинга, в которых он содержится в количестве около 0,5%. Второй путь основан на выделении бутадиена из смесей, получающихся при последовательном. каталитическом дегидрировании бутана и бутиленов. В промышленности используются крупные установки по получению бутадиена обоими способами [258, 295]. [c.288]

    Спирты С7—Сэ, служащие полупродуктами для получения сложноэфирных пластификаторов, особенно фталатов, производят оксосинтезом из олефинов Се— s, получаемых термическим крекингом парафина или алюминийорганическим синтезом, и димеров пропилена и изобутилена, из содимера пропилена с бутиленами, По своим пластифицирующим свойствам эфиры этих спиртов близки к эфирам 2-этилгексанола, а метод их синтеза более эко- [c.536]

    Из данных табл. 40 видно, что при пиролизе смеси тяжелых фракций получены более низкие выходы контактного газа по сравнению с пиролизом прямогонных фракций нефти, выкипающих в аналогичных температурных интервалах. Это объясняется тем, что в составе смеси тяжелых фракций содержится 40% тяжелого керосина термического крекинга мазута, содержащего более 50% тяжелых конденсированных ароматических систем и непредельных углеводородов, которые при пиролизе превращаются, главным образом, в кокс. Поэтому выходы кокса по сырью значительны и составляют 5—6,2% по массе при температуре 750° С. Так как коксование тяжелых углеводородных систем при пиролизе протекает с одновременным выделением значительных количеств метана, то в составе газов (рис. 33) концентрация метана достигает при 750° С 40—41 % по объему, что превышает более чем на 10% (абсолютных) концентрацию метана в составе газов пиролиза более легких дистиллятов, полученных при той же температуре. В связи с образованием большого количества метана концентрации этилена и других газообразных олефинов существенно ниже и не превышают 28—29% по объему этилена, 7—8 — пропилена и 2—4 — бутиленов и дивинила. Добавление к сырью водяного пара до 50% по массе не приводит к существенному снижению образования кокса и увеличению выхода газа пиролиза. [c.119]


    Одной из важных реакций в процессе фтористоводородного алкилирования изобутана смесью пропилена и бутиленов является образование изобутилена из изобутана, вызываемое переносом гидрид-иона к пропилену. Этот перенос превращает 22% пропилена в пропан. Изобутилен представляет собой один из олефинов С4, дающих в присутствии НР алкилат с существенно более высоким октановым числом. Из бутиленов образуется некоторое количество н-бутана (4—6%). Следует оценить эффективность получения больших выходов высокооктановых алкилатов на основе изобутана, получаемых гидрированием олефинов и изомеризацией н-парафинов. Для получения высокооктанового алкилата в присутствии любого кислотного катализатора можно приготовить смешанное олефиновое сырье из пропилена и бутилена. Алкилаты с самым высоким октановым числом получают в присутствии серной кислоты из бутиленового сырья с установки каталитического крекинга. [c.253]

    Предложен нефтехимический вариант процесса нефтепереработки [14], обеспечивающий максимальные выходы основных продуктов нефтехимического сырья олефинов (47,4—52,2%) и ароматических углеводородов (9,8—10,9%), сырья для производства сажи и игольчатого кокса (смесь пиролизной смолы и тяжелого дистиллята каталитического крекинг-мазута). Строго говоря, этот вариант нельзя отнести к процессам переработки тяжелых нефтяных остатков, это скорее процесс безостаточной комплексной переработки нефти, как бы в обход процессов, ведущих к созданию тяжелых остатков. В основе его лежит несколько модифицированных технологических процессов, широко применяемых в современной нефтеперерабатывающей промышленности. Конечный (хвостовой) продукт процесса прямой перегонки пефти (мазут) становится сырьем для второго процесса — процесса каталитического крекинга. Продукты прямой атмосферной перегонки, выкипающие до 343° С, подвергаются пиролизу для получения олефинов. Прямогонный (60%-ный) мазут подвергается каталитическому крекингу на цеолитном катализаторе с резко выраженной крекирующей (и слабее — дегидрирующей) активностью. Обычно в качестве сырья для каталитического крекинга берут дистиллятные фракции нефти, чтобы избежать интенсивного закоксовывания катализатора, обусловленного наличием в сырье смолисто-асфальтеновых веществ нефти. Здесь не боятся интенсивно протекающего процесса коксования, так как выжиг кокса служит источником энергии для компенсации затрат энергии на осуществление процесса крекинга, а также для производства технологического пара. Кроме того, интенсивно протекающий процесс коксования в сильной степени освобождает сырье от асфальтенов и конституционно связанных с ним атомов металлов (V и N1). Процесс крекинга мазута осуществляется в системе флюид. Он характеризуется высокими выходами пропилена и бутиленов, а также легких и средних дистиллятных фракций, которые после гидроочистки и освобождения от содержащихся в них ароматических углеводородов поступают на пиролиз. Тяжелые дистилляты могут быть использованы как ко- [c.251]

    Рассматривая установки каталитического риформинга с точки зрения доноров водорода, следует иметь в виду, что с увеличением содержания серы в нефти объем продуктов, подвергаемых гидроочистке, и потребность в водороде возрастают, в то же время выход его в процессе каталитического риформинга снижается. В связи с этим необходимо искать другие источники водорода или строить специальные установки по его производству. Другими источниками водорода могут быть попутный нефтяной газ, сухие и отдувочные газы различных термических и термокаталитических процессов (например, сухие газы термоконтактного крекинга и каталитического крекинга, отдувочные газы каталитического риформинга гидроочистки, гидрокрекинга и синтеза аммиака, газы от процессов дегидрирования бутанов и бутиленов, пентанов и амиленов, газ, образуемый при пиролизе нефтяного сырья для получения этилена и т. п. [c.100]

    Каталитическое дегидрохлорирование 1,2- или 2,3-дихлорбутаное, образующихся, например, присоединением хлора к бутиленам крекинг-газов, или дихлорбутанов, получаемых прямым хлорированием, было детально изучено как возможный путь для промышленного получения бутадиена. Из 1,2-дихлорбутаяа при 500—550° вовможно получать бутадиен с выходом 85% [192]. [c.216]

    Газы нефтеперерабатывающих заводов содержат значительные количества бутиленов п бутанов. Бутилены могут непосредственно использоваться в ряде химических синтезов или служить сырьем для второй ступени дегидрирования при получении бутадиена. Изобутан и н-бутан частично могут вовлекаться в автомобильные бензины для поддержания необходимой упругости паров, а в основной своей массе должны направляться на химические производства. Следует особенно подчеркнуть значение процесса каталитического крекинга, в газах которого содержание бутан-бу-тиленовой фракции может достигать 40—50% вес. и выше. Изменяя активность катализатора и жесткость режима процесса, можно значительно изменять состав фракции С4, направляя процесс на преимущественное получение либо бутиленов, либо изобутана. [c.105]

    Назначением процесса пиролиза —наиболее жесткой формы термического крекинга —является получение углеводородного газа с высоким содержанием непредельных, и в первую очередь этилена, поэтому часто установки пиролиза называют этиленовыми установками. Процесс может быть направлен и на максимальный выход пропилена или бутиленов и бутадиена [18, 19]. [c.33]

    Каталитический крекинг сыграл выдающуюся роль во время П мировой войны —на основе бензина каталитического крекинга было налажено массовое производство высокооктанового авиационного топлива. В этот же период часть установок работала на режиме глубокого превращения сырья с целью получения больших выходов газа, богатого бутиленом газ этот использовали для производства бутадиенового каучука. В качестве сырья крекинга применяли керосино-газойлевые фракции. По окончании войны, когда потребность в авиационном бензине упала, а спрос на керосино-газойлевые (дизельные) фракции возрос, установки каталитического крекинга перевели в основном на переработку утяжеленного сырья для получения высокооктанового автомобильного бензина. В настоящее время в отечественной и зарубежной практике преобладает этот вариант работы. Начало перехода промышленных установок каталитического крекинга в бО-х годах на цеолитсодержащие катализаторы позволило значительно интенсифицировать этот процесс по выходу бензина. [c.14]

    Для расширения ресурсов олефинов в процесс алкилировання вовлекают пропиленовую фракцию или подвергают дегидрированию н-бутан. Однако, с одной стороны, алкилат на основе пропилена или смеси его с бутиленами имеет более низкое октановое число при использовании только пропилена — примерно на 5 единиц. С другой стороны, пропилен является ценным нефтехимиче-ршм сырьем, а дегидрирование н-бутана чаще проводят с целью получения бутадиена — сырья для производства синтетического каучука. Возможно, что ресурсы олефинов Сз—С4 увеличатся за счет возрастающей тенденции к утяжелению сырья пиролиза и ужесточению режима установок каталитического крекинга. [c.301]

    Для получения изооктансв путем селективной полимеризации пользуются температурой 150° и давлением 50 ат, подвергая обработке смесь содержащихся В газе крекинга нормальных бутиленов и изобутилена. Получающиеся изооктены в чистсм виде имеют октановое число 84, и при смешении с бензинами прямой гонки до 150. Изооктаны, получающиеся при гидрогенизации, имеют октановые числа от 95 до 98. Индивидуальный изооктан имеет октановое число, достигающее 100. Изооктановый бензин особенно важен для авиации. Изооктаны смешивают с низкокипящими нефтяными фракциями и небольшим количеством этиловой жидкости, при этсм октановое число базового бензина повышается. ЛОО-октановое топливо по сравнению с 87-октансвым дает повышение мощности. мотора на 30%. [c.688]

    Дивинил является основным сырьем для крупнотоннажной промышленности искусственного каучука. В некоторых количествах он образуется при термической переработке нефтяных фракций за счет крекинга нафтенов и дегидрирования бутиленов. Термическое дегидрирование (пиролиз) бутиленов может дать довольно высокий выход бутадиена ири 700° С. Однако метод каталитического дегидрирования бутиленов заслуживает предпочтения. Условия процесса сходны с условиями получения бутиленов из бутана. Высокая реакционная способность бутадиена и склонность его к полимеризации заставляют прибегать к разбавлению исходной смеси водяным паром. Понижение иарциального давления бутиленов повышает степень их превращения и снижает скорость полимеризации бутадиена. Помимо того, применение водяного пара резко снижает закоксовывание катализатора в силу реакции [c.316]

    В процессе каталитического крекинга сырье превращается в бензин, газ, кокс и газойлевые фракции. Целевым продуктом является бензин. Значительная часть остальных продуктов кре-квнга, называемых побочнымп, используется или для получения дополнител1.ных количеств бензина, или для приготовления других товарных продуктов. Например, смесь бутиленов с бутанами (фракция С4) перерабатываю г в авиационный алкилат, а пропилен И избытки олефинов фракции С4 — в полимер-бензин легкий каталитический газойль часто используют как компонент тракторного керосина или дизельного топлива, а тяжелый газойль повторно крекируют с целью увеличения выхода бензина. Легкие- углеводороды крекиш-газов — этан, этилен, пропан я другие — во многих случаях служат сырьем для цроизводства нефтехимических продуктов. [c.5]

    Пиролиз — наиболее жесткая форма термического крекинга нефтяного и газового сырья, осуществляемая обычно при 700—900 С с (целью получения углеводородного газа с высоким содержанием не-предедьных. Режим может быть направлен на получение максимального выхода этилена, пропилена или бутиленов и бутадиена. Наряду с газом образуется некоторое количество жидкого продукта — смолы, содержащей значительные количества моноциклических (бензол, толуол, ксилолы) я полициклических ароматических углеводородов (нафталин, антрацен). Долгое время, пока не был разработан процесс каталитического риформинга, пиролиз являлся практически единственным промышленным методом получения ароматических углеводородов из нефти. [c.106]

    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]

    Схема окислительного дегидрирования н-бутнлена изображена на рис. 144. Пар и воздух смешивают и перегревают в трубчатой печи 7 до 500 °С. Непосредственно перед реактором 2 в эту смесь вводят бутиленовую фракцию. Процесс осуществляют на стационарном катализаторе в адиабатических условиях при 400—500°С и 0,6 МПа. Тепло горячих реакционных газов используют в котле-утилизаторе 5 для получения пара (преимущество работы при повьшкнном давлении — для получения пара можно использовать тепло, выделяющееся при конденсации пара — разбавителя реакционных газов, в отличие от работы при атмосферном давлении при дегидрировании этилбензола и н-бутиленов). Затем газ охлаждают водой в скруббере 4 с холодильником 5 и промывают минеральным маслом в абсорбере 6. Там поглощаются углеводороды С4, а продукты крекинга, азот и остатки кислорода выводят с верха абсорбера и используют в качестве топливного газа в трубчатой печи /. Насыщенное масло из абсорбера б направляют в отпарную колонну 5, где регенерируется поглотительное масло, возвращаемое после охлаждения на абсорбцию. Фракция С4 с верха отпарной колонны 5 содержит 70% бутадиена. Из нее уже известными методами выделяют чистый бутадиен, а непревращенные н-бутилены возвращают на окислительное дегидрирование. [c.489]

    Большое количество углеводородов состава объясняется сополимеризацией пропилена с бутиленами. Для характеристики бензина, полученного путем полимеризации пропиленобутиленовых смесей, интересно привести данные его разгонки, произведепной параллельно с разгонкой бензннов крекинга и прямой гонки, а также выходы (в объемных процентах от за-1 рузки) аналогичных фракций всех трех видов бензинов (табл. 37). [c.126]

    На НПЗ применяется серная кислота концентрацией 96—98% (при алкилировании изобутанй бутиленами) и 84—92% (при очистке крекинг-дистиллятов и смазочных масел). Для получения бесцветных масел (медицинских, парфюмерных), очистки жидких парафинов, производства сульфонатных присадок и удаления ароматических углеводородов из бензинов-растворителей применяется олеум. [c.239]

    Каталитический крекинг различных видов дистиллятного и остаточного сырья осуществляют с целью получения высокооктановых бензинов и газов с высокой концентрацией пропана, пропилена, бутанов и бутиленов. Процесс протекает при температуре 430—500° и давлении 0,5—1,0 ати в присутствии различных катализаторов, наибольшее распрострапенис из которых получил алю-моснликатный. [c.581]

    В 30-х годах широко использовали процесс селективной катали тической полимеризации бутиленов с целью последующего гидрирования димера (изо-СяН1б) и получения, таким образом, технического изооктана — компонента авиационного бензина. Процесс этот впоследствии потерял свое значение, так как был вытеснен каталитическим алкилированием бутиленами изобутана, содержащегося в больших количествах в газах каталитического крекинга. [c.320]

    Гидрокрекинг можно также использовать для получения изопарафиновых углеводородов как сырья для нефтехимии, в том числе изобутана и изопентана для получения синтетических кау-чуков. Одним из преимуществ гидрокрекинга является большой выход изобутана, при каталитическом крекинге достигаются высокие выходы пропилена и бутиленов. Совместное использование этих продуктов обеспечивает загрузку установок алкилирования (на 1 об. ч. жидких олефинов Сз—С4 требуется 1,1 об. ч. соответствующих жидких алканов). В бутановой фракции гидрокрекинга содержится до 67% изобутана [1в2]. [c.283]

    Крекинг нормального бутана с точки зрения промышленного применения этого процесса для получения олефинов изучался Эглоффом и соавторами (46). Методика работы описана выше при описании крекинга пропана. Крекинг нормального бутана при атмосферном давлении (650° С, 36 сек., превращение 82%) дал 17,6% (вес.) этилена, 22,0% пропилена и 6,1% бутиленов. Суммарный выход олефинов равен 45,7% (вес.) от взятого в реакцию бутана. Суммарная концентрация олефинов в продуктах крекинга равнялась 40,2% (объемн.). Состав продуктов крекинга (перегонка в приборе Подбёльняка) был следующим  [c.53]

    На рис. 4.21 приведены кривые зависимости выхода продуктов от конверсии в крекинге деароматизированного высокопарафинового газойля на цеолите REHX при 503 °С и варьировании отношения катализатор сырье [9]. Выход бензина описывается кривой, проходящей через максимум. Экспериментальные точки, полученные при меньшем времени контакта катализатора с сырьем, лежат на прямой, соответствующей оптимальной селективности [O = e /(ei,o + /j2,o)]- Максимум выхода бензина достигается при конверсии сырья 68—70% (масс.). Начальный наклон кривых имеет значение ш, отличное от нуля, т. е. бензин является первичным продуктом крекинга. Аналогичные кривые с >0 наблюдаются для выхода олефинов в бензиновой фракции и бутиленов. Причем для олефинов С5 и выше максимум достигает при конверсии около 50% (масс.), а для бутиленов при 66—68% (масс.), что соответствует реакционной способности рассматриваемых олефиновых углеводородов. Выход н-бутана и пропилена также описываются кривыми, проходящими через максимум и имеющими ia > >0. Однако в отличие от бензина, бутиленов и олефинов С5 и выше прямая оптимальной селективности является для них нижним пределом. Подобный характер кривых свидетельствует о том, что н-бутан и пропилен образуются как из сырья, так и из первичных продуктов и в заметной степени дальше в реакциях не участвуют. [c.118]

    В промышленности реакцию гидроконденсации окиси углерода с олефинами используют для производства пропионового альдегида из этилена, н- и изобутилового спиртов из пропилена и октиловых спиртов изостроения из гептеновой фракции, полученной либо неизбирательной полимеризацией пропилена и н-бутиленов, либо крекингом парафинового гача, который осуществляют с целью получения олефинов, необходимых для производства моющих средств (стр. 193). Кроме того, эту реакцию применяют для получения 3,5,5-триметилгексанола из технического диизобутилена н для производства первичных Qq-, Qj- и Qj-спиртов из олефинов с длиной цепи на один атом углерода меньше числа атомов углерода соответствующего спирта. [c.195]

    В странах, в которых положение с природным газом менее благоприятно, этилен приходится производить крекингом жидких нефтяных фракций. Это влечет за собой образование пропилена и бутиленов в количестве, почти равном количеству этилена. Одновременно в качестве побочных продуктов получаются бензин и тяжелый мазут. Вследствие этого необходимо найти потребителей пропилена и бутилена как химического сырья, так как отнесение всех расходов по осуществлению пиролиза на себестоимость этнлена сделает его слишком дорогим." Таким образом, темпы роста производства химических продуктов на основе этилена лимитируются необходимостью найти выгодные, пути использования Сз—С4-олефинов. Высокоразвитые в промышленном отношении страны имеют в настоящее время нефтеперерабатывающие заводы с такой общей мощностью, что количества пропилена и бутиленов в газах нефтепеработки обычно более чем достаточно для потребностей химической промышленности, которые только можно себе представить. Поэтому Са—С4-олефины, являющиеся побочными продуктами установок получения этилена пиролизом, стоят не дороже, чем Сд—С4-олефины, содержащиеся в газах нефтепереработки [1]. [c.402]

    Сжиженные газы состоят в основном из пропана и бутана (пзобутана и п-бутана). При получении этих продуктов из попутных газов, газов копденсатцых месторождений и некоторых других источников в качестве примесей могут находиться небольшие количества этана, пентана п других предельных углеводородов. В том случае если сжиженные газы получаются из газов термической и термокаталитической переработкой жидкого и твердого топлива (крекинг, пиролиз, коксование и др.), они в небольших количествах могут содержать непредельные углеводороды алифатического ряда (этилен, пропилен, бутилен и др.). [c.5]

    Этот процесс имеет важное значение для использования газов крекинга. Кроме того, ценным сырьем для получения бутадиена-1,3 является попутный нефтяной газ, также содержащий значительное количество бутана. Последний подвергают дегидрированию при 590—600° С, пропуская через слой катализатора (СГ2О3+А12О3) при этом образуется бутилен. Его очищают и также подвергают дегидрированию, пропуская в смеси с водяным паром при 625— 675° С над окислами магния, цинка и др.— получается бутадиен  [c.82]

    В США работы по получению дивинила из бутиленов и бутана, а также бутиленов из бутана были широко поставлены в годы, предшествовавшие второй мировой войне, и особенно во время войны, когда было организовано крупное Промышленное производство дивинила из к-бутиленов и к-бутана. я-Бутилены выделялись из бутан-бутиленовой фракции, получаемой иа нефтеперерабатывающих заводах при крекинге нефтепродуктов. В СЕ1А около 85% нефтяного дивинила производилось из к-бутилеиов. В послевоенные годы производство дивинила из этилового спирта полностью прекратилось и весь дпвинил вырабатывается из к-бутиленов и к-бутана [27—30]. [c.598]

    В 30-х годах процесс селективной каталитической полимеризации бутиленов широко использовали с целью последующего гидрирования димера (изочС8Н1б) и получения таким образом технического изооктана — компонента авиационного бензина. Процесс этот впоследствии потерял свое значение, так как был вытеснен каталитическим алкилированием бутиленами изобутана, содержащегося в больших количествах в газах каталитического крекинга. Позднее был внедрен процесс получения полимер-бензина на основе пропилена, который был менее дефицитен. В качестве катализатора используют фосфорную кислоту, нанесенную на кварц. Полимеризацию проводят при 220—230 °С, 6,5—7,0 МПа и объемной скорости подачи сырья от 1,7 до 2, 9 ч . Применяется и совместная полимеризация пропиленов и бутиленов или бутиленов и амиленов. [c.285]

    Отходящие газы при дегидрировании бутана пентана бутиленов амиленов Метано-водород-ная фракция при получении синтетического спирта Пирогаз при пиролизе бензина Отходящие газы с установки деал-килирования Отдувочные газы с установки гидроочистки Сухой газ крекинга вакуумного газойля [c.104]


Смотреть страницы где упоминается термин Крекинг получение бутилена при нем: [c.62]    [c.22]    [c.138]    [c.81]    [c.287]    [c.107]    [c.212]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.692 ]




ПОИСК





Смотрите так же термины и статьи:

Бутилен



© 2025 chem21.info Реклама на сайте