Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осмий соединения его как катализаторы при

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]

    Как мы уже видели, для реакции синтеза благоприятны низкая температура и высокое давление. Однако реакция практически не протекает без катализатора вследствие очень большой стабильности молекулы азота, что обусловлено высокой энергией разрыва связи N—N. Функции катализатора заключаются в образовании на каталитической поверхности нитридного соединения, которое затем гидрируется в аммиак. Связь азота с металлом достаточно слаба, тем не менее она дает возможность адсорбироваться молекулам синтезируемого аммиака. Связь азота с металлом слишком сильна для таких элементов, как литий, кальций и алюминий, которые образуют с азотом нитриды непосредственно в массе вещества. В первой серии переходных металлов оптимум между образованием поверхностного нитрида и десорбцией аммиака с поверхности получён для железа, которое, не образует нитрида непосредственно из азота, исключая случай очень высоких давлений (на порядок выше давлений синтеза), но легко образует его в реакции с аммиаком. Тем не менее железо быстро хемосорбирует азот и это и есть та адсорбция, которую обычно считают стадией, лимитирующей скорость всего процесса синтеза. Рутений и осмий, находящиеся в более высоких сериях переходных элементов, не образуют нитридов в массе и являются эффективными катализаторами синтеза. [c.158]


    С тех пор, как рений стал сравнительно доступным элементом, многие исследователи принялись изучать его каталитические свойства. Рений имеет незаполненную 4й-оболочку, в периодической системе он находится между вольфрамом и осмием (активными катализаторами), порошок рения хорошо поглощает водород, не образуя при этом химического соединения все эти свойства давали основания предполагать, что рениевые катализаторы могут быть достаточно активными в окислительно-восстановительных реакциях. [c.93]

    Наиболее типичным способом приготовления таких катализаторов является нанесение иа поверхность носителя какого-либо соединения каталитически активного металла, с последующим его восстановлением илн термическим разложением. Этим достигается резкое увеличение удельной активности металла и экономия его, что особенно важно, когда катализаторами являются такие дорогие металлы, как платина, палладий, осмий, иридий и др. Носитель не только способен в небольших пределах изменять активность катализатора ои является одновременно промотором, а иногда влияет и на избирательность нанесенных катализаторов (М, Е, Ададуров) и термическую сто11кость их. [c.351]

    Примечательно, что железо остается неизменно главным компонентом катализатора с тех пор, как он был создан. Катализатор подвергался значительному количеству исследований, и все они подтверждают, что железо является наилучшим материалом для этой цели и, конечно, самым дешевым. В наиболее ранних исследованиях Хабера и Митташа было найдено, что другие металлы, такие как осмий и уран, эффективнее железа, но они более дорогие и опасны для здоровья человека. Чистое железо — эффективный катализатор, но оно быстро теряет свою активность, если, как нашел Митташ, в катализаторе нет промотирующих окислов. Установлено, что активность железного катализатора повышается при добавлении калия. Эти ранние исследования обнаружили вредное влияние на активность катализатора таких газообразных ядов, как кислород и соединения серы, которого можно избежать, используя тщательно очищенные газы. [c.157]

    В отсутствие катализатора (иодид-ионы, соединения осмия или рутения) реакция между ионами мышьяка (III) и церия (IV) идет чрезвычайно медленно. Влияние катализаторов на скорость этой реакции было использовано для разработки способов их определения при кон- [c.391]

    Метод основан на разложении бутадиенового звена молекулы сополимера обработкой раствором г/ ег-бутил-гидроперекиси в /г-дихлорбензоле в присутствии четырех-окиси осмия в качестве катализатора. Образующиеся при этом низкомолекулярные соединения (в основном альдегиды) растворимы в этаноле. Неразрушенный полистирол выделяется обработкой продукта реакции этанолом и отфильтровыванием растворимой части. [c.221]

    Изящная модификация двухстадийного метода, при которой не требуется выделения гликоля, состоит в следующем в качестве катализатора используется перманганат калия, что приводит к окислению алкенов при действии перйодата натрия непосредственно в карбонильные соединения. Этот метод основан на следующем перйодат натрия, несмотря на то что он является достаточно сильным окислительным агентом, приводящим к окислению марганца из более низкого окислительного состояния до перманганата, не реагирует с двойными связями. Сначала под действием перманганата (в низкой концентрации) двойная связь гидроксилируется, а затем образовавшийся диол расщепляется перйодатом, что приводит также к регенерированию перманганата из восстановленного соединения марганца. В аналогичном методе используется четырехокись осмия и перйодат натрия нри этом четырехокись осмия гидроксилирует двойную связь и затем регенерируется перйодатом. Ниже приведен типичный пример такого превращения. [c.380]

    Кинетические методы анализа, иснользующие для количественного определения элементов каталитические свойства их соединений, разработаны главным образом для осмия и рутения. Они преимущественно основаны на способности металло в ускорять ряд окислительно-восстановительных реакций и, в большинстве случаев на использовании спектрофотометричеокого метода для определения изменения концентрации одного из реагирующих веществ ИЛИ продуктов реакции во времени. Например, используют способность рутения ускорять реакцию взаимодействия Се (IV) и As (III) [412]. Осмий является катализатором окио.ления различных органических соединений перекисью водорода, хлоратом калия и др. [413-—417]. Другие платановые металлы и золото также ускоряют ряд реакций, однако большинство этих реакций использовано для качественного апределения металлов—катализаторов и лишь немногие — для количественного апределения следов металлов (палладий, иридий, золото) [418—420], [c.206]

    Представляется, что квалифицированная вторичная переработка ОСМ позволит эффективно решить проблему обезвреживания высокотоксичных отходов, содержащих ПХД, диоксины, ПА и др. Однако современные процессы, как правило, этого не обеспечивают. Адсорбционная очистка активированными глинами не всегда удаляет из ОСМ токсичные соединения типа ПХД. Утилизация такого отработанного сорбента, кроме того, сама представляет существенную проблему. Вопрос может быть решен путем комбинирования адсорбционной очистки и модифицированной гидроочистки. Такой процесс позволяет удалять из отработанных нефтяных масел галогенпроизводные различного строения. На первой стадии осуществляют адсорбционную очистку активированным углем или оксидом алюминия. На второй стадии при 260— 290°С и давлении 4,2 — 5,2 МПа ведут гидроочистку на алюмони-кельмолибденовом катализаторе, способствующем дегалогениро-ванию дифенилов. Содержание ПХД в масле при этом снижается до I млн . Отличием данного процесса от традиционного является разделение продуктов гидрогенизации в атмосфере азота на фракции очищенного масла, полимерных ароматических соединений, легких углеводородов и соляной кислоты. Масляную фракцию за- [c.360]


    Тетраоксиды осмия и рутения ядовиты. 0з04 по запаху напоминает хлор, а Ки04 — озон. 0з04 — наиболее часто применяемое соединение осмия. Его используют как мягкий окислитель и катализатор в органическом синтезе (например, кортизона) и для подкрашивания животных тканей при их микроскопическом исследовании. [c.632]

    Платиновая чернь — тонкий порошок платины, который получают восстановлением ее соединений. Применяют как катализатор в химических процессах. Ллатииовые металлы — рутений (Ru), родий (Rh), палладий (Pd) — легкие платиновые металлы осмий (Os), иридий (Ir), платина (Pt) — тяжелые платиновые металлы. В природе встречаются вместе с платиной. Все эти элементы стойки к химическим реагентам. [c.102]

    Хотя четырехокись осмия применялась и раньше в качестве катализатора при гидроксилировании, Криги [30] впервые показал, что это соединение представляет собой чрезвычайно эффективный гидроксилирующий агент. При действии эквивалентного количества четырехокиси осмия в абсолютном эфире или реже в -бензоле [31], циклогексане [31] или диок-сане [8, 30] на олефины при комнатной температуре из раствора медленно (примерно в течение 4 суток) почти количественно выпадают продукты присоединения. Этот сложноэфирный комплекс (III) разлагается с образованием осмиевой кислоты или другого осмиевого производного и диола, соответствующего исходному олефину. [c.121]

    Четырехокись осмия применялась также в качестве катализатора гидроксилирования. Гофман [67] впервые сообщил, что водные растворы хлората натрия и хлората калия при добавлении небольшого количества четырехокиси осмия становятся сильными окислителями, способными гидроксилиро-вать атомы углерода, связанные между собой двойной связью. Браун [16] установил, что выходы диолов возрастают при использовании хлората бария и хлората серебра, которые в дальнейшем нашли широкое применение. Реакция протекает в водной среде при температурах в пределах О—50° иногда для завершения реакции требуется несколько суток илида же неделц. Наиболее удовлетворительные результаты получены в случае соединений, обладающих хотя бы слабой растворимостью в воде. Несмотря на эти ограничения, метод оказался вполне удовлетворительным. Он особенно пригоден для окисления алифатических этиленовых соединений с короткой цепью, например для соединений, приведенных в табл. 7, в которой указаны выходы гликолей и применявшиеся хлораты. [c.126]

    Облегчить восстановление органических соединений при помощи каталитических реакций можно, помещая катализатор либо в массу электрода, либо на его поверхность. Такие электроды получили название химически модифицированных электродов (ХМЭ). Например, для определения аскорбиновой кислоты в щелочной среде применяется графитовый электрод, покрытый пленкой из перфторполиэлектролита, в который помещен комплекс осмия(III). Аскорбиновая кислота может быть также эффективно определена вольтамперометрически при использовании для изготовления ХМЭ угольной пасты, содержащей 0,25—1,0% тетраметил-я-фенилендиамина. В работе [87] приведены примеры применения ХМЭ с электрокаталитической функцией. [c.70]

    Гликоли получаются также при действии насыщенного раствора уксуснокислой ртути на некоторые олефины Ряд ненасыщенных соединений превращается в диацетаты гликолей при действии тетраацетата свинца Кроме того, для превращения этиленовых соединений в насыщенные диоксипройзводные рекомендуется пользоваться водным раствором хлорноватокислого натрия, содержащим в качестве катализатора небольшое количество осмиевого ангидрида (четырехокиси осмия) Недавно этот способ был с успехом применен для получения диокси-кислот из соответствующих ненасыщенных кислот.  [c.29]

    При каталическом гидрировании алкилгалогенидов в присутствии палладия галоид количественно отщепляется в виде галоидоводорода. При гидрировании же галоидобензола по Бушу замещение галоида на водород происходит только частично и в конечном результате два арильных остатка соединяются, образуя дифенил, выход которого достигает 75% от теоретического. Большое значение при этом имеет подбор катализаторов платина, осмий, рутений и родий оказались для этих целей непригодными неактивными оказались и некоторые никелевые катализаторы. Образование дифенила в присутствии палладия надо приписать специфичности действия этого катализатора и присутствию спирта в присутствии метилового спирта вне зависимости от того, применяется ли водород или гидразин при гидрировании образуется дифенил. Имеется предположение, что при этом сначала гидрируется спирт и образуются двойные соединения [c.471]

    Мьюттерти с сотр. нашли, что кластерные соединения осмия и ирридия — Озз(СО)12 и 1г4(СО)]2 — катализируют гидрирование СО в метан [33]. При 140 °С и 0,196 МПа эти катализаторы селективно продуцируют метан с удельными скоростями, вполне сравнимыми со скоростями, измеренными Ванниче на иридии, нанесенном на носитель [25]. Наблюдалось также, что замещение лиганда очень сильно влияет на скорость реакции н распределение компонентов в продукте. Замещение карбонильных лигандов трифенилфосфином увеличивает скорость синтеза в три раза и приводит к получению метана, этана и пропана. Были сделаны попытки обеспечить гомогенность в реакционной системе, но она не устанавливалась достаточно четко. Дальнейшее изучение процесса метанирования с применением гомогенных катализаторов представляется обоснованным. [c.240]

    О2 СН3ОН в спиртовоздушной смеси и зависящая от этого соотношения температура процесса, нагрузка на катализатор, высота его слоя и др Присутствующие в метаноле непредельные соединения вызывают отложение сажи в порах катализатора, а альдегиды и кетоны повышают кислотность формалина, осмо ляются и уменьшают активную поверхность катализатора Особенно много сажи выделяется в присутствии окислов железа, а отчасти и меди Рели катализатор понизил свою активность, то его осторожно прокаливают при 600—650 °С, частично освобождая от органических отложений, и дополнительно наносят 5-7 % Ае [c.146]

    Существуют различные способы приготовления катализаторов с цеолитами. Митташ, Шнейдер и Моравитц [292] приготовили платиновый цеолит для гидрогенизации органических соединений, нагревая искусственный цеолит до почти полного удаления воды полученный продукт вымачивали в растворе хлорной платины, а затем сушили и повторно нагревали, после чего образующаяся растворимая соль, например хлористый натрий, удалялась промыванием Или иной обработкой. Платину и осмий в силикат можно ввести методом замены щелочного металла силиката алюминия для этого силикат вымачивают в растворе соли платины или осмия. Осмиевый цеолит готовят обычно вымачиванием цеолита в растворе осмиата калия и нагреванием. Искусственные или природные цеолиты вначале превращают в цеолит аммония, после чего непосредственно или предварительно нагретый, он дает цеолит осмия при обработке осмиатом калия. Относительно других методов приготовления обменивающих основание продуктов можно получить сведения в некоторых патентах [362]. Цеолиты типа силиката алюминия или двойного силиката алюминия, применяемые при восстановлении карбонильных соединений в виде носителей катализаторов, также описаны в литературе [362]. Силикаты, обменивающие основания, готовят действием щелочного раствора окиси алюминия на раствор щелочного силиката в присутствии кислоты, которая нейтрализует раствор [196], при этом содержание двуокиси кремния изменяется в зависимости от взятого количества силиката и кислоты. Конечный продукт перед сушкой или после нее обрабатывают гидратом окйси натрия, углекислым натрием или бикарбонатом натрия. [c.487]

    Осмий оказался весьма подходящим (и по тому времени практически единственным) катализатором гидрирования фура-"новых соединений [44]. Попытки каталитического превращения фурана и фурфурола в соответствующие гидрофурановые соединения на никеле и окиси платины до работ Зелинского приводили к сложной смеси разных продуктов [45—49]. В 1933 г. Зелинский и Шуйкин показали, что для превращения сильвана в тет-рагидросильван не пригодны также и платиновые катализаторы. Однако, применив осмий, авторы с количественными выходами получили тетрагидросильван [44]  [c.96]

    На основании представленных на рисунке кривых электровосстановления и поляризационных кривых для отдельных электродов-катализаторов, снятых в растворах H2SO4 и НС1, можно заключить, что электровосстановление протекает в соляной кислоте с меньшими скоростями и начинается при меньших анодных потенциалах. Оба эти факта связаны со специфической адсорбцией хлорид-ионов, которая сказывается в большей мере при потенциалах двойнослойной области [5] и уменьшает адсорбцию органических соединений, а также водорода, особенно на осмии и богатых им сплавах [1]. [c.249]

    Результаты первых опытов по каталитическому синтезу метана из окнси углерода и водорода были опубликованы в начале 20 века [49]. Спустя несколько лет Баденская фабрика запатентовала процесс [1] каталитической гидрогенизации окиси углерода. Б первой работе [49] в качестве катализаторов использовали восстановленный никель или окись кобальта катализатор Баденской фабрики состоял из подщелоченных окислов кобальта или осмия. В нрисутствии этих катализаторов в опытах, проводившихся прн давлеши , 100—200 ат н температуре 300—400% получался главным образом жидкий продукт, представлявший собой смесь спиртов, альдегидов, кетонов, кислот и других органических соединений. [c.142]

    ОСМИЙ м. 1. Os (Osmium), химический элемент с порядковым номером 76, включающий 33 известных изотопа с массовыми числами 163-167, 169-196 (атомная масса природной смеси 190,2) и имеющий типичные степени окисления в соединениях О, + П, + П1, -Ь IV, + VI, -I- VIII. 2. Os, простое вещество, тяжёлый серебристо-белый металл применяется как компонент сверхтвёрдых и износостойких сплавов с иридием, как компонент катализаторов в реакциях гидрогенизации и др. [c.298]

    В Институте химии и химической технологии АН ЛитССР (Вильнюс) проведены исследования новых титриметрических, в основном потенциометрических, методов анализа. Для ускорения медленно протекающих редокс-реакций успешно использованы катализаторы— соединения осмия и рутения. Предложены методы определения ряда окислителей и восстановителей, а также ускоренные и усоверщенствованные методы определения некоторых восстановителей и других компонентов в растворах, применяемых для получения металлических покрытий химическим путем. Разработаны редокс-методы определения благородных металлов. [c.211]

    Вот что рассказывает по этому вопросу Митташ Когда в 1909 г. встал вопрос о передаче в технику найденного Габером процесса прямого синтеза аммиака, К. Бош, которому этот вопрос был поручен, поставил перед своими сотрудниками задачу— заменить дорогие и редкие вещества, осмий и уран, более доступными или улучшить известные до сих пор мало пригодные катализаторы настолько, чтобы их можно было применить в промышленности... Наше главное внимание было посвящено смесям железа с другими металлами, но в порядке лабораторных опытов мы помимо железа, следуя периодической системе элементов, смешивали каждый элемент А с любым элементом В как таковым или в виде соединения в разных соотношениях и различными способами [7]. Митташ и его многочисленные сотрудники Баденских заводов ИГ Фарбенипдустри поставленную перед ними задачу решили катализатор в результате таких поисков был найден. Кроме того, были взяты патенты на сотни других катализаторов, изученных попутно при решении указанной задачи. Таким образом, результаты практической работы продвинулись очень далеко, но сколько-нибудь [c.115]

    Одновременно были начаты изыскания наиболее активного и дешевого катализатора синтеза аммиака. В истории развития каталитических процессов, пожалуй, никогда не проводилось столь обширных работ, как те, которые были предприняты немецкими фирмами. Без руководящей идеи о том, кахсова должна быть природа активной поверхности катализатора, исследовались каталитические свойства огромного числа различных соединений, были испытаны металлы почти всех групп периодической таблицы. Про Габера слагались анекдоты сохранился рассказ о том, как он открывал шкаф с химическими реактивами, брал первое попавшееся в руки вещество и тотчас опробовал его в качестве катализатора синтеза аммиака. Однако из огромного числа испытанных соединений активными оказались лишь немногие — железо, осмий, уран, молибден. Из них для технических целей наиболее подходящими явились сплавы железа с некоторыми другими металлами в чистом виде железо оказалось мало активным катализатором. Наибольшую активность проявила окись железа, восстановленная в расплавленном виде водородом. Но применять этот катализатор в промышленности не удалось, так как активность его быстро падает. Прибегли к помощи добавок, увеличивающих конверсию азота и повышающих термостойкость катализатора. [c.113]

    Эфир образуется в результате одновременного раскрытия углерод углеродной двойной связи алкена и двух двойных связей окиси металла Затем этот эфир гидролизуют, используя в качестве катализатора суль фит натрия. Продукт гидролиза представляет собой г с-циклогексан диол-1,2 (И), у которого гидроксилы расположены в р-области, т. е спереди, а водороды — в а-области, т. е. сзади. Пятичленное кольцо в осмиевом эфире может образоваться только при г с-ориентации, и, следовательно, продукт реакции неизбежно является цис-толот. Таким образом, процесс гидроксилирования четырехокисью осмия является 1( с-присоединеийем. В тех случаях, когда может осуществляться как цис-, так и г/ анс-присоединение, обычно происходит гранс-присое-динение. г с-Присоединение наблюдается только в тех случаях, когда в процессе реакции образуется циклическое промежуточное соединение, которое по необходимости должно быть г ыс-ориентировано, как в приведенном выще примере. [c.215]

    Одно из интересных направлений катализа было открыто благодаря тому, что химики научились синтезировать молекулы, ядро которых состоит из нескольких химически связанных атомов металла. Размеры молекул этих кластерных соединений больше, чем у молекул гомогенных катализаторов, но меньше, чем у частиц металла, служащих гетерогенными катализаторами. Большой интерес вызывает то обстоятельство, что многие из металлов, являющихся са-мымй активными гетерогенными катализаторами, обнаруживают способность к образованию кластеров (например, родий, платина, осмий, рутений и иридий). [c.51]

    С точки зрения связи с работами, рассмотренными выше, реакции присоединения силанов к непредельным соединениям, катализируемые металлами и их солями, требуют некоторых дополнительных замечаний. Наиболее часто применяемые в качестве катализаторов металлы и их соли — это платина на угле или на у-окиси алюминия, платинохлористоводородная кислота, хлор-платинат калия, а также палладий. Кроме того, применялись хлористый рутений, четырехокись осмия на угле и некоторые другие соединения этих элементов. Такой метод в значительной степени перекрывает свободнорадикальную катализируемую реакцию и часто дает лучшие выходы продуктов. Это особенно справедливо для реакции присоединения к ацетиленам [283, 284]. Из гексина-1 аддукт с трихлорсиланом был получен с выходом 36% в реакции, инициированной перекисью, но при применении в качестве катализатора платины на угле выход составил 93%. Фенилацетилен в присутствии перекиси не образовал аддукта, однако в присутствии в качестве катализатора платины на угле выход был равен 82% [283]. Эти катализаторы позволяют получить простые аддукты из легко полимеризующихся олефинов, таких, как стирол или акрилонитрил, что трудно или даже невозможно осуществить в условиях свободнорадикальной реакции [305]. Несмотря на значительное перекрывание этих двух методов, между ними существуют некоторые различия, имеющие важное значение для синтеза. Ниже перечислены эти различия. [c.236]

    Платиновые металлы чрезвычайно устойчивы против коррозии. Они ке растворяются в кислотах и только палладий и платина растворимы В царской водке и в концентрированных горячих HNOз а Н2504. Все металлы семейства платиновых имеют высокое положительное значение окислительно-восстановительного потенциала. Несмотря на это, многие из металлов характеризуются заметно выраженным сродством к кислороду. При нагревании рутений, осмий, родий и иридий соединяются с кислородом. Осмий в раздробленном состоянии медленно реагирует с кислородом при обычной температуре, образуя при этом бесцветный 0з04 палладий вступает в реакцию с трудом, а платина с кислородом не взаимодействует. Все платиновые металлы при нагревании соединяются с фтором и хлором, кроме родия, который устойчив к действию даже фтора. Металлы семейства легко выделяются в мелко раздробленном состоянии из растворов их солей при действии восстановителей. При этом они приобретают высокую активность в качестве катализаторов реакций окисления и гидрирования, особенно порошки палладия и платины, растворяющие значительные количества водорода в атомной форме. В соединениях элементы семейства платины встречаются в различных состояниях окисления. При этом максимальная и характерная валентность (выделена полужирным [c.375]


Смотреть страницы где упоминается термин Осмий соединения его как катализаторы при: [c.51]    [c.134]    [c.369]    [c.183]    [c.64]    [c.236]    [c.95]    [c.128]    [c.63]    [c.16]    [c.111]    [c.78]    [c.125]    [c.372]    [c.548]    [c.1016]    [c.343]    [c.391]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Осмий

Осмий осмий



© 2025 chem21.info Реклама на сайте