Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен высшие олефины из него

    Физико-химическая характеристика реакции получения ацетилена из метана. При нагревании метана и других углеводородов до очень высоких температур (пиролиз) образуется газовая смесь, в которой содержатся водород, этилен и другие олефины, ацетилен и высшие ацетиленовые углеводороды, ароматические углеводороды и непрореагировавший метан. Получается также сажа. Многочисленность продуктов указывает, что этот дроцесс сложный. Он включает, очевидно, ряд реакций, протекающих как параллельно, так и последовательно. Выделим из них реакцию образования ацетилена  [c.250]


    Эти олефины содержатся в большом количестве в крекинг-газах находятся они там в качестве побочного продукта. Первоначально эти газы были относительно богаче этиленом. С совершенствованием крекинг-нро-цесса содержание этилена в продуктах крекинга уменьшается и вследствие этого затраты на его извлечение постоянно возрастают. Это вынуждает к поиску иных источников получения этилена и других газообразных олефинов. Таким является прежде всего пиролиз природного газа, содержащего пропан, который нри этом расщепляется на этилен и метан. Затем следует приобретающий первостепенное значение процесс пиролиза этана. При нагреве до высокой температуры этан расщепляется на этилен и водород (термическое дегидрирование). [c.35]

    В нефтях крайне редко и в незначительных количествах встречаются олефины. Они были обнаружены, например, в бакинской, пенсильванской, галицийской, эльзасской и некоторых других нефтях. Большое количество олефинов и некоторых других непредельных углеводородов появляется в продуктах деструктивной переработки нефти. Эти углеводороды отличаются высокой реакционной способностью и поэтому легко полимеризуются, осмоляются, что приводит к снижению срока службы и хранения нефтепродуктов. Непредельные углеводороды являются нежелательными компонентами моторных топлив и смазочных масел. Многие непредельные углеводороды — ацетилен, этилен, пропилен, бутилен, бутадиен — получили широкое применение в производстве полиэтилена, полипропилена, синтетического спирта и каучука, пластических масс и других продуктов. [c.24]

    Наибольшей сложностью отличаются схемы нефтепереработки, включающие производство специальных особо ценных продуктов, например, смазочных масел или нефтехимической продукции. Соответствующие установки имеют высокие коэффициенты сложности, что отражает уровень капитальных затрат на их строительство. Например, коэффициент сложности для установки извлечения ароматических соединений равен 33, а для производства олефинов он составляет 10—20 (в зависимости от вида сырья и способа переработки выходящих потоков). Не является редкостью схема нефтепереработки с выходом химических продуктов (этилен, пропилен, бутадиен и ароматика) около 10%, имеющая показатель сложности не менее 16. [c.180]

    При получении этиленхлоргидрина гипохлорированием этилена пригоден не только этилен высокой концентрации, но и газ, содержащий до 10% этилена. Делались попытки осуществлять гипохлорирование коксового газа с концентрацией этилена менее 2%. При получении окиси этилена через этиленхлоргидрин следует использовать газ с минимальным содержанием высших олефинов (пропилена, бутиленов и амиленов), так как при гипохлорировании они образуют хлоргидрины. В последнее время разрабатываются методы получения ацетальдегида непосредственным окислением этилена на катализаторах. [c.4]


    Катализаторы Циглера — Натта образуют важную и значительную группу катализаторов. Они являются единственными катализаторами полимеризации а-олефинов, в частности пропилена и бутена-1. Следует лишний раз подчеркнуть, что, как уже говорилось в гл. 3 и 5, а-олефины не полимеризуются под действием радикальных и ионных катализаторов. Широкое признание катализаторы Циглера — Натта приобрели в связи с тем, что с их использованием связано получение изотактического полипропилена и линейного полиэтилена высокой плотности. Хотя, очевидно, в применении к симметричному этилену понятие оптической изомерии неприменимо, в присутствии стереоспецифических катализаторов образуется полиэтилен, по свойствам отличающийся от полиэтилена, полученного радикальной полимеризацией. Полиэтилен, синтезированный в присутствии таких новых каталитических систем, значительно менее разветвлен, что обусловлено как более низкими температурами полимеризации, так и уменьшением роли реакций передачи цепи. Более линейное строение такого полимера делает его лучше, обусловливает более высокую кристаллизуемость и большую плотность полимера. По прочности и ряду других показателей высокоплотный полиэтилен превосходит полиэтилен низкой плотности, получающийся радикальной полимеризацией. [c.504]

    Весьма важные выводы для суждения о механизме реакции задолго до цитируемых в статье Шмерлинга работ сделал Н. Д. Прянишников в работе по полимеризации в тихом разряде [Вег., 61, 1358 (1928)], проведенной с этиленом и псевдобутиленом. Он отметил, что этот процесс полимеризации в общем весьма напоминает полимеризацию олефинов при высоких температурах и давлениях, и пришел к следующему выводу о механизме полимеризации ... процесс полимеризации сопровождается не только перегруппировкой атомов водорода, но и отщеплением и присоединением углеводородных радикалов .— Прим. ред. [c.66]

    Потребность в этилене все больше возрастала, в то время как газы переработки нефти с изменением метода переработки становились беднее этиленом, вследствие чего стоимость его выделения все больше увеличивалась. В высоких концентрациях олефины образуются в сущности лишь в результате парофазных и каталитических процессов крекирования при термическом крекировании в смешанной фазе они получаются в меньших количествах. [c.10]

    Фторид-ион представляет собой сильное основание, если он не стабилизован водородными связями в ДМФА, ДМСО, сульфолане и N-метилпирролидоне фторид-ион связывает протон даже от первичных галогенидов с образованием олефинов [17, 65]. При нагревании в апротонных растворителях фтористый тетраэтиламмоний разлагается на этилен и фтористый водород [67]. Высокохлорирован-ные соединения с тремя или более атомами углерода при действии фтористого калия в полярных апротонных растворителях при высокой температуре подвергаются дехлорированию и дегидрохлорированию [65]. [c.24]

    В обеих технологиях используется доступное и дешевое сырье — этилен, они имеют высокую (95—98 %) селективность по целевому продукту. Оба технологических решения можно рассматривать как сопряженные технологии, поскольку образующийся технический эфир (диэтиловый или изопропиловый) выделяется в качестве товарного продукта. Однородная структура подсистемы разделения продуктов гидратации олефинов также характеризуется единством используемых принципов. В частности, обеспечивает полноту выделения продуктов из реакционной смеси (этиловый или изопропиловый спирты, соответствующие простые эфиры и вода). [c.438]

    На основании сравнения кинетических данных отдельных чистых алюминийалкилов по отношению к этилену можно сделать вывод, что как при высоком, так и при низком давлении этилена, но в присутствии достаточного количества соответствующего а-олефина и по возможности лишь иа начальной стадии реакции можно получить точные значения констант скорости реакции. Производить такие опыты следует, так как они довольно интересны в связи с задачей, рассмотренной в пункте 9, стр. 158. Имеющийся в настоящее время не очень точный цифровой материал дает скорее ориентировочное представление и не позволяет сделать еще ясного вывода о существующих закономерностях. [c.161]

    Тетрафторэтилен при комнатной температуре метастабилен. При температурах около 200° С он гладко димеризуется в октафторциклобутан [102] обратная реакция происходит при температуре выше 500° С. Энергии активации для прямой и обратной реакций (25,4 и 74,1 ккал) указывают, что эта димеризация сопровождается экзотермическим эффектом примерно в 50 ккал [103], тогда как гипотетическая циклодимеризация этилена в циклобутан должна была бы привести к выделению лишь около 16 ккал. Очевидно, что полифторированные олефины находятся на более высоком энергетическом уровне, чем сам этилен. [c.461]

    До середины 1950-х гг. все попытки получить полиолефины из иных мономеров, чем этилен и изобутилен, приводили к образованию лишь низкомолекулярных продуктов, промышленная ценность которых невелика. Причиной этих неудач является протекание реакций переноса активного центра (путем отрыва атома водорода от олефина), конкурирующих с реакциями роста цепи путем присоединения радикала. Однако в 1954 г. Натта, продолжая исследования Циглера, обнаружил, что некоторые биметаллические катализаторы циглеровского типа способны превращать пропилен и многие другие а-олефины, в частности 4-метилпентен-1 и бутен-1, в кристаллические полимеры. Путем небольших изменений состава и физической природы катализаторов этому ученому удалось получить несколько видов высокомолекулярного полипропилена, значительно различающихся по свойствам. При дальнейшем изучении было установлено, что эти свойства обусловлены различной стереорегулярностью полученных продуктов (см. выше). Изотактический полипропилен оказался похожим во многих отношениях на полиэтилен высокой плотности, тогда как атактическая форма полипропилена характеризовалась аморфной структурой и низкими прочностными характеристиками. Метильные группы, связанные с альтернантными атомами углерода основной цепи, оказывают разностороннее влияние на свойства полимера. Так, с одной стороны, они увеличивают жесткость макромолекуляр- [c.256]


    Из представителей олефинов мы рассмотрим лишь этилен. Он представляет собой бесцветный газ с очень слабым, немного сладковатым запахом. В отличие от метана он горит слабо коптящим пламенем, что объясняется более высоким содержанием углерода. Этилен обладает свойством вызывать общий наркоз (общую нечувствительность), благодаря чему некоторое время он применялся при операциях. Следует отметить, что появление двойной связи в молекуле резко усиливает наркотическое действие вещества на организм. [c.78]

    Он привел доводы в пользу того, что синглетные карбены присоединяются путем синхронного образования обоих новых о-связей, давая только (74) и сохраняя таким образом стереохимию исходного алкена, в то время как триплетные карбены присоединяются по радикальному двухстадийному механизму с образованием в первую очередь бнрадикала (75), в котором может происходить вращение вокруг связи до инверсии спина и замыкания кольца, что приводит к обоим диастереомерам (74) и (76). Несмотря на широкое обсуждение справедливости теоретических предпосылок, правило Скелла исключительно успешно объясняет многие экспериментальные данные, полученные для этих реакций присоединения. Однако при использовании правила следует соблюдать определенную осторожность, так как в его основе лежат некоторые предположения об относительных скоростях стадий схемы (48), которые могут соблюдаться не во всех случаях [38]. Таким образом, прежде чем однозначно приписать определенную реакционную способность одному из спиновых состояний карбена, следует выяснить свойства обоих состояний. В ряде случаев, когда это требование было точно соблюдено, например в случае метилена, бисметоксикарбонилкарбена, флуоренилидена и др., результаты всегда соответствовали предсказаниям Скелла. Расчет поверхности потенциальной энергии присоединения синглетного метилена к этилену [40, 70] подтверждает синхронность реакции и свидетельствует, что она осуществляется по принципу наименьшего движения через разрешенный орбитальной симметрией подход (77), при котором вакантная р-орбиталь (НСМО) карбена взаимодействует с занятой я-молекулярной орбиталью алкена, причем карбен расположен так, чтобы перекрывание было максимальным, а пространственные взаимодействия минимальны. Более симметричный подход (78), когда занятая о-орбиталь карбена взаимодействует с я-системой, запрещен орбитальной симметрией и по расчету обладает более высокой энергией, чем (77). Расчеты (77) указывают на наличие я р-переноса заряда в переходном состоянии (79), что согласуется с экспериментально наблюдаемым ускорением присоединения большинства карбенов к алкенам, содержащим электронодонорные заместители, и свидетельствует об электрофильной атаке карбена. Многочисленные исследования относительной реакционной способности карбенов с целью выяснения влияния пространственных и электронных эффектов различных заместителей в алкенах и карбенах критически оценены Моссом [48], который показал недавно, что селективность многих карбенов типа СХУ при реакции с олефинами коррелирует как с резонансными, так и с индуктивными параметрами X и V [71]. Большинство карбенов, в том числе сильно я-стабилизованный Ср2 (49), ведут себя как типичные электрофилы, однако ароматические карбены, такие как (80) и (47), проявляют нуклеофильные свойства, например (80) присоединяется через переходное состояние, поляризованное противоположно (79) [72]. Полагают, что это обусловлено [c.596]

    Продукты эти большей частью вырабатываются в значительных количествах (отсюда и название — тяжелый органический синтез), и для их получения используются чаще всего непрерывные процессы с применением катализаторов нередко реакции протекают при высокой температуре, а иногда и при высоком давлении. В качестве сырья в основном органическом синтезе используют простые по строению веп .ества, преимущественно газы. Это углеводороды жирного ряда парафины (метан и его гомологи), олефины (этилен, пропилен, бутилены) и ацетилен, а также окислы углерода (окись и двуокись), водород, водяной пар. В меньших количествах применяются также ароматические углеводороды и их производные. Все эти вещества получают переработкой нефти, ископаемых углей, природного газа они содержатся в природном и попутном нефтяном га.зе (парафины), газах нефтепереработки (парафины и олефины) и в коксовом газе (этилен, пропилен, метан, водород). Двуокись углерода обычно выделяют из различных газов — отходов других производств. [c.254]

    При использовании олефинов в качестве акцепторов радикалов необходимо учитывать, что низшее триплетное состояние этилена лен ит на 82 ккалЫолъ выше основного состояния [156], для алкил- и арилзамещепных этиленов триплетный уровень лежит несколько ниже. Таким образом, тушение триплетных возбужденных молекул олефином может быть существенным при определенных условиях. Ребберт и Ауслус [157] обнаружили, что триплет ацетона (полученный при фотолизе светом 3130 А) эффективно тушится олефинами, хотя синглетное состояние ацетона не подвергается воздействию, что вполне естественно, если учесть очень высокую энергию возбужденных синглетных состояний олефинов. Они оценили вероятность триплет-триплетного переноса энергии при столкновении электронно-возбужденного ацетона и молекулы олефина и получили следующие значения 0,5 (стирол)  [c.487]

    Кромо гексанов, жидкий продукт содержал 8,2 % пентанов, 4,5% гептанов, 9,6% октанов и около 14% олефиновых углеводородов. Необходимость добавления этилена небольшими порциями очевидна из рассмотрения результатов опыта, который проводился практически в тех же условиях, что описанный вышо (505° и 330 ат), с той лишь разницей, что здесь осуществлялся однократный проход изобутан-этиленовой смсси (молярное отношение 2,5) вместо рециркуляции углеводородного потока и добавки этилена 32 порциями в первом случае [13]. Жидкий продукт (124 % вес. на этилен) содержал только 17,5% гексанов (7% от теоретического), из которых только 30% составлял 2,2-диметилбутан. Октаны, образование которых проходило, по-видимому, через реакцию с 2 молями этилена, были получены с выходом 10% от теоретического. Наибольшую часть жидкого продукта (24%) составляли пентаны, из которых 86% приходилось на долю н-пентана. Но менее 12% жидкого продукта реакции составляли олефины. Для проведения реакции между изобутаном и изобутиленом при 486° потребовалось весьма высокое давление — 562 ат [32]. Жидкий продукт составлял только 35% вес. на изобутилен. Он содержал не только 34% октанов (выход 6%), но также 32,7% октенов. Присутствие последних,- кажется, скорее подтверждает предположение, что образование олефинов включает как стадию реакции диспропорционирование промежуточных радикалов, а ие полимеризацию исходного олефина. При димеризации изобутилена при 370—460° и давлении 38 — 376 ат образуется 1,1,3-триметилциклопентан, но не октен [30]. [c.307]

    Кроме термического крекинга, источником олефинов является также каталитический крекинг, при котором они получаются в больших количествах. Каталитический крекинг получил быстрое и широкое распространение под влиянием потребностей военного времени, поскольку он давал хорошие выходы высокооктанового бензина, являющегося основньш компонентом авиационного топлива с октановым числом 100. Каталитический крекинг заключается в нагревании паров нефтепродукта при умеренной температуре (450°) и низком давлении (1—15 ama) в присутствии естественного или синтетического алюмосиликатного катализатора. Существуют три способа проведения этого процесса. По одному из них пары углеводородов пропускают через неподвижный слой катализатора (процесс Гудри). При втором способе очень тонко измельченный катализатор, будучи взвешен в горячих парах углеводородов, увлекается ими в направлении их движения (процесс с текучим катализатором). По третьему способу катализатор в виде гранул механически передвигается в реакционной зоне противотоком к движению паров углеводородов (процесс термофор). Во всех случаях на катализаторе отлагается кокс, который приходится удалять выжиганием в токе газа, содержащего кислород в процессе Гудри выжигание проводят периодически, в процессах с псевдоожиженным слоем катализатора или с движущимся слоем (процесс термофор) — непрерывно. Полученный крекинг-бензин содержит большое количество сильно разветвленных парафинов, благодаря чему он и обладает высоким октановым числом. Как и следовало ожидать, принимая во внимание мягкие условия крекинга,, этилен присутствует в газах в очень небольшом количестве в основном крекинг-газы состоят из С3- и С4-углеводородов. Бутан-бутиленовую фракцию крекинг-газов в США используют для производства дивинила, необходимого для промышленности синтеаического каучука, а также для получения изооктана (гл. 12, стр. 208 и сл.). [c.110]

    Чаще всего разделение ведут при 30—40 кгс/см (3—4 МПа), что для отделения метано-водородной фракции требует температуры —100 °С. Она создается этиленовым холодильным циклом, который может работать лишь при наличии пропиленового (реже аммиачного) холодильного цикла. Пропилен при сжатии и охлаждении водой способен конденсироваться, и при дросселировании до разных давлений может создать температуру от О до —40°С. При такой температуре конденсируют компримированный этилен, за счет чего при дросселировании до разных давлений создается температура от —60 до —100 °С. Ввиду высокой стоимости создания такого холода на современных установках применяют разнообразные. меры по его экономии. Прежде всего, утилизируют холод и давление получаемых фракций за счет их дросселирования, де-тандирования, использования принципа теплового насоса и т. д. Широко применяют также ступенчатое охлаждение агентами с разным градиентом температур, в том числе и для создания флегмы в так называемых разрезных ректификационных колоннах, разделенных на две или более части со своими дефлегматорами, из которых только верхний работает при наиболее низкой температуре. Применяют раздельный ввод газа и конденсата по высоте колонн в места, соответствующие их составу, и т. д. Все это позволило снизить затраты энергии на разделение газа и вместе с усовершенствованиями в стадии пиролиза и укрупнением установок существенно удешевить получаемые фракции олефинов. [c.59]

    Хотя это равновесие значительно сдвинуто влево, в результате реакции образуется особенно активный этилен. При высоких температурах, необходимых для присоединения алюминийалкилов к изобутилену, этилен быстро превращается в высшие олефины. Поэтому триэтилалюминий исчезает из реакционной смеси быстрее, чем он может присоединиться к изобутилену. Из очень сложного продукта, полученного при подаче триэтилалюминия в избыток изобутилена при 180—190°, в конце концов удалось получить после гидролиза только 12,4% "максимально возможного количества 2,2-диметилбутана С2Н5—С(СНз)з. Это является доказательством того, что ожидаемое образование продукта [c.257]

    ЮТ рост ДЛИННЫХ полимерных молекул, а какие, вероятно, препятствуют ему. Пытаясь получить высшие олефины реакцией олефинов с гидридом алюминия или с алюминийалкилами, Циглер [90] нашел, что молекулярные веса продуктов изменялись и в целом были ниже, чем следовало ожидать. Открытие [91] того, что этилен в присутствии солей никеля можно почти количественно димеризо-вать в бутен-1, привело к исследованию влияния соединений других переходных металлов. Было установлено, что соединения металлов IV, V и VI групп с триэтилалюминием и диэтилхлоралюминнем дают высокий выход полиэтилена. Позднее Натта [92, 93] показал, что эти катализаторы дают пространственно различаюшиеся полимеры пропилена и других олефинов. Натта [92] предположил, что соединение переходного металла следует рассматривать как катализатор, а металлалкил — как сокатализатор. Он показал, что активность связана с низшим состоянием окисления катализатора, хотя са.м металл часто ведет к димеризации, а не к полимеризации,что и наблюдалось в случае Ni. Кроме того, для пространственного регулирования строения полимера, вероятно, необходимо наличие границы раздела жидкость — твердое тело. О механизме этих замечательных реакций сейчас известно достаточно много для его объяснения предлагались свободнорадикальные, катионные и анионные цепи со стадиями роста, стерически регулируемыми поверхностью или индивидуальными комплексными ионами. Мягкие условия полимеризации указывают на ионный механизм, однако ни одну из приведенных схем нельзя рассматривать как полностью удовлетворительную. [c.436]

    Однако Berthelot был первым исследователем, изучавшим реакцию с точки зрения синтеза спирта из газов, содержащих этилен. Он нашел, что поглощение этилена концентрированной серной кислотой при обыкновенной температуре совершается весьма медленно даже при хорошем встряхивании. Более быстрое поглощение происходит при высоких температурах, хотя при этом имеют место потери кислоты вследствие окисления и обугливания олефина. В другом сообщении Berthelot описал свои опыты по изучению скорости поглощения этилена серной кислотой, а также выделения олефинов из светильного газа посредством иода. Ему удалось показать, что спирт можно получать не только брожением, но и другими способами. Было также рассмотрено поглощение олефинов серной кислотой с последующим превращением в простой эфир [c.362]

    В отличие от нефторированных олефинов, Т. обладает высокой реакционной способностью. Для атомов фтора характерны сильные электроноакцепторные свойства. Наличие этих атомов у двойной связи С=С настолько уменьшает ее электронную плотность, что Т. представляет собой электрофильное соединение он с трудом присоединяет электрофильные реагенты и легко — нуклеофильные (напр., спирты, амины). Для раскрытия двойной связи в Т. требуется на 83,7 кдж моль (20 ккал моль) энергии меньше, чем в этилене. Т. легко полимеризуется и сополимеризуется по радикальному механизму с многими мономерами, напр, с винилиден-фторидом, трифторхлорэтиленом, гексафторпропиленом, винилфторидом, этиленом, винилхлоридом, винилиденхлоридом, винилацетатом, диенами, перфторал-килвиниловыми эфирами, нитрозилхлоридом, нитро-зилфторидом и др. (см. Фторолефинов сополимеры). Т. сополимеризуется с трудом со стиролом, трифторстиро-лом, акрилонитрилом, акрилатами. [c.322]

    Сеард [120] обнаружил, что при облучении паров циклогексана при 100° в присутствии различных добавок, в том числе циклогексена, пропилена и этилена, выход водорода снижается в равной степени. Это позволило ему сделать вывод, что эффект не может быть обусловлен переносом заряда, так как циклогексан имеет более высокий потенциал ионизации, чем пропилен и циклогексен, но более низкий, чем этилен. Он предположил, что наряду с захватом атомов водорода имеет место захват ионных частиц, предшествующих образованию водорода. Реакции присоединения ионных частиц к олефинам были предложены Лиасом и Ауслузом [82]. Сеард установил, что при радиолизе паров чистого циклогексана около 36% водорода образуется при нейтрализации положительных ионов. Предположение о несущественности переноса заряда в газовой фазе подтверждается экспериментальными результатами, рассмотренными в разд. 4.6.3 (см. также разд. 4.9.4). [c.209]

    Вышеуказанные представления применимы также к олефино-вым катионам, радикалам и анионам. Аллил-катион по числу я-электронов соответствует этилену ( = 0), и его термическая изомеризация в катион циклопропилия протекает дисротаторно, а фотохимическая — конротаторно. У аллильных радикала и аниона в основном состоянии занята электронами следующая, более высокая молекулярная орбиталь, так что по характеру реакций они сходны с бутадиеном (<7 = 1). [c.260]

    Бензофенон имеет недостаточно высоко расположенный триплетный уровень, чтобы передавать энергию циклопентену, поэтому он не сенсибилизирует реакцию, а превращается при облучении в цикло-пентене в бензпинакон. Бензол Ет 85 ккал/моль), по-видимому, должен сенсибилизировать эту реакцию, хотя эффективность его как сенсибилизатора может быть низкой. Однако инертность бензола в фотохимических реакциях дает большие преимущества, так как позволяет избежать вторичных реакций сенсибилизатора с олефином. Вследствие аномально большого синглег-триплет-ного расщепления в простых этиленах (около 100 к ал/-иоугь) триплетное состояние бензола лежит на несколько килокалорий на 1 моль выше триплетного состояния циклопентена, в то время как синглетное состояние почти на 40 ккал/моль ниже синглетного состояния циклопентена. [c.260]

    В случае высокой концентрации молекул олефина должны быть также приняты во внимание и пространственные влияния. Например, наиболее плотная упаковка молекул этилена на плоскости 110 никеля приводит к отсутствию взаимного перекрывания соседних молекул углеводорода и к покрытию им почти всей поверхности. Это находится в соответствии с тем фактом, что этилен в условиях низкой температуры или высокого давления может совершенно приостановить превращение параводорода в ортоводород на платиновом катализаторе [8]. В случае метилэтиленов взаимное перекрывание соседних молекул становится отчетливо выраженным вследствие большого пространства, занимаемого —СНз-группами. Реальность этого пространственного влияния была показана Тунггом и Райдилом [7] при реакции H2 + D2 2HD, примененной ими в качестве средства определения величины незаполненной поверхности катализатора. Они наблюдали, что данный катализатор может быть совершенно покрыт этиленом в условиях, при кото- [c.76]

    В работе [104] высказывается предположение о том, что катализатор вызывает расщепление молекулы НС1 образующийся при этом протон соединяется с а-олефином в катионный я-комплекс. Концентрация такого промежуточного соединения определяет скорость реакции, и полученные данные показали, что она пропорциональна концентрации катализатора. Увеличение содержания РеС1з благопри.ятствует образованию катионного я-комплекса. Ранее указывалось на невозможность протекания побочного процесса полимеризации из-за эндотермичности стадии продолжения цепи в реакции НС1 с этиленом, что в сочетании с высокой энергией диссоциации связи Н—С1 усложняет создание цепей соответствующей длины. При этом также возможно образование теломеров. Фотохимическое инициирование реакции затруднено вследствие того, что спектр поглощения хлорида водорода находится в дальней ультрафиолетовой области. Тем не менее реакция может иметь место и ее вероятный механизм следующий  [c.87]


Смотреть страницы где упоминается термин Этилен высшие олефины из него: [c.182]    [c.165]    [c.178]    [c.122]    [c.303]    [c.313]    [c.105]    [c.445]    [c.445]    [c.26]    [c.400]    [c.110]    [c.322]    [c.50]    [c.473]    [c.13]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.2 , c.7 , c.385 , c.949 ]




ПОИСК





Смотрите так же термины и статьи:

Олефины из этилена



© 2024 chem21.info Реклама на сайте