Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Макромолекула влияние на надмолекулярную структуру

    Функции, выполняемые ДНК и РНК в организме, а также их химические и физико-механические свойства различны. Помимо химического строения на свойства нуклеиновых кислот и их функции в организме весьма существенное влияние оказывают форма макромолекулы и надмолекулярные структуры, которые для рибонуклеиновых и дезоксирибонуклеиновых кислот также различны. [c.362]


    Зависимость электрических свойств от строения макромолекул и надмолекулярной структуры позволяет использовать измерения электрических свойств для изучения особенностей строения полимеров. В связи с этим представлялось целесообразным систематизировать и обобщить экспериментальные данные и теоретические представления о влиянии строения полимеров, температуры, частоты электрического поля и других факторов на их электрические свойства. [c.5]

    ПИЯ мономерных звеньев пе проявляется макроскопически у неориентированных полимеров вследствие неупорядоченного статистического распределения макромолекул или надмолекулярных структур. При таких процессах переработки полимеров в изделия, как ориентационная вытяжка, экструзия, а также в некоторой степени и прессование, возникает преимущественная ориентация макромолекул. Это должно привести к анизотропии диэлектрических свойств ориентированных полимеров, которая зависит как от электрической анизотропии мономерного звена, так й от степени ориентации макромолекул. Поскольку степень ориентации макромолекул у кристаллических полимеров может быть значительно выше, чем у аморфных полимеров, то, естественно, можно ожидать большего влияния ориентации на диэлектрические свойства у кристаллизующихся полимеров. [c.139]

    Какова роль того или иного фактора в реальных условиях механического воздействия Она определяется гибкостью макромолекул полимера и температурой испытаний. Если макромолекулы полимера жесткие, сами элементы надмолекулярной структуры будут деформироваться меньше, а деформация образца в целом будет происходить по механизму сухого трения. Если макромолекулы гибкие, элементы структуры будут легко изменять форму, а при дальнейшей вытяжке — быстро перестраиваться и разрушаться с формированием новой, ориентированной структуры. В этом случае влияние надмолекулярной структуры заметно уменьшается (но не исчезает полностью). Аналогичный эффект наблюдается при повышении температуры. [c.12]

    В области низких температур подавление гибкости макромолекул способствует проявлению механизма деформации, связанного с сухим трением между элементами надмолекулярной структуры, перемещающимися относительно друг друга. В области высоких температур гибкость макромолекул проявляется в полной мере и роль надмолекулярных структур и границ между ними заметно уменьшается. В связи с этим можно заранее ожидать существенного влияния надмолекулярных структур на формирование комплекса механических свойств полимеров в области низких температур и сглаживания температурных зависимостей этих свойств в области высоких температур. Экспериментальные результаты полностью подтверждают эту точку зрения . [c.12]


    В настоящее время объяснение природы явлений, связанных с наполнением полимеров, пересматривается с учетом влияния надмолекулярных структур. С одной стороны, наличие вторичных образований накладывает отпечаток на формирование комплекса механических свойств полимеров при введении в них наполнителя и в некоторых случаях по этим свойствам судят о размерах надмолекулярных структур С другой стороны, образование тех или иных надмолекулярных структур зависит от присутствия частиц наполнителя в композиции, в особенности на поверхности раздела частица — полимер. На этой поверхности происходит ориентация макромолекул , облегчающая образование пачек. Часть пачек сохраняется в расплаве полимера при температурах, немного превышающих температуры плавления. Эти оставшиеся пачки иод давлением прессования могут принимать форму, отличную от равновесной, и соответствующую рельефу поверхности частицы наполнителя. При охлаждении пачки фиксируются далеко не в самых благоприятных положениях и формах, что приводит к появлению внутренних напряжений в наполненном полимере. При механическом воздействии происходит нарушение связи пачки с поверхностью частиц наполнителя и изменение ее формы. Изменение проявляется по-разному на поверхности частицы наполнителя и в объеме полимера вблизи поверхности. Все это, естественно, влияет на релаксационные свойства наполненных полимеров, изучение которых необходимо для понимания глубоких структурных изменений, происходящих при наполнении. [c.205]

    Поглощение ИК-излучения связано с колебаниями молекулы и соответственно ее групп. Взаимодействие между группами оказывает влияние на колебательные частоты. В низкомолекулярных соединениях, имеющих кристаллическую структуру, существует однозначная связь между колебательным спектром этого соединения, его структурой и силами межмолекулярного взаимодействия. В силу статистической природы полимерных объектов характер структуры макромолекул и взаимодействий между ними не имеет такой однозначности. Правда, данная макромолекула в определенных условиях имеет определенный колебательный спектр. Но этот спектр в большей мере, чем для низкомолекулярных соединений, зависит от физических воздействий, изменяющих конформацию макромолекул и надмолекулярную структуру. В колебательном спектре такие изменения находят отражение, и это дает ценную информацию о структуре полимера, что в свою очередь способствует решению ряда физико-химических проблем. [c.18]

    Вопрос о влиянии надмолекулярной структуры невытянутых полиамидных волокон на их вытягивание представляет значительный практический интерес, но имеющиеся экспериментальные данные противоречивы. По-видимому, наличие сильных дипольных связей усиливает влияние первоначальной структуры (пред-истории), а гибкость макромолекул ослабляет это влияние. Поэтому вытягивание целесообразно проводить при максимально допустимой температуре в условиях высокой равномерности прогрева и прилагаемых усилий. [c.299]

    Поэтому условия крашения химических волокон зависят в первую очередь от диффузии красителей и от их сродства к волокну. В обоих случаях решающее влияние оказывает химическое строение макромолекул и надмолекулярная структура волокна. [c.318]

    У химических волокон влияние степени полимеризации полимера на механические свойства волокна выражено менее отчетливо, чем у природных волокон. В процессе формования волокна и последующей его обработки (вытягивании) можно в широких пределах изменять структуру и величину агрегатов макромолекул (элементов надмолекулярной структуры), а также степень ориентации макромолекул и их агрегатов, и тем самым в несколько раз увеличить его прочность. При этом степень полимеризации остается без изменения. Поэтому структура химического волокна влияет на его прочность в значительно бoл >шeй степени, чем молекулярный вес .  [c.31]

    В. А. Каргиным и сотрудниками высокой упорядоченности аморфных полимеров. Теоретический анализ ряда явлений позволил В. А. Каргину, А. И. Китайгородскому и Г. Л. Слонимскому выдвинуть новое представление о молекулярном строении полимерных тел, получившее с тех пор блестящее экспериментальное подтверждение и ныне быстро развивающееся [204]. Сущность этого представления заключается В том, что гибкие цепные макромолекулы располагаются не хаотически, переплетаясь между собой, как думали ранее, а образуют пачки макромолекул, обладающие значительной упорядоченностью. Этим бьши заложены основы современной теории надмолекулярного строения полимеров и влияния надмолекулярных структур на комплекс физических свойств как кристаллических, так и аморфных нолимеров. [c.338]

    Молекулярно-кинетическое и энергетическое рассмотрение механического разрушения неизбежно сопряжено с интерпретацией процесса разрушения как процесса, протекающего во времени и связанного не только с действием деформирующей силы, но и с флуктуациями тепловой энергии. Отсюда неизбежно вытекает большое влияние на прочность полимеров их химического строения, размеров и фор.мы макромолекул, типа надмолекулярных структур и факторов, влияющих на межмолекулярное взаимодей-ств.че. [c.212]


    Кинетическая теория высокоэластичности не предполагает никакой упорядоченности в расположении макромолекул полимера. Наличие надмолекулярных структур любого типа может заметно увеличивать заторможенность внутреннего вращения в полимерных цепях, что должно сказываться на величине изменения энтропии при деформации. Учет влияния надмолекулярных структур на статистическое распределение конформаций цепей в аморфных полимерах приводит к удовлетворительному совпадению экспериментальных и теоретических данных. [c.61]

    Застудневание является важной стадией получения волокнистых материалов из растворов полимеров. Свойства растворов высокомолекулярных соединений с повышением их концентрации все больше и больше отличаются от свойств растворов низкомолекулярных соединений. Это происходит в результате взаимодействия друг с другом отдельных макромолекул, приводящего к образованию надмолекулярных структур, оказывающих большое влияние на качества изделий (волокон, пластмасс) из полимеров. [c.296]

    На протекание химических реакций макромолекул кроме их большой длины, оказывают влияние и другие факторы пространственное строение элементарных звеньев, форма и различные виды взаимной укладки макромолекул, т. е. надмолекулярные структуры, в том числе и кристаллические области. В зависимости от этого может изменяться глубина химических превращений макромолекул, что сказывается на структуре и свойствах конечных продуктов. 214 [c.214]

    Это явление было также подробно изучено на примерах агар-агаровых студней разных концентраций [102] и пектина в водном растворе с разными количествами диоксана [ЮЗ]. В этих работах было показано, что набухшее состояние полисахарида, близкое к началу его растворения, создает условия для снижения скорости его гидролиза по сравнению со скоростью гидролиза полисахарида в гомогенном состоянии. Перешедшие в раствор коллоидные мицеллы до их полного распадения на отдельные макромолекулы гидролизуются медленнее, чем в гомогенной среде. Некоторые полисахариды, такие, как слабо растворимые в воде фракции гемицеллюлоз, гидролизуются медленнее, чем те же полисахариды, но перешедшие в раствор. Это указывает на то, что на скорость гидролиза полисахаридов решающее влияние оказывает их надмолекулярная структура. [c.406]

    Водородные связи в целлюлозе имеют очень важное значение. Они определяют физическую структуру целлюлозы (форму макромолекул, фазовые и релаксационные состояния, надмолекулярную структуру) и оказывают влияние на все свойства целлюлозы - физические, физикохимические и химические (химическую реакционную способность). [c.235]

    Специфика межфазных явлений в системах с полимерными наполнителями и в смесях полимеров определяется природой обоих компонентов. В настоящее время установлено, что термодинамическая совместимость у большинства полимеров отсутствует [371, 387]. Как правило, невозможно также образование общей кристаллической решетки, т. е. совместных кристаллов [388—391]. Однако можно говорить о совместимости полимеров в морфологическом плане, понимая под этим образование совместных надмолекулярных структур и отсутствие четких границ раздела между элементами надмолекулярного порядка. Это предполагает существование переходного слоя между двумя компонентами. Природа и структура этого слоя имеют важное значение для понимания свойств полимерных композиций. Переходный слой в смесях полимеров отличается от граничного слоя или поверхностного слоя на неорганическом наполнителе тем, что он может быть образован одновременно двумя компонентами вследствие взаимной диффузии на границе раздела фаз [392, 393]. Поэтому такой слой по своим свойствам отличается от составляющих компонентов. В таких межфазных областях под влиянием второго компонента смеси происходит изменение конформаций макромолекул по сравнению с их конформациями в блочных полимерах [377, 394, 395]. Наряду с диффузией причиной образования переходного слоя может быть также и обычная адсорбция одного компонента на поверхности другого [396]. [c.200]

    Диэлектрическая проницаемость и диэлектрические потерн определяются структурой полимера химическим строением его звена, конфигурацией н конформацией макромолекулы и надмолекулярной структурой. Влияние химического строения составного повторяющегося звена проявляется через влнянне его на полярность полимера. Значение е" в неполярных и малоно-лярных полимерах пропорционально квадрату (юказателя преломления при длинных волнах видимого света, не завнсит от частоты поля и слабо зависит от температуры. Ниже приведены значения е и По ДЛЯ некоторых полимеров- [c.375]

    Сопоставление этих данных с результатами электронномикроскопических исследований, полученных при изучении влияния надмолекулярных структур на процесс структурооб-разования в растворах продуктов гидролиза полиакрилонитрила едким натром [54], показывает, что первая точка изгиба на кривой оптическая плотность раствора К-4 — концентрация полимера соответствует ассоциации элементов надмолекулярных структур — фибрилл, состоящих из ориентировочных распрямленных макромолекул препарата, а вторая — агрегированию ассоциатов. [c.52]

    При исследовании механизма усиливающего действия наполнителей в полимерах вопрос о влиянии надмолекулярных структур на свойства наполненных композиций прежде не рассматривался. Развитие представлений о надмолекулярной структуре полимеров и полученные нами данные о взаимодействии полимеров и наполнителей позволили прийти к заключению, что при изучении структуры и свойств наполненных полимеров следует рассматривать взаимйдействие с поверхностью полимера не отдельных макромолекул, а надмолекулярных структур различных типов. Взаимодействие с поверхностью наполнителя какой-либо одной молекулы, входящей в агрегат, приводит к связыванию поверхностью всех других входящих в него молекул. В результате этого взаимодействия происходит ограничение подвижности не только цепей, непосредственно контактирующих с поверхностью, но и всех других цепей, входящих в данный агрегат. Только при таком рассмотрении могут быть понятны заметные изменения свойств полимеров при введении в них небольших количеств наполнителей. С другой стороны, взаимодействие полимерных молекул с поверхностью уже в ходе формирования наполненного полимера должно приводить к [c.283]

    Интересным примером влияния надмолекулярных структур на кинетику реакций макромолекул может служить твердофазная полициклизация полигидразидов, подробно исследованная в работах Коршака и Берестневой [61—64]. Образование циклов в цепях полигидразидов возможно лишь в случае цмс-конфигурации гидра-зидных фрагментов, однако, более выгодной (с точки зрения внутримолекулярных взаимодействий) является гранс-форма, которая благодаря эффектам упаковки в твердом состоянии становится еще более выгодной. Поэтому для осуществления циклообразования необходим поворот вокруг связи N—К, который возможен лишь при температурах, превышающих температуру стеклования. По мере образования циклов цепь становится более жесткой, температура стеклования возрастает, и тогда, когда она становится соизмеримой с температурой, при которой проводится циклизация, реакция практически заканчивается вследствие застекловывания полимера. Поэтому достижение высокой степени превращения возможно лишь при высоких температурах, когда начинается уже деструкция полимера. Достаточно сложный процесс полициклизации еще больше усложняется в том случае, когда исходный поли-гидразид имеет ориентированную или кристаллическую структуру [63], так как в этом случае конформационные переходы затруднены в еще большей степени это снижает скорость полициклизации и не позволяет довести реакцию до высоких степеней превращения. [c.50]

    Существенное влияние па В. п. должны оказывать также конформациоиные особенности макромолекул и степень надмолекулярной организации полимеров. Изменение, напр., конформации макромолекул может приводить к тому, что далекие друг от друга по цепи звенья будут располагаться в пепосредственной близости, инициируя В. п., к-рые в противном случае были бы невозможны для полимера исходной структуры. Однако исследование влияния конформации макромолекул и надмолекулярной структуры полимеров па кинетику В. п. довольно сложная задача. Причина этого — трудность учета изменения конформации макромолекул в процессе В. п. и существенная роль диффузионных факторов, связанных с паличием различных уровней надмолекулярной организации полимеров но только в твердой фазе, но и в разб. р-рах. Сведепия о влиянии типа структурных образований на В. п. полпмеров почти полностью отсутствуют. Вместе с тем только учет взаимного влияния соседних заместителей, конфигурации и конформации макромолекул, а также надмолекулярной организации по.лимеров является условием [c.247]

    Данные дилатометрич. исследований позволяют определять по только темп-ры фазовьгх переходов, по и исследовать влияние на них различных факторов (mo.i[. массы, термич. предыстории, скорости нагрева и др.). Ход дилатометрич. кривых в области переходов зависит от структуры макромолекул и надмолекулярной структуры полимера, что позволяет исследовать характер переходов в сополимерах, разветвленных и сшитых полимерах, в системах полимер — полимер и полимер — нпзкомолекулярное вещество. Дилатометрич. кривые кристаллич. полимеров часто использ гют для анализа степени кристалличности. Этот анализ основан на соотношении [c.359]

    Значительное влияние па механические свойства аморфных и крийталлических полимеров оказывает взаимная ориентация цепей. Легче всего ориентация осуществляется в вязкотекучем состоянии, но и при растяжении полимеров в высокоэластическом, кристаллическом и стеклообразном состояниях тоже происходит ориентация макромолекул и надмолекулярных структур. В ориентированных полимерах возрастает межмолекулярное взаимодействие, одновременно полимерные цепи располагаются в одном направлении, поэтому и увеличивается прочность в направлении ориентации. Ориентация при растяжении в одном направлении увеличивает прочность в направлении растяжения и уменьшает величину прочности в перпендикулярном направлении относительное удлинение уменьшается в направлении ориентации и становится меньше относительного удлинения в перпендикулярном направлении, следовательно, ориентированные полимеры анизотропны .  [c.65]

    Проследить влияние надмолекулярных структур на реакции с участием макромолекул — весьма трудная задача, потому что для выявления именно этого эффекта в изменении реакционной способности полимеров надо быть твердо уверенным в том, что все другие причины и в первую очередь диффузионные факторы сведены к нулю. Между тем высокая склонность макромолекул к упо-. рядочению, причем не только в твердой фазе, но и в растворах, приводит к резкому возрастанию диффузионных помех при изучении кинетики реакций, и часто именно эти процессы определяют суммарную скорость реакции. Повышение плотности полимера при кристаллизации, образование прочной сетки водородных связей, затрудняюш ей доступ низкомолекулярного реагента, залечивание пор и микротреш ип при отжиге — все это в первую очередь сказывается на скорости диффузии реагента через твердое полимерное вещество, если речь идет о гетерогенной реакции с участием твердого полимера. В результате меняется фактически не собственно реакционная способность макромолекулы или ее звена, а доступность этой макромолекулы по отношению ко второму реагенту. [c.271]

    Кинетические различия в окислении крупносферолитных и мелкосферолитпых полимерных структур полностью совпадают с различиями в окислении ориентированных и неориентированных полимеров. Известно, что р крупносферолитных образцах макромолекулы, проходяш ие из одного кристаллита в другой, напряжены значительно сильнее, чем в мелкосферолитных. Это означает, что влияние надмолекулярной структуры и ориентационной деформации на окислительную стабильность полимеров имеет общую физическую причину. [c.278]

    На химические превращения макромолекулы ВМС существенное влиянне оказывают слабые взаимодействия между ними (пятая стадия). Суммарная эиергия слабых взаимодействий (физических) может превышать энергию, необходимую для расщепления макромолекул (химическую). Однако отдельные звенья молекул ВМС и надмолекулярных структур (боковые цепочки, радикалы) могут иметь прочность связей значительно меньшук ), чем сосредо- [c.161]

    Книга заканчивается рассмотрением ряда способов формования, применяемых в технологии переработки полимеров. И опять каждый из этих методов формования рассматривается независимо от какого-либо конкретного метода переработки. В дополнение к логической классификации методов формования мы рассматриваем влияние пгреработки на надмолекулярную структуру, обусловленное механической ориентацией макромолекул при переработке, зафиксированной вследствие быстрого охлаждения. [c.11]

    Структурная модификация — это направленное изменение свойств (физических и механических) за счет преобразования надмолекз -лярной структуры под влиянием физических воздействий при сохранении химического строении макромолекулы. Возможность структурной модификации обусловлена тем. что надмолекулярная структура полимеров является подвижной системой в зависимости от условий одна форма может переходить в другую. Даже для таких малоподвижных систем, как графит, вероятен переход графита в алмаз в присутствии катализаторов [c.67]

    На примере высокотемпературной поликоиденсации 9,9-бис(4-гидроксифе-нил)флуорена) (фенолфлуорен) и бисфенолов норборнаиового типа с дихлорангидридами тере- и изофталевой кислот в среде дитолилметана исследована кинетика процесса в интервале 150-2(Ю °С и сделано заключение, что эти реакции протекают по ионному механизму через ацил-ион [54, 61, 62]. Изучение влияния природы реакционной среды на результаты поликонденсации фенолфталеина и его производных с дихлорангидридами ароматических дикарбоновых кислот выявило интересную особенность. Оказалось, что реакционная среда существенно влияет на формирование надмолекулярной структуры и комплекс свойств аморфных стеклообразных полимеров этого типа [59, 60]. Растворяющая способность среды направляет образование жестких макромолекул в сторону либо свернутых, либо развернутых конформаций, что имеет своим следствием образование глобулярных или фибриллярных форм надмолекулярных структур. Так, при синтезе полиарилата фенолфталеина и изофталевой кислоты в дитолилметане полимер в процессе [c.106]

    Механическая нагрузка на полимерное изделие не только меняет его форму и размеры, но и существенно сказывается на его надмолекулярной структуре. Механическая нагрузка на аморфно-кристаллический полимер (полиолефины) существенно влияет прежде всего на аморфную фазу полимера. Растягивающее напряжение приводит к конформационным переходам уменьшается число гош-конформаций и увеличивается число /и/>а с-конформаций (полиэтилен, полиэтилентерефталат). Под влиянием напряжения происходят доориентация цепей макромолекул и замедление вращения радикала-зонда в таких образцах, замедление диффузии и усиление клеточного эффекта. [c.243]

    Межмолекулярное взаимодействие (высокая энергия когезии) оказывает решающее влияние на все свойства полимеров, делая последние резко отличающимися от низкомолекулярных соединений. Энергия когезии влияет на физическую структуру, на физические, физико-химические и химические свойства (химическую реакционную способность) полимеров. Межмолекулярное взаимодействие определяет агрегатное состояние из-за высокой энергии когезии у полимеров отсутствует газообразное состояние, и при нагревании они разлагаются. Межмолекулярное взаимодействие влияет на фазовое состояние полимеров, способствуя упорядочению макромолекул, в том числе кристаллизации, с образованием надмолекулярных структур различного типа (см. 5.3). Из-за высокой энергии когезии полимеры труднее растворяются, чем низкомолекулярные соединения, и для них труднее подбирать растворители (см. 7.1). Межмолекулярное взаимодействие делает полимеры химически менее реакционноспособными по сравнению с низкомолекулярными соединениями аналогичного химического строения, так как химическому реагенту для проникновения в массу полимера необходимо преодолеть энерг ию когезии. Внутримоле- [c.128]

    Надмолекулярная структура полимеров, начиная от упорядоченной структуры ближнего порядка у аморфных полимеров и до наиболее совершенных монокристаллов с дальним трехмерным порадком, формируется, как правило, под влиянием теплового движения макромолекул. В условиях приложения внешних сил (деформирующих напряжений) при биосинтезе полимеров в природных условиях и при формовании химических [c.141]

    У полимеров в отличие от низкомолекулярных соединений как отдельный вид состояния вещества рассматривают релаксационные (физические) состояния. У низкомолекулярных соединений границы физических состояний совпадают с границами афегатных состояний. Под физическим состоянием полимера понимают состояние, равновесное для данной температуры. Физические состояния определяются особенностями подвижности атомов, фупп атомов, звеньев, сегментов, макромолекул и элементов надмолекулярной структуры при данной температуре. Переходы из одного равновесного состояния в другое являются релаксационными процессами, т. е. при изменении температуры данное равновесное состояние полимера уже становится неравновесным, а переход из неравновесного состояния в новое равновесное в результате тепловых движений происходит во времени. Это время характеризует скорость релаксационного процесса. У низкомолекулярных соединений оно очень мало и им пренебрегают. У полимеров время релаксации может быть очень большим и оказывать существенное влияние на их поведение. Поэтому равновесные физические состояния называют релаксационными состояниями. Повышение температуры, понижение энергии межмолекулярного взаимодействия и уменьшение размеров элементов надмолекулярной структуры приводят к ускорению релаксационных процессов, т. е. к ускорению достижения системой равновесного состояния. [c.147]

    Растворы полимеров имеют важное практическое значение в технологии полимерных материалов и при получении изделий из них, а также для исследовательских целей. Из растворов искусственных полимеров, главным образом на основе целлюлозы, формуют искусственные волокна и пленки. Клеи и лаки представляют собой растворы полимеров. В растворах определяют молекулярную массу, неоднородность по молекулярной массе и форму макромолекул полимеров. Следует отметить, что в технологии используют концентрированные растворы полимеров, а в анализе и исследованиях - разбавленные. Растворяются полимеры труднее, чем низкомолекулярные соединения, и для них сложнее подбирать растворители, что обусловленно значительным влиянием на растворимость, кроме природы полимеров, их физической структуры - гибкости макромолекул, межмолекулярного взаимодействия и надмолекулярной структуры. [c.159]

    Таким образом, результаты исследования композиций на основе термодинамически несовместимых кристаллизующихся полимеров согласуются с представлением о том, что при определенном режиме термообработки в системе возможно образование размытых межфазных областей, в которых наряду с явлением пластификации полимерного наполнителя (полиэтилен) полимерным связующим (олигоэфир) наблюдается ограничение подвижности макромолекул связующего при его кристаллизации на поверхности раздела с полимерным наполнителем. Крижевский [396 проследил, как происходит диффузия на границе раздела ПЭ—ПП при разных температурах, и в качественной форме установил влияние компонентов на их кристаллизацию. Он предположил, что, когда оба компонента кристаллизуются, диффузия на границе раздела зависит от надмолекулярной структуры компонентов. При этом допускается существование критической концентрации каждого компонента в другом, при которой возможно образование гомогенной смеси в расплаве выше этих концентраций промежуточный слой существует и в расплаве. Охлаждение расплава и кристаллизация компонентов ведет к расслоению и возникновению независимых надмолекулярных структур. При этом концентрация компонентов в промежу- [c.239]


Смотреть страницы где упоминается термин Макромолекула влияние на надмолекулярную структуру: [c.93]    [c.446]    [c.51]    [c.427]    [c.164]    [c.31]   
Энциклопедия полимеров Том 3 (1977) -- [ c.3 , c.552 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.3 , c.552 ]




ПОИСК





Смотрите так же термины и статьи:

Структуры надмолекулярные



© 2025 chem21.info Реклама на сайте