Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые органические кислот водородная связь

    Необходимо также учитывать природу органических жидкостей. Известно, например, что молекулы спирта образуют длинные цепи посредством водородных связей. Карбоновые кислоты образуют кольцевые димеры плоской структуры [241. [c.213]

    Водородная связь возникает между молекулами органических соединений, содержащих группы —ОН и —NH2. Примерами могут служить спирты и карбоновые кислоты. Ассоциация молекул за счет водородных связей приводит к тому, что спирты н карбоновые кислоты имеют более высокие температуры кипения, чем соответствующие им альдегиды, между молекулами которых водородные связи не образуются. Наличием водородных связей объясняется образование димеров муравьиной и уксусной кислот в парах [c.130]


    В органической химии примером соединений с водородными связями могут служить карбоновые кислоты К—СООН. Как в газовой, так и в жидкой фазах они существуют, как правило, в виде димеров, образованных за счет водородных связей  [c.358]

    К особому случаю электростатических сил направленного действия относится водородная связь [3]. Она возникает между двумя партнерами, один из которых содержит атом водорода, присоединенный к электроотрицательному атому, а другой— свободную пару электронов X—Н---У (здесь X — атом с высокой электроотрицательностью, т. е. Р, О, Ы Н — атом водорода, У—атом с неподеленной парой электронов, Н---У — водородная связь). Чем сильнее электроотрицательность X, тем более положителен водород в связи X—Н. При этом кислород имеет в газовой хроматографии наибольшее значение для высших аналогов этих трех элементов энергии водородных связей имеют тот же порядок, что и обычные силы притяжения [4]. В соединениях с гидроксильной группой атом водорода приобретает положительный заряд благодаря перемещению электронов к электроотрицательному атому кислорода (например, в карбоновых кислотах, спиртах, фенолах, воде) и смещается к атомам, обладающим неподеленной парой электронов, т. е. к атомам фтора, кислорода, азота (во фторсодержащих соединениях, простых и сложных эфирах, кетонах, альдегидах, карбоновых кислотах, спиртах, фенолах, аминах и т. п.). Сходным образом ведет себя атом водорода в ЫН- и СН-группах, если азот (например, в пирроле, имидазоле и т. д.) или углерод (в ацетилене, хлороформе, органических нитро- и цианистых соединениях с а-атомами водорода) становятся отрицательными благодаря особенностям химической структуры соединения. Энергия образования водородной связи примерно на порядок больше, чем энергия обычного межмолекулярного взаимодействия, однако она гораздо меньше энергии образования химической связи. Вследствие этого энергию образования водородной связи можно объяснить не только электростатическим взаимодействием ХН и V. Второе взаимодействие можно приписать [c.71]

    Между молекулами карбоновых кислот существуют прочные водородные связи. В газовой фазе и в органических растворителях кислоты образуют димеры  [c.707]

    Водородная связь характерна для многих органических соединений (фенолов, альдегидов, карбоновых кислот и др.). За счет водородной связи образуется вторичная структура белков, двойная спираль ДНК. [c.75]


    Водородная связь, возникающая между двумя одинаковыми или различными. молекулами, называется межмолекулярной. Водородная связь между двумя группами одной и той же молекулы называется внутримолекулярной. Межмолекулярные водородные связи существуют в воде, спиртах, карбоновых кислотах, амидах, белках, полипептидах и в полиокси-органических и неорганических соединениях они могут приводить к образованию цепных, циклических или трехмерных конфигураций. [c.212]

    Для соединений фтора и кислорода характерно образование за счет водородной связи группировок из одинаковых молекул — ассоциаций (НаО) и (HF)m. Это сказывается на целом ряде свойств соединений и, в частности, на таких параметрах, как температуры кипения и замерзания. По относительной величине молекулярных масс НаО и H S для воды и /3 должны быть ниже, чем для сульфида водорода (—60,75 и —85,60 °С). В действительности они много выше (100 и О °С), что связано с увеличением молекулярной массы воды за счет ассоциаций ее молекул. Карбоновые кислоты в жидкой и газовой фазах существуют в основном в виде димеров. В белках, нуклеиновых кислотах и других органических соединениях, имеющих большое биологическое значение, водородная связь обеспечивает поперечное сшивание цепочечных молекул. Для некоторых соединений возможно также образование внутримолекулярной водородной связи, например в нитрофеноле. [c.122]

    Гуминовые кислоты представляют собой сложные карбоновые соединения с фенольными радикалами, ассоциированными, вероятно, водородными связями. Их молекулярная масса колеблется от 300 до 4000. Термин гуминовая кислота часто применяется в широком смысле для обозначения содержащихся в почве органических веществ, которые растворимы в щелочах и не растворимы в неорганических кислотах и спиртах. Гуминовые кислоты изучаются как важный компонент почв и как промежуточное вещество в процессе превращения растительности в уголь. Вследствие сложного состава гуминовой кислоты относительно ее детального строения существуют разногласия. Одна из возможных моделей основана на структуре гидрохинона. [c.484]

    При pH, характерном для природных вод, катионит сорбирует больщинство аминокислот (глицин, аланин, аргинин, гистидин и др.), а анионит поглощает избирательно только кислые аминокислоты, такие, как глутамин и аспарагин. Чисто ионообменный процесс в этих условиях не реализуется, и взаимодействие с ионитами протекает по функциональным группам сорбента за счет образования водородных связей. Можно предположить, что сходная картина наблюдается и при сорбции органических веществ других классов, например, гуминовых кислот и фульвокислот, полифенолов, карбоновых кислот, белков и др. [c.251]

    Атом алюминия имеет три валентных электрона и обладает сравнительно близкими к ядру незаполненными орбитами, поэтому практически все алюминийорганические соединения стремятся к заполнению этих орбит за счет комплексообразования или ассоциации. Такие ассоциативные или координационные связи, как правило, очень прочны и сравнимы с наиболее прочными водородными связями в органических гидроксильных соединениях (например, в карбоновых кислотах) или даже прочнее их. Они особенно прочны, если в образовании ассоциативной связи участвуют лиганды с неподеленными парами электронов (О, N. Р). Сильно поляризованные связи металл — углерод и особенно металл — водород [2] также способствуют образованию прочных ассоциативных соединений. [c.131]

    В табл. 7.5 перечислены основные группы органических соединений в порядке снижения их скорости элюирования. Наиболее быстро элюируются н-ал-каиы, так как обычно они слабее других связываются адсорбентом. Высокополярные соединения, например карбоновые кислоты, элюируются значительно медленнее, так как они удерживаются адсорбентами намного сильнее (например, за счет образования водородных связей или полярных взаимодействий). [c.436]

    Для определения концентрации свободного мономера в растворах органических молекул с водородной связью наиболее часто используются метод инфракрасной спектроскопии (гл. 13, разд. 2) и экстракционный метод (гл. 10). Значения Ь в растворах ряда спиртов [8, 32, 37, 45, 51], фенолов [35, 45] и карбоновых кислот [3, 17, 28] в органических растворителях были рассчитаны из интенсивности полосы поглощения колебаний О—Н неассоциированной гидроксильной группы поглощение гидроксильной группы, связанной водородной связью, в этой области частот мало. Аналогичное исследование выполнено для колебаний связи N—Н [1а], [c.403]

    Помимо неподвижных фаз в разд. 143 включены некоторые добавки к ним, которые применяют для снижения э( )фекта размывания пиков. Добавки применяют, в частности, при хроматографии веществ, способных к образованию водородных связей — свободных органических кислот, спиртов, эфиров аминокислот и др. В качестве добавок (к неполярным и слабополярным фазам) используют высококипящие двухосновные и одноосновные карбоновые кислоты (около 10%) терефталевую, себациновую, стеариновую и бегеновую. Из других добавок отметим ортофосфорную кислоту (при разделении низших жирных кислот) и КОН (при разделении основных веществ, например, аминов). [c.277]


    Спирты, амины, карбоновые кислоты, амиды кислот способны растворяться в воде, так как они могут образовывать с водой водородные связи. При этом указанные соединения могут быть и донорами и акцепторами протонов, через которые связи осуществляются. Другие кислородные соединения — альдегиды, кетоны, простые и сложные эфиры — также могут образовывать с водой водородные связи, но они представляют собой только акцепторы протонов. Растворимость в воде определяется также размерами углеводородного радикала, связанного с активной группой — карбоксилом, аминогруппой или гидроксилом. При увеличении радикала растворимость в воде быстро падает. У высших спиртов или кислот остается только способность располагаться ориентированными молекулярными слоями на поверхности раздела вода — органический растворитель, причем активные группы, способные к образованию водородных связей, направлены к воде, а углеводородные радикалы к органическому растворителю. [c.65]

    Водородная связь часто возникает между молекулами органических соединений (карбоновых кислот, аминокислот и др.). Она имеет большое значение в образовании многих биохимических комплексных соединений. [c.22]

    Вода является высокополярным растворителем, к тому же сильно ассоциированным вследствие наличия между его молекулами прочных водородных связей. Условием хорошей растворимости вещества в воде должна быть его способность разрушать часть структуры воды и переходить в сольватированное состояние. Органические вещества с небольшими молекулами, например простые спирты, альдегиды, амины, карбоновые кислоты и кетоны, растворяются в воде главным образом за счет образования водородных связей. Сера при образовании водородной связи гораздо менее эффективна, чем кислород, поэтому замещение в соединениях аналогичной структуры О на 5 всегда приводит к понижению растворимости их в воде. Азот образует водородные связи, лишь немного менее прочные, чем связи кислорода. Неспособные к такого рода взаимодействиям алифатические углеводородные цепи и ароматические кольца понижают растворимость вещества в воде, причем по мере удлинения цепи или при введении большего числа колец этот эффект усиливается. С другой стороны, ионы и высокополярные вещества оказывают достаточное электростатическое притяжение и ориентируют вокруг себя молекулы воды. Последние же в свою очередь образуют водородные связи с другими молекулами растворителя. Вот почему нейтральные соединения, незначительно растворимые в воде, легко растворяются в щелочных (из-за образования аниона) или кислых (вследствие образования катиона) средах. Это свойство часто имеет большое значение при выборе условий применения органического реагента. Качественно можно представить себе, что процесс растворения вещества частично заключается в ориентации вокруг него молекул растворителя. Поэтому поверхность сольватированной молекулы мало отличается от всей массы растворителя. Следовательно, можно ожидать, что растворимыми в воде будут высокополярные вещества или вещества, уже напоминающие своим строением воду. [c.193]

    Жолекулярные массы карбоновых кислот, полученные в экспериментах с газами или растворами этих кислот в органических растворителях, часто в два раза больше тех, что следуют из формулы соединения. Считают, что молекулы органических кислот способны димеризоваться за счет образования водородных связей, например  [c.97]

    Благодаря образованию водородной связи происходит ассоциация молекул ряда органических соединений спиртов, карбоновых кислот, синильной кислоты, аминов и др. Например  [c.36]

    К электростатическим связям относят и связи между полярными молекулами. Типичным примером являются водородные связи (водородные мостики), которые встречаются в воде, спиртах, карбоновых кислотах, аминах, амидах и т. д. При этом не-сушие положительный заряд атомы водорода одной молекулы притягиваются к несущим отрицательный заряд атомам кислорода или азота другой молекулы. В качестве примера на рис. 7 показаны водородные связи в воде и карбоновых кислотах. Водородные связи изображают обычно точками. Эти связи могут быть и внутримолекулярными. Они играют важную роль в органической химии и биохимии, оказывая влияние на простран- [c.51]

    Уксусная кислота, как и другие карбоновые кислоты, в органическом растворителе находится в виде двойных молекул или даже в более высокой степени агрегации за счет водородных связей. В воде уксусная кислота диссоциирует незначительно и ее диссоциацией. можно пренебречь. При экстрагировании в бензольной растворе устаиавли заегся равновесие ди мер — мономер, а мокд/ бензо 1Ы1Ым и водным растворами идет обмен только молекулами мономера. В системе уксусиая кислота — бензол — вода отношение равновесных концентраций кислоты в воде сц.о и в бензоле сс,н, снижается с повышением их концентрации и коэффициент распределения рассчитывается по уравиению (Vn.5). [c.84]

    Межмолекулярная водородная связь существует в воде, спиртах, карбоновых кислотах и т. п., внутримолекулярная йодородная связь — в сложных органических соединениях (рис. 37). [c.127]

    Атомом X может быть фтор, кислород или азот из них наибольшее значение в газовой хроматографии имеет кислород для высших аналогов фтора, кислорода и азота водородные связи по порядку величины близки к обычным силам притяжения (Штааб, 1959). В соединениях, содержаш их ОН-группы, атом водорода приобретает положительный заряд вследствие притяжения электронов к электроотрицательному кислороду гидроксильной группы (например, в карбоновых кислотах, спиртах, фенолах, воде) и может притягиваться к атомам, у которых имеются неподеленные пары электронов, в особенности к атомам Е, О, N в различных соединениях фтора, простых и сложных эфирах, кетонах, альдегидах, кислотах, спиртах, фенолах, аминах и т. д. В образовании водородной связи также участвуют группы Л Н или СН, если азот (нанример, в пирроле, имидазоле и т. д.) или углерод (в ацетилене, хлороформе, в органических нитросоединениях или цианистых соединениях с а-атомами водорода) могут приобретать отрицательный заряд вследствие структурных особенностей соединения. [c.177]

    Снлы притяжения, возникающие между этими соединениями (особенно нитрилоэфирами) и неполярными и насыщенными органическими соединениями, невелики, тогда как с полярными и ненасыщенными веществами, которые могут образовывать водородные связи, возникает сильное притягивающее взаимодействие. Последнее объясняется тем, что нитрилы при наличии в них цианогрупп сами сильно полярны (дипольный момент алкилциани-дов составляет (х = 3,60 /), а фенилцианида [х = 4,05 О) и легко поляризуются, в связи с чем может проявляться действие ориентационных сил. В то же время нитрилы, будучи полярным , индуцируют в ненасыщенных, поляризуемых молекулах электрическое поле, в результате чего возникает некоторое притяжение и к этим молекулам. Но еще сильнее проявляются силы донорно-акцепторного типа, и это прежде всего водородные связи. Донорно-акцепторные силы возникают вследствие того, что нитрилы благодаря электроотрицательности групп N действуют как акцепторы электронов и больше задерживают в колонке вещества, обладающие системой я-электронов с низкой энергией ионизации (ароматические вещества) (ср. разд. В.1). Образование водородных мостиков происходит между нитрилоэфирами, с одной стороны, и спиртами, фенолами, карбоновыми кислотами (т. е. соединениями, содержащими группы ОН) и первичными (в меньшей степени также вторичными) аминами — с другой. Как уже было указано выше (см. разд. В), удельные объемы удерживания пропанола при применении , 2,2>-трис-(цианэтокси)пропана и менее полярного диоктилсебацината почти одинаковы, так как в обоих случаях водородные связи с этими веществами приводят к взаимодействиям с большей энергией по сравнению с другими типами взаимодействий. [c.207]

    По сольватному механизму с образованием донорно-акцеп-торных связей осуществляется концентрирование ионов металлов с помощью нейтральных органических экстрагентов фосфороргани-ческих соединений типа КзРО, органических сульфидов и сульфок-сидов, тиакраун- и краун-эфиров и др. Аналогично, но с образованием водородных связей, извлекаются многие органические соединения. По ионообменному механизму происходит экстракция ионов металлов и их комплексов карбоновыми и фосфорорганиче-скими кислотами, меркаптопроизводными, аминоалкилсульфида-ми, алкиламинами и др. [c.491]

    В процессе изучення альдегидов и карбоновых кислот следует обобщить сведения о функциональной группе (понятие дополнилось альдегидной и карбоксильной группами), водородной связи (понятие углубляется), взаимном влиянии атомов в молекулах (расщиряется объем понятия), зависимости свойств от строения альдегидов и кислот. В связи с тем, что при изучении неорганической химии у учащихся сформировано понятие кислота , то необходимо установить, в чем сходство и особенно отличие органических карбоновых кислот от минеральных. [c.197]

    Другой тип комплекса в органической фазе образуется при взаимодействии карбоксилатов металла с недиссоциированной, мономерной или димерной карбоновой кислотой, что приводит к образованию соединения MX j (НХ) , в котором сумма т — п не обязательно равна координационному числу металла (здесь X — органический остаток). В настоящее время еще недостаточно экспериментальных данны , чтобы определить факторы, влияющие на образование таких комплексов [80. 83—88]. Наиболее вероятными факторами являются энергия гидратации металла, степень межмолекулярного взаимодействия молекул экстрагента через водородные связи и сте-рпческая характеристика. Оба типа соединений в органической фазе способны к ассоциации [83, 84, 89]. [c.33]

    Некоторые из методов, описанных ниже, были разработаны Бьеррумом [6] и Крейцером [36] для исследования равновесий в газовой фазе. При исследований ассоциации в растворах форма В обычно является незаряженной органической молекулой, которая способна к образованию межмолекулярной водородной связи, но настоящая обработка результатов в равной мере применима, например, к образованию ионных мицелл или к димеризации свободных радикалов. При других условиях центральная группа может сама по себе диссоциировать. Например, в органических растворителях карбоновые кислоты можно рассматривать как недиссоциированную группу В, но в водном растворе они заметно диссоциируют как протонный комплекс HjA. Более сложные полиядерные формы В,Ар(р>0), которые содержат как центральную группу, так и лиганд, рассматриваются в гл. 17. Смешанные комплексы ВдАрЗ ,, которые являются полиядерными по отношению к В и содержат два типа лигандов, обсуждаются в гл. 18. [c.391]

    Сила адсорбции зависит от природы адсорбента и функциональных групп, находящихся в молекуле образца. Для разделения нефтей и нефтепродуктов используют в основном полярные адсорбенты, такие, как силикагель и оксид алюминия. Широкие пределы сил межмолекулярных взаимодействий различных функциональных гр тш е поверхностью полярш.и. адсорбентов приводят к чрезвычайно широкой области энергии адсорбции для различных типов молекул (табл. 1). Например, алкильные группы адсорбируются слабо, так как взаимодействие их с поверхностью адсорбента осуществляется только дисперсионными сипами [1, 8]. Спирты адсорбируются гораздо сильнее за счет индукционных сил и водородных связей [9]. Обычно различные классы соединений десорбируются с полярньгх адсорбентов в следующем порядке [3, 10] насыщенные углеводороды (небольшой. % ) < олеф1Шы < ароматические углеводороды органические галогениды< сульфиды < простьге эфиры < сложные эфиры альдегиды кетоны < спирты < амины < сульфоны < сульфок сиды < амида < карбоновые кислоты (большой к ). [c.13]

    Для репшния этой задачи нами иснользовался известный прием гювьшгения селективности неполярных НЖФ в отношении карбоновых кислот и других органических соединений, с1П)собных к образованию водородных связей, за счет введения в НЖФ кислотной добавки [3]. [c.34]

    В простых и сложных триметилсилиловых эфирах нет взаимодействия за счет водородных связей, что имеет место в спиртах и карбоновых кислотах. Так, несмотря на возрастание молекулярной массы при образовании силилового эфира из спирта (или кислоты) не всегда происходит возрастание температуры кипения. Например, низшие спирты — метанол и этанол (но не пропанол и высшие гомологи), а также низшие кислоты — уксусная, про-пионовая и масляная — все имеют более высокие точки кипения, чем их триметилсилиловые эфиры. Еще более ярко это проявляется в случае диолов и полиолов, среди которых даже гексаметилен-глйколь имеет более высокую температуру кипения (на 15°С), чем его бис(триметилсилиловый) эфир. Различие для глицерина еще выше (на 60 °С), а для глюкозы оно настолько велико, что возможна перегонка пентакис (триметилсилилового) эфира (т. кип. 117°С при 0,1 мм рт. ст.). Таким образом, силиловые простые и сложные эфиры, в особенности таких соединений, как сахара, пептиды, полигидроксистероиды и антибиотики, почти всегда более удобны для газо-жидкостной хроматографии, чем свободные гидроксисоединения. Повышенная летучесть силильных производных используется также в масс-спектрометрии (где пики М+— 15 обычно сильны, а пики очень слабы). Наконец, силильные производные лучше растворимы в органических растворителях — факт, облегчающий проведение многих реакций даже в fex случаях, когда силильные группы непосредственно не участвуют в реакции. [c.113]

    Подробно роль среды в радикально-цепных реакциях окисления органических соединений рассмотрена в монографии Эмануэля, Заикова и Майзус и других работах [14, 92, 93]. Показано, что применяемые в качестве растворителей алифатические кислоты, подобно альдегидам, значительно ускоряют окислительный процесс и вместе с тем являются донорами протонов-по отношению к карбокси-радикалам R OO, превращая их в карбоксильные группы. Например, радикал glis—СОО про-тонируется карбоновыми кислотами, что облегчается предварительным образованием водородных связей  [c.31]

    Жидкий аммиак широко используется в препаративной органической химии как растворитель. Это объясняется тем, что, будучи основанием, аммиак хорошо растворяет карбоновые кислоты, а также спирты, фенолы и другие вещества, которые-образуют с ним водородные, связи. Благодаря низкой температуре кипения жидкий аммиак легко удаляется из реакционной среды путем испарения. В жидком аммиатке прекрасно растворяются щелочные (табл. 8) и щелочноземельные металлы, обладающие низким ионизационным потенциалом и высокой энергией сольватации. Природа растворов металлов в жидком аммиаке до сих пор еще не совсем ясна. Принято считать, что очень разбавленных растворах атом металла диссоциирует на-ион и электрон  [c.76]

    Вода имеет ясно выраженный дипольный характер, высокую диэлектрическую проницаемость (е = 81,1) и способна за счет гБоР>пдных электронных пар кислорода образовывать водородные связи. Поэтому в воде хорошо растворяются неорганические-соли и полярные органические соединения, например низшие алифатические спирты и карбоновые кислоты. По мере того как гидрофильная группа (ОН, СООН) становится все меньше в сравнении с гидрофобным алкильным радикалом, растворимость уменьшается, как это заметно, например, для соединений, содержащих 4— [c.34]

    Примером воздействия другого типа может служить влияние водородной связи на частоту поглощения карбонильной группы. Частота валентной связи С=0 в соединении, растворенном в неполярном растворителе, значительно понижается при образовании водородной связи в присутствии гидроксидсодержащих веществ или в гидроксидсодержащем растворителе. Поглощение карбонильной группы меняется также под действием собственного молекулярного окружения поглощение связи С=0 в карбоновых кислотах, способных образовывать внутримолекулярную водородную связь (образование димера), сильно отличается от поглощения связи С=0 в сложном эфире, в котором такая связь образоваться не может. В анионе наблюдается резонанс между двумя эквивалентными атомами кислорода, что усиливает ненасыщенный характер карбонильной связи. В табл. 4-3 приведены характерные значения валентных колебаний карбонильной группы в некоторых алифатических соединениях [20]. Рассуждения о поглощении карбонильной группы служат кратким примером структурных рассмотрений, которые могут иметь большое значение как в органической, так и в аналитической химии. [c.117]


Смотреть страницы где упоминается термин Карбоновые органические кислот водородная связь: [c.64]    [c.207]    [c.64]    [c.48]    [c.107]    [c.250]    [c.27]    [c.239]    [c.27]    [c.49]    [c.853]   
Основные начала органической химии том 1 (1963) -- [ c.112 , c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Водородная карбоновых кислотах

Водородная связь кислоты

Водородные связи

Кислота органическая

Органические кислоты так же Карбоновые кислоты

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте