Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисления скорости, корреляция

    Установлена корреляция между изменениями надмолекулярной организации и протеканием термоокисления. В начале процесса слой крупных сферолитов постепенно распространяется от поверхности в глубину образца (до 500 мкм) рост толщины слоя прекращается при появлении на поверхности образца новой структуры. Этот момент совпадает с окончанием индукционного периода окисления. В начале окисления скорость химического связывания кислорода невелика и слой крупных сферолитов (рис. 3) сравнительно глубок. Последующие изменения надмолекулярной структуры локализуются в узкой полосе у самой поверхности (25—125 мкм). Окисление развивается настолько быстро, и скорость связывания кислорода так велика, что кислород не успевает [c.41]


    В отношении последовательных этапов реакций окисления применим общий для случая сложных последовательных кинетических процессов принцип лимитирующей стадии. Отсюда следует, что в зависимости от величины скоростей составляющих стадий корреляция между активностью катализатора и такими его свойствами, как способность к комплексообразованию, электропроводность, величина хемосорбции кислорода, может наблюдаться или отсутствовать. В силу этого возникает кажущаяся неоднозначность связи каталитической активности твердого тела в реакциях окисления с вышеперечисленными его свойствами. [c.27]

    Кинетика поглощения кислорода и образования продуктов окисления для ДТ при 140°С представлена на рис. 3.13 [88]. Показано, что первичными продуктами окисления являются гидропероксиды и их соединения, содержащие карбонильную группу. Вторичными продуктами окисления являются соединения, содержащие карбоксильную и эфирную группы [88]. Характер кинетических кривых накопления осадков свидетельствует о вторичной природе их происхождения и указывает на возможность появления уже на малых глубинах окисления. Имеет место корреляция между скоростью накопления соединений, содержащих карбоксильную группу, и скоростью образования осадков. [c.106]

    В литературе имеются сведения [62] о связи валентности второго металлического элемента в окалине со скоростью окисления. Надо полагать, что при коррозионном процессе, при котором происходит как окисление, так и ионный обмен, проводимость защитной пленки имеет очень важное значение. Это подтверждается корреляцией между коррозионной стойкостью сплава и валентностью легирующих элементов. Элементы с большей валентностью (Мо) уменьшают проводимость пленки и повышают устойчивость сплава, элементы с меньшей валентностью (Ti, Zт), наоборот, увеличивают проводимость пленки, что должно уменьшать устойчивость ниобия в агрессивных кислотных средах. [c.73]

Рис. 8. Зависимость логарифма константы скорости окисления фенола диоксидом хлора от Ха (Т=25 °С, из корреляции исключены фенолы 13 м 16) Рис. 8. Зависимость <a href="/info/357940">логарифма константы скорости</a> <a href="/info/27917">окисления фенола</a> <a href="/info/70278">диоксидом хлора</a> от Ха (Т=25 °С, из корреляции исключены фенолы 13 м 16)

    Согласно [45], при глубоком окислении олефинов различного строения на окиси меди атака кислорода направлена по С=С-связи. В работе [44] высказано предположение, что на первичном (наиболее трудном) этапе взаимодействия в олефиновых, а также в ацетиленовых углеводородах разрывается лишь одна из кратных связей углерод — углерод (л-С—С-связь). Это предположение подтверждается наличием соответствующей корреляции между относительной реакционной способностью и энергией указанной углеродной связи [44]. При глубоком окислении парафинов в стадии, определяющей скорость, разрывается, по-видимому, С—Н-связь. Ослабление этой связи по мере удлинения углеродной цепи (нормального строения) объясняет повышение реакционной способности парафинов, наблюдаемое при увеличении числа С-атомов в молекуле [43]. [c.192]

    Вместе с тем необходимо отметить, что такого рода корреляции носят приближенный характер. В частности, наблюдаемые величины активности и селективности молибдата висмута заметно выше тех, которые можно было бы ожидать на основании значений 75. Причина таких отклонений связана, очевидно, с тем, что скорость образования и распада поверхностных комплексов, ведущих к мягкому и глубокому окислению, зависит не только от энергии связи кислород—катализатор, но и от других факторов. Выявление этих дополнительных факторов, влияющих на каталитические свойства, требует дальнейших исследований. [c.198]

    Как видно из рис. 37, наблюдается четкая корреляция между начальной скоростью изотопного обмена кислорода поверхности с молекулярным кислородом, характеризующей подвижность поверхностного кислорода, и скоростью окисления водорода, причем энергии активации этих процессов совпадают. Это дает основание считать, что реакция окисления водорода на окислах редкоземельных элементов лимитируется взаимодействием водорода (в молекулярной форме) с поверхностным адсорбированным кислородом [192,414]. Особенно высокая подвижность поверхностного кислорода окисей празеодима и тербия и их высокая каталитическая активность связаны с дефектностью структуры этих окислов. [c.237]

    Положение окислов в этом ряду несколько условно, поскольку не было гарантии того, что во всех случаях измерялась стационарная скорость окисления. Тем не менее, установлена достаточно четкая корреляция между каталитической активностью окислов в отношении окисления водорода и подвижностью кислорода поверхности этих окислов. В качестве меры этой подвижности вначале [203—205, 241] предлагалось использовать теплоты окисления низших фазовых окислов в высшие. Однако более строгой характеристикой прочности связи кислорода поверхности окислов является скорость гомомолекулярного или гетерогенного обмена кислорода [206], а также начальная теплота десорбции кислорода (д ), определенная из измерений давлений кислорода над катализатором [10]. (Правомочность использования до основана на том, что в примененных условиях реакции окисления равновесное содержание кислорода в окислах [c.239]

    Оказалось, что скорости окисления первой метильной группы в ряду производных бензола возрастают при увеличении числа СНз-групп пропорционально снижению потенциала ионизации. Скорости окисления 2-метилнафталина и толуола были близки при значительной разнице в потенциале ионизации. В этом случае наблюдается удовлетворительная корреляция с энергиями средних я-электронных переходов, рассчитанных по методу молекулярных орбит (табл. 2). [c.157]

    В кислороде, свободном как от хлора, так и от воды, вертикальные ступеньки полностью не исчезают даже на кристаллах, которые подвергались многократной термической обработке с целью удаления следов воды. Фактически нам представляется, что окисление в чистом кислороде происходит по некоторому механизму, который до настоящего времени пока неизвестен и который облегчает образование и развитие вертикальных ступенек хлор же каким-то неуловимым образом изменяет этот механизм и способствует превращению вертикальных ступенек в наклонные, не изменяя при этом значительно кинетику окисления. Это толкование связи ступенек со скоростью горения отличается от нащего объяснения, предложенного в работе [5]. Так как появление вертикальных ступенек очень часто связано с возрастанием скорости горения, то мы считали, что при вертикальных ступеньках действует механизм быстрого горения. Проведенная недавно работа показала, что эта корреляция является весьма плодотворной и что очень низкие скорости горения можно фактически измерять на кристаллах, края которых целиком состоят из вертикальных ступенек. И наоборот, очень высокие скорости горения измерялись на соверщенно гладких кристаллах, обработанных пламенем, которые, по-видимому, удерживают воду особенно крепко. [c.343]

    Основное преимущество использования оптической микроскопии для изучения процессов окисления графита состоит в возможности определения скорости реакции по трем главным кристаллографическим осям (1010) (1120) и (0001). Это в свою очередь делает возможным установление корреляции между анизотропией электронных свойств [6, 7] и реакционной способностью, а также более глубокое понимание механизма влияния определенных примесей в графите иа его поведение при окислении. [c.126]


    П. обладают высокоселективными каталитич. свойствами. Так, они инициируют полимеризацию электроноакцепторных мономеров, причем скорость реакции и степень превращения резко повышаются с увеличением содержания ПМЦ в полимере. Обнаружен также автокаталитич. эффект, заключающийся в изменении скорости полимеризации при получении П. по мере накопления полимера или при введении в реакционную смесь заранее полученного полимера. Установлена каталитич. активность П. в реакциях разложения гидразина, перекиси водорода, закиси азота, муравьиной к-ты, окисления, гидрирования, дегидрирования, дегидратации и изомеризации спиртов и углеводородов и др. Обнаружена корреляция между каталитич. активностью и парамагнитными свойствами П. см. также Полупроводники полимерные). [c.498]

    X. наблюдали при нагревании полимеров после их облучения при низких темп-рах, напр, при темп-ре жидкого азота, светом или ионизирующим излучением, при взаимодействии полимеров с озоном, термич. распаде на радикалы перекисных и азосоединений в полимерной матрице, нагревании полимеров на воздухе. В последнем случае X. связана, по-видимому, с окислением об этом свидетельствуют многие экспериментальные факты. Так, в инертной атмосфере очень мала и увеличивается с ростом давления кислорода наблюдается качественная корреляция между и скоростью окисления полимера для полиолефинов значение снижается, а время достижения максимальной интенсивности растет по мере понижения способности к окислению в ряду полипропилен, полиэтилен низкой плотности, полиэтилен высокой плотности, полиметиленоксид. [c.410]

    В замещенных циклогексилкарбинолах. Полный анализ спектра борнеола был осуществлен с использованием сдвигающих реактивов [16]. Получены спектры С ряда многоатомных спиртов [17]. Обнаружена корреляция между химическим сдвигом углерода и скоростью окисления спиртов [18]. [c.75]

    Эти выводы о влиянии прочности связи металл—кислород на активность окисного катализатора качественно подтверждаются опытами по частичному восстановлению поверхности при последовательном импульсном вводе проб бутена нри отсутствии в газовой фазе кислорода. Естественно, что нри этом должно происходить обеднение поверхностных слоев кислородом, т. е. уменьшение концентрации ионов 0 . При этом должна расти величина Так, например, при переходе МнОа в МпаОд ( о = 17, а при переходе Мп Оз в МП3О4 ( о = 34. В результате увеличе-ния 0 катализатор должен становиться менее активным в отношении реакции глубокого окисления. На рис. 1.15 приведены результаты с МнОа- Видно, что с увеличением числа импульсов конверсия бутена-1 уменьшается с 60 до 40%, главным образом, за счет уменьшения образования СО2 (с 30 до 8%). Происходит увеличение выхода бутадиена с 4 до 10%. Согласно работам [53, 28], восстановление поверхности в результате протекания реакции окислительного дегидрирования сильнее всего уменьшает скорость глубокого окисления. Скорость реакций образования кислородсодержаш их соединений уменьшается не так значительно. На реакции окислительного дегидрирования и изомеризации восстановление поверхности оказывает лишь слабое влияние. Это уменьшает убедительность указанной корреляции. Но ее самая слабая сторона— резкая разнородность сравниваемых систем. Действительно, сопоставляются окислы типа МеО, МваОд, МеОа, образованные как переходными металлами Сг, Ее, N1, Мо, так и непереходными Хп, Зп, В1. У этих окислов различные типы кристаллических решеток, не тождественные типы связей при частичной потере кислорода Опи образуют также мало похожие промежуточные формы. Поэтому, если искать корреляцию термохимических и термодинамических характеристик окислов с их каталитическими свойствами, то в основу следовало бы скорее брать дифференциальные теплоты и свободные энергии частичного восстановления в условиях катализа каждой конкретной оксидной системы. Несмотря на то что очень высокие Qg исключают катализ, а очень малые могут быть невыгодными, более вероятно все же, что не только селективность, но и активность при глубоком окислении в первую очередь определяется кинетическими, а не термохимическими величинами. Поэтому нет оснований искать далеко идуш,ие корреляции между термохимическими свойствами окислов и их каталитической активностью. [c.291]

    Адсорбция. Корреляция скоростей реакции окисления тиоэфиров с величинами, характеризующими донорную способность атома серы, должна наблюдаться не только в случае, если процесс лимитируется скоростью взаимодействия активированного тиоэфщра с кислородом, но и тогда, когда он определяется скоростью активации тиоэфира в результате донорно-акцепторного взаимодействия с катализатором с образованием связи 8—V. Чтобы определить, не лимитируется ли реакция хемосорбцией тиоэфира на поверхности, изучена кинетика этого процесса [782] на окисленной и восстановленной поверхности УгОб. При небольшом времени контакта наблюдается линейная зависимость количества хемосорбированного диметилсульфида от т (рис. 131) адсорбция на восстановленной поверхности происходит несколько медленнее, чем на окисленной скорость адсорбции растет с увеличением температуры (табл.120). [c.280]

Рис. 1.2. Корреляция констант скорости окисления олефинов декансульфонероксикисло-той в среде СС с индукционными константами заместителей, 297 К Рис. 1.2. <a href="/info/845868">Корреляция констант скорости</a> <a href="/info/11650">окисления олефинов</a> декансульфонероксикисло-той в среде СС с <a href="/info/318723">индукционными константами</a> заместителей, 297 К
Рис. 1.3. Корреляция констант скорости окисления циклододецена в среде СНС1, (I) и циклооктена в среде Е120 (II) с о -константами заместителей при ООН-группе пероксикислоты, 293 К Рис. 1.3. <a href="/info/845868">Корреляция констант скорости</a> окисления <a href="/info/920591">циклододецена</a> в среде СНС1, (I) и циклооктена в среде Е120 (II) с о -<a href="/info/53987">константами заместителей</a> при ООН-группе пероксикислоты, 293 К
    НОСТЬ сольватировать реагенты или активированные комплек сы, а также молекулы в основном и возбужденном состояниях [1, 3]. В свою очередь сольватирующая способность растворителя зависит от всех специфических и неспецифических взаимодействий между молекулами растворителя и растворенного вещества, в том числе электростатических взаимодействий между ионами, ориентационных взаимодействий между биполярными молекулами, индукционными и дисперсионными взаимодействиями, образованием водородных связей, переносом заряда, а также сольвофобными взаимодействиями (см. гл. 2). При этом не учитываются только такие взаимодействия, которые приводят к определенным химическим изменениям молекул растворенного вещества, например к протонированию, окислению, восстановлению, комплексообразованию. Очевидно, что определяе мую таким образом полярность растворителя нельзя описать каким-либо одним физическим параметром, например диэлектрической проницаемостью. Действительно, очень часто не удается обнаружить какой-либо корреляции между диэлектрической проницаемостью [или той или иной ее функцией, например 1/бг, (вг—1)/(2ег+1)] и логарифмом скорости или константой равновесия зависящей от природы растворителя химической реакции. Вероятно, вообще не существует такого макроскопического физического параметра, с помощью которого можно было бы учесть все многочисленные взаимодействия между растворителем и растворенным веществом, осуществляющиеся на молекулярном уровне. До настоящего времени сложность взаимодействий между растворителем и растворенным веществом не позволяет найти достаточно общие математические выражения, с помощью которых можно было бы вычислить скорости или константы равновесия реакций в растворителях различной полярности. [c.487]

    Авторы работы [129] изучили действие реагента Сз804р на замещенные бензальдегиды, приводящее к фторангидридам бензойной кислоты. Выявлена линейная зависимость между относительной константой скорости фторирования и ст+-константой заместителя (коэффициент корреляции г = 0,9955). Исходя из этих данных была рассчитана реакционная константа р, которая оказалась равной -0,385. Эта величина р значительно меньше наблюдаемой для процессов окисления бензальдегидов перокси-моносульфатом, надбензойной кислотой и Н-бромбензамидом (-1,7 -1,6 -5,5 соответственно). Можно полагать, что здесь имеют дело не просто с окислением, а с более сложным процессом. [c.195]

    Многие авторы проводили также сравнение потенциалов полуволн с кинетическими характеристиками, полученными при изучении обычными методами различных превращений органических соединений, и часто находили полное соответствие между сопоставляемыми величинами. Так, в уже упоминавшейся работе Китаева [11, с. 92] представлен ряд примеров соответствия потенциалов восстановления (окисления) кинетическим характеристикам химических реакций. В частности, при взаимодействии хинонов с триметилфосфитом константа скорости этой реакции линейно коррелирует с потенциалами электрохимического восстановления хинонов [И, с. 101]. Линейная связанность констант скорости и констант равновесия реакции полуацетализа-ции с 1/2 наблюдалась для ряда альдегидов [60]. Были также сопоставлены значения 1/2 ряда замещенных стильбенов с реакционной способностью (Igl/r ) в реакциях сополимеризации их со стиролом и аценафтиленом. Из этого сопоставления следует линейная зависимость между 1/2 и lg(l/A ) г — константа сополимеризации производных стильбена) [61]. Между 1/2 окисления производных тетраалкилсвинца и скоростями окисления этих соединений гексахлориридатом наблюдается удовлетворительная линейная корреляция [62]. [c.57]

    Непонятна связь концентраций дефектов в кристаллах с каталитической активностью. Известно, что в хорощо отожженном кристалле на 1 см поверхности приходится 10 поверхностных центров. Есть кристаллы, у которых число поверхностных центров составляет 10 на I см . В зоне дислокации следует ожидать изменения химического потенциала адсорбированных частиц, что должно сказаться иа каталитических процессах. Дислокации, кроме того, являются источниками (стоками) вакансий, поэтому на них может происходить аккомодация примесей. Экспериментальные же данные по корреляции концентраций дефектов и каталитической активности крайне противоречивы. Сосиовским, Ухарой и др. [3.28] установлена пропорциональность между ростом числа дислокаций (полученных ионной бомбардировкой или механически.ч напряжением) и ускорением скорости процесса катализа при уменьшении числа дислокаций (путем отжига) скорость реакции замедлялась. По Вудворду [3.29]—наоборот окисление этилена па монокристаллах серебра происходит с меньшей скоростью при увеличении плотиости дислокаций. [c.147]

    Каталитическая активность сложных оксидных систем как и индивидуальных оксидов хорощо коррелирует с прочностью связи кислорода в решетке твердых тел. С увеличением прочности этой связи активность сложных оксвдных катализаторов в реакциях глубокого окисления органических соединений, как правило, убьтает. Зависимость между скоростью глубокого окисления органических веществ на различных катализаторах и прочностью связи кислорода с их поверхностью часто рассматривается как доказательство протекания указанных реакций по стадийной схеме, включающей отрыв поверхностного кислорода в качестве обязательной (даже лимитирующей) стадии процесса. В то же время известны и другие, неокислительные реакции, для которых также наблюдается довольно хорошая корреляция между скоростью катализа и прочностью связи кислорода. Например, на молибдатах различных элементов существует зависимость между скоростями изомеризадии бутена-1 в бутен-2, глубокого окисления олефинов и восстановления поверхности водородом и пропиленом (рис. 20). Скорости всех указанных реакций зависят от энергии связи кислорода с катионом. [c.100]

    При стадш1ных схемах с переходами электронов моя но ожидать корреляции окислительно-восстановительных каталитических свойств твердых тел с работой выхода электронов (ф). Из-за большой чувствительности последней величины к ряду факторов и трудности ее измерения во время каталитического процесса проверить правильность этого вывода в общем вгще трудно. В ряде случаев можно считать доказанным наличие четкого соответствия между изменением активности катализаторов при простых реакциях или селективностью действия при сложных реакциях, с одной стороны, и изменением работы выхода при введении нелетучих или труднолетучих добавок — с другой [38]. Как было отмечено ранее [39], такой корреляции следует ожидать при различиях в заряженности исходных веществ и переходного комплекса реакции так как работа заряжения входит в свободную энергию образования комплекса. Таким образом удается объяснить влияние ряда нновалентных добавок на скорость окисления СО на МпОз и N 0 и влияние добавок щелочных и щелочноземельных металлов на активность железа в синтезе аммиака. При действии любого фактора, вызывающего заряжение поверхности, такой электростатический механизм способен приводить как к росту, так и к падению активности, и при этом не только у полупроводниковых, но и у металлических контактов, в зависимости от знака заряда переходного комплекса. [c.29]

    Переходя к рассмотрению некоторых черт механизма окисления водорода на переходных металлах, следует прежде всего отметить, что наличие корреляции между скоростью окисления водорода и позволяет, как и в случае окислов, постулировать разрыв связи Ме—О в лимитирующей стадии реакции. Однако, в случае металлов, судя по зависимости активности и от энергии связи Ме—Н, в лимитирующей стадии реакции происходит также разрыв связи Ме—Н. Следовательно, состав активированных комплексов лимитирующей стадии процесса окисления водорода на окислах и на переходных металлах различен, эти вещества в рассматриваемой реакции неоднотипны [42, 211]. Это подтверждается тем, что зависимости скоростей окисления на металлах и окислах различаются (рис. 40). Приведенные на этом рисунке данные об активности металлов относятся к кинетической области протекания реакции окисления водорода. Необходимо подчеркнуть также, что характерной чертой этого процесса на металлах является возможность его осуществления по гетерогенно-гомогенному механизму. В то же время, даже на одном из наиболее активных катализаторов окисления водорода — платине — эта реакция, во всяком случае в отсутствие свободных объемов, при температурах ниже 100° С протекает чисто гетерогенно. Это подтверждается практическим постоянством величин удельной каталитической активности платиновых катализаторов, удельные поверхности которых различаются примерно на 4 порядка [261]. В этих условиях реакция окисления водорода на платине осуществляется, по-видимому, по стадийному механизму через взаимодействие кислорода с поверхностью с образованием ОН-групп и их последующую реакцию с водородом, приводящую к выделению воды. Во всяком случае, протекание окисления водорода по такому механизму однозначно показано на пленках серебра при комнатной температуре [44, 217, 262—264]. [c.246]

    На основании этих фактов большинство авторов упомянутых выше кинетических исследований считает, что реакция окисления SOj на ванадиевых контактах осуществляется по окислительно-восстановительному механизму. Однако даже наличие корреляции между скоростью реакции и подвижностью поверхностного кислорода катализатора еще вовсе не означает, что данный процесс идет по окислительно-восстановительному стадийному механизму. Это заключение было обосновано Ройтером [5021 и экспериментально подтверждено Боресковым с сотрудниками [12] при изучении реакции окисления СО на окислах. Значительный интерес представляла проверка справедливости этих представлений и в случае окисления SO2. С этой целью Боресков с сотрудниками [4911 сопоставили скорость восстановления сложного ванадиевого катализатора, скорость окисления восстановленной его формы и скорость катализа окисления SO2 на этом контакте, определенную проточно-циркуляционным методом [4921. При этом было экспериментально показано, что в области температур выше 420° С скорость окисления SO2 значительно превышает скорость восстановления катализатора. Поэтому авторы предположили, что в ходе окисления SO2 образующийся при взаимодействии VaOg с SO2 комплекс V2O5 SOg реагирует с SO2 и Og, давая SO3 и регенерируя активный компонент  [c.265]

    О возможности ингибирования и катализирования этих реакций говорилось выше. Эти свойства, а также необходимость тщательной очистки реагентов для получения воспроизводимых значений скоростей, автокаталити-ческий характер термической реакции (рис. 52) и результаты более поздних детальных кинетических исследований убедительно показали, что и при этих низких температурах реакция протекает по свободно-радикальному механизму. Скорость увеличивается пропорционально количеству поглощенного кислорода по крайней мере до поглощения 0,2 моля кислорода на молекулу олефина при более высоких степенях превращения такое ускорение не наблюдается. Однако кинетические исследования были ограничены начальной стадией реакции. То, что реакция инициируется в результате распада гидроперекисей, было подтверждено корреляцией скоростей окисления и распада гидроперекисей. Небольшие, но конечные скорости в начале реакции при окислении вещества, не содержащего перекисей, будут рассмотрены на стр. 141. [c.133]

    Проведена корреляция констант скоростей окисления фурфурола и его 5-заме-щенных с 0-конотантами Гамметта, подтверждающая гетеролитический механизм реакции (р=—1,9). Определены термодинамические характеристики реакции Ед = [c.329]

    Если использовать кинетические данные по нуклеофильному обмену как стандартную реагщионную серию для вычисления констант 04 (констант заместителей в положении 4), можно затем применить их для корреляции скоростей окисления метилмеркаптофункции в метилсульфинильную. [c.263]

    Легко видеть, что аксиальные спирты окисляются быстрее, чем их экваториальные эпимеры. Более того, Шрайбер и Эшенмозер [252] нашли, что существует корреляция между относительной скоростью окисления (но отношению к стандарту — холеста-нолу-ЗР) и общим числом несвязанных взаимодействий (1,3 и 1,2-скошенных) гидроксильной группы, а также а-водорода. В качестве примера можно рассмотреть энимерные холестанолы-4. [c.632]


Смотреть страницы где упоминается термин Окисления скорости, корреляция: [c.302]    [c.303]    [c.123]    [c.248]    [c.540]    [c.633]    [c.183]    [c.248]    [c.99]    [c.62]    [c.243]    [c.66]    [c.97]    [c.410]    [c.302]    [c.356]    [c.259]   
Руководство по ядерному магнитному резонансу углерода 13 (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Скорость окисления



© 2025 chem21.info Реклама на сайте