Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Напряжения потенциальная составляющая

    Напряжение на образец подавали при комнатной температуре, после чего ячейку охлаждали до температуры жидкого азота (скорость охлаждения образца в стеклянных ячейках составляла 1—5 К/мин, в металлической ячейке 30—40 К/мин). Затем напряжение снимали, обкладки конденсатора закорачивали на несколько минут, и образец постепенно нагревался за счет естественного притока тепла. При этом токи ТСД регистрировались электрометром, присоединенным к обкладкам конденсатора. В одной из измерительных ячеек была предусмотрена возможность подъема и опускания потенциального электрода, что позволяло измерять поверхностную плотность зарядов методом электростатической индукции [676.  [c.256]


    Заряд производят ступенчато в соответствии с условиями задания. Сначала аккумулятор заряжают током 0,5 Сном до напряжения 2,05 В (СЦ) или 1,60 В (СК). Затем ток снижают до 0,2 Сном и наконец до 0,1 С ом. Конечное напряжение по-прежнему составляет 2,05 или 1,60 В. Превышение этих пределов приводит через короткое время к энергичному образованию кислорода на оксидносеребряном электроде и, как следствие, к преждевременному разрушению сепараторной пленки. При заряде СК-аккумулятора напряжение 1,60 В иногда достигается вскоре после начала заряда. Это может случиться при переходе с нижней потенциальной площадки на верхнюю благодаря [c.235]

    Решеточные суммы можно приспособить и для оценки энергии ребер, например потенциальной энергии взаимодействия двух кубических кристаллов, имеющих общее ребро. Энергия ребер к выражается в эргах на сантиметр. По данным Леннарда-Джонса и Тэйлора [42], величина к для различных щелочных галогенидов составляет около 10 эрг/см. Согласно более недавней оценке [56], энергия ребра, образованного плоскостями (100) хлорида натрия, равна 3-10- эрг/см. Как и величины поверхностных напряжений, эти данные можно рассматривать только как предварительные. [c.212]

    Плотность дислокаций обычно выражают числом линий дислокаций, пересекающих единичную площадку в кристалле. Это число колеблется от 10 /см2 хорошего кристалла до 10 -/см для металлов, подвергнутых холодной обработке. Таким образом, расстояния между дислокациями составляют в среднем 10 —10 А, т. е. каждый элемент новерх-ности кристалла размером больше 100 А содержит по крайней мере одну дислокацию. В среднем один из тысячи атомов, расположенных на поверхности кристалла, находится вблизи дислокации. Согласно теории упругости, увеличение потенциальной энергии решетки вблизи дислокации пропорционально Ь . Ядро,или линия,дислокации находится в чрезвычайно напряженном состоянии. Химический потенциал вещества здесь настолько высок, что вещество может покидать дислокацию, оставляя за собой полость. Фрэнк [76] связывает модуль жесткости [х, поверхностное натяжение и вектор Бюргерса Ь выражением [c.217]

    Хотя автоионная микроскопия позволяет эффективно наблюдать расположение атомов поверхности и отдельных адсорбированных атомов и их перемещение, определять энергетические свойства поверхности этим методом не представляется возможным. В этом отношении автоионная микроскопия уступает автоэлектронной. Основное уравнение автоэлектронной эмиссии, выведенное Фаулером и Нордхеймом [118], описывает влияние приложенного поля на скорость эмиссии электронов. На рис. У-23 приведена упрощенная схема эмиссии электронов поверхностью металла. В отсутствие поля энергетический барьер, соответствующий работе выхода Ф, предотвращает утечку электронов нз зоны Ферми. При наложении поля высота этого барьера уменьшается пропорционально расстоянию и составляет Ф—V, где У=хР (Р — напряженность поля, В/см). Теперь становится возможным квантово-механический процесс туннелирования электронов. Если электрон находится в ящике с конечной высотой потенциального барьера, вероятность туннельного выхода такого электрона из ящика Р составляет [c.234]


    Формулы с двойными и тройными связями приводят, одна-iKo, к следующему основному противоречию. Казалось бы, что двойная или тройная связь должна быть прочнее простой свя-.зи и что вещества, содержащие кратные связи, не должны обла-.дать фактической ненасыщенностью, т. е. способностью к реакциям присоединения. Между тем такие вещества как раз обнаруживают способность к присоединению, а также способность молекулы в известных случаях расщепляться именно по месту двойной и тройной связи. Основываясь на этих признаках ненасыщенности кратных связей, химики делали заключение, что при образовании таких связей атомы затрачивают на взаимное соединение не все количество химической энергии, а обладают. еще каким-то запасом потенциальной химической энергии, остаточным сродством. Для объяснения остаточного сродства был предложен ряд гипотез и допущений. Из таких гипотез мы упомянем так называемую теорию напряжения А. Байера (1885). Принимая, что нормально направления сил сродства в атоме углерода совпадают с направлениями от центра правильного тетраэдра к его вершинам и составляют друг с другом углы 109°28, он предположил, что при образовании двойной или тройной связи направления валентных сил отклоняются до линии, соединяющей центры атомов. Величины таких отклонений, как легко рассчитать, будут составлять 54°44 для двойной и 70°32 для тройной свиязи. При таком предположении потенциальная энергия, мерой которой являются величины этих отклонений, и обусловливает особенности свойств непредельных соединений. [c.432]

    Рассмотрим прежде всего приложение обычной теории возмущений к атомному водороду, что даст нам возможность определить влияние слабых полей на энергетические уровни. Пусть электрическое поле напряженности направлено по отрицательной оси г, так что на электрон действует сила в направлении положительной оси г. Его потенциальная энергия с учетом поля ядра тогда составляет [c.381]

    С повышением круговой частоты колебаний v от нуля до 300 (или до- 1000) рад-сек- динамические значения модулей упругости могут превосходить их статические значения примерно на 30 (или 40—50) % Модуль объемной упругости для резины ориентировочно равен 30 000 кгс-смг . Допускаемое напряжение для хороших сортов резины достигает 40% величины статического модуля упругости, а иногда и того выше. Несмотря на широкое применение резины в демпфирующих устройствах, о величине ее внутреннего трения опубликовано немного сведений. Величина tf, представляющая отношение петли гистерезиса к амплитуде потенциальной энергии (см. табл. 1 на стр. 208), составляет около 0,1 — [c.207]

    Ненасыщенность кратных связей приводила химиков к убеждению, что при образовании двойных связей используется не вся химическая энергия, остается какой-то запас потенциальной химической энергии (остаточное сродство), создается какое-то внутреннее напряжение внутри молекулы. На основании измерения молярных теплот сгорания и теплот образования органических веществ было показано, что действительно двойная связь энергетически не является вдвое более прочной по сравнению с простой связью. Соответствующие энергии образования связей для С—С и С=С составляют 62, 77 и 101,16 ккал/моль. [c.58]

    В наиболее мягких переохлажденных прозрачных стеклах может возникать мутность в условиях резко выраженного неупругого деформирования при растяжении, т. е. в таких условиях, в которых наблюдается ускоренная ползучесть при растяжении. Последняя вызывается стабилизированными, т. е. не слипающимися, полостями, радиус которых составляет величину порядка нескольких сот ангстрем. Их число, определенное светорассеянием и малоугловым рентгеновским рассеянием, составляет триллион полостей в 1 сж . Возникновение полостей приводит к понижению плотности и непрерывному ослаблению тела, тогда как сами полости, вероятно, являются деформационно упрочненными посредством ориентации на потенциальном фронте образования разрывов. Размеры этих полостей, однако, находятся на уровне молекулярных, что свидетельствует о возможности деструкции цепей и их перестройки. Рассматривались также деструкция цепей и образование свободных радикалов, двойное лучепреломление и образование линий Людерса, связанное с перестройкой полимерных цепей, процессы локального селективного перераспределения напряжения проводилось сравнение мягких стекол с метал-. лами и более жесткими стеклами. [c.283]

    Эффективная катодная защита обеспечивается только в том случае, когда потенциал выключения составляет менее -0,85 В , т.е. является более отрицательным, чем указанное значение. При этом, однако, следует учитывать значение горизонтальной составляющей (воронки напряжения), соответствующей точки измерения. Положительная воронка напряжения указывает на то, что поляризационное напряжение более положительно (т.е. хуже), чем измеренное. При отрицательной воронке напряжений коррозионный элемент, т.е. потенциально опасное место на поверхности трубы без изоляции, является более поляризованным, чем показывает результат измерения. Очень малые воронки напряжения (примерно несколько мВ) могут не учитываться. Для больших воронок напряжения точное значение потенциала, свободного от омической составляющей 1Н", можно определить с помощью компьютера по соответствующей формуле. [c.102]


    В ГДР потенциальная обеспеченность водой составляет 18,5 млрд. м в год. При использовании ее примерно на 40% уже сегодня возникают трудности в сельскохозяйственном производстве, на промышленных предприятиях и в коммунальном хозяйстве. В таблице 26 приведены данные, свидетельствующие о напряженном водном балансе ГДР. Имеющее место в ГДР многократное использование воды (3—4 раза) невоз- [c.76]

    Поворотно-изомерный механизм гибкости цепи. К гибкоцепным полимерам относятся полиолефины, большинство полимеров виниловых и винил-диеновых мономеров общей формулы -(СН2-СНХ)-, -(СНг-СХУ)-, где X, У -заместители основной цепи. Гибкость таких полимеров обусловлена свободой вращения вокруг простых связей основной цепи, механизм гибкости называется поворотно-изомерным. Рассмотрим детали этого механизма на примере н-бутана, который можно представить как фрагмент цепи полиэтилена (рис. 2.14). При вращении связи С1-С2 или С3-С4 описывается конус с образующей, направленной под углом 5 к оси вращения. Угол 5 является дополнительным к валентному, т. е. 5 = п - 190°. При вращении связи С3-С4 атом С4 описывает окружность, в плоскости которой лежит угол вращения у, отсчитываемый относительно транс-положения. Расстояние между конечными атомами С и С4 при вращении изменяется и составляет, как показывает расчет, 0,2 нм для цис- и 0,38 для транс-формы. Поскольку радиусы Ван-дер-Ваальса метильной группы примерно равны 0,2 нм, можно ожидать стерического напряжения цис-формы. В этом случае вращение вокруг связи С2-С3 не будет свободным. Вследствие взаимного отталкивания заместителей в г/мс-положении возникают потенциальные барьеры вращения. [c.61]

    В отличие от кристаллических полимеров, для которых возникновение упругой силы связано с межатомным взаимодействием, механизм действия (возникновения) упругих сил при растяжении аморфных полимеров обусловлен изменением потенциальной энергии межмолекулярного взаимодействия, преимущественно потенциальной энергии вращения вокруг ковалентных связей. Из сказанного ясно, что в первом приближении модуль упругости аморфных стеклообразных полимеров можно оценить, измеряя модуль упругости кристаллических полимеров в направлении, поперечном вытяжке, т. к. в этом направлении макромолекулы кристаллического полимера связаны лишь физическими межмолекулярными связями. Из табл. 4.3 следует, что в поперечном направлении значение модуля упругости кристаллических полимеров составляет 3-4 ГПа. Однако модуль упругости стеклообразных полимеров существенно ниже. Одно из вероятных объяснений этого несоответствия состоит в том, что даже в замороженных конформациях под действием приложенного напряжения возникает определенная подвижность сегментов и, следовательно, напряжение релаксирует. Напомним, что аналогичным является механизм вынужденной эластичности, рассмотренный выше. [c.166]

    Рассматривая резервы снижения материальных затрат и коэффициенты напряженности их использования на примере диалкилдитиофосфатной присадки ДФ-11, следует также отметить, что по всем видам сырья отсутствуют организационные резервы их снижения, тогда как потенциальные составляют 366 тыс. руб., или 4,6 % в общем объеме фактических материальных затрат, перспективные — 12 тыс. руб., или менее 1 %. В то же время предлагаемый методический подход к анализу эффективности использования материальных ресурсов в производстве присадок позволяет выявить и такие аномальные явления, как планирование удельных норм расхода исходного сырья и материалов ниже научно обоснованного или минимально возможного уровня. Последнее приводит к ухудшению качества получаемой при этом присадки ДФ-11 за счет снижения содержания в ней активного вещества. Отрицательные последствия такой экономии могут проявиться у потребителя смазочных масел, в состав композиций которых входит эта антиокислительная присадка. Поэтому предложенная методика анализа наряду с выявлением резервов снижения материальных затрат выполняет также контрольные функции за соблюдением предприятиями требований ГОСТ (ТУ) к готовой присадке. [c.118]

    Такое большое расхождение по Гриффитсу объяснялось наличием мелких трещин в однородном материале, приводящих к большой концентрации напряжений в упругом состоянии. При этом составлялся баланс энергий энергии необходимой для разрушения и имеющейся потенциальной энергии деформации, которая может быть израсходована на разрушение. [c.174]

    Конформационные переходы цепи с кинк-изомерамп, свободная энергия которой при наличии напряжения представляется сплошной линией (рис. 5.1), термодинамически необратимы, а внутренняя энергия переходит в тепло. Представляет интерес постоянная времени процесса перехода если она мала по сравнению со временем, в течение которого происходит растяжение цепи, то кривая напряжение—деформация не слишком сильно отличается от кривой, соответствующей сплошной линии на рис. 5.1, а если постоянная времени слишком велика, то переходы могут быть запрещены и цепи деформируются эластично. Однако при промежуточных значениях постоянных времени наибольшие напряжения не полностью вытянутых цепей будут зависеть от скорости, с которой происходят конформационные переходы, снимающие напряжение. Детальное рассмотрение данного явления потребовало бы изучения формы и взаимодействия цепных молекул, основ термодинамики необратимых процессов [15] и анализа потенциала вторичных, или вандерваальсовых, связей между сегментами [16]. Это привело бы к рассмотрению неупругого деформирования полимеров, которое не является предметом данной книги. Тем не менее все же представляет интерес некоторая информация относительно скорости переходов между различными кинк-изомерами, сопровождающихся релаксацией напряжения в системе. Так как любые переходы, приводящие к движению только одного кинк-изомера, обычно не вызывают удлинения цепи вдоль ее оси, то приходится учитывать по крайней мере одновременную активацию н аннигиляцию двух кинк-изомеров. Подобный процесс состоит из поворота четырех гош-связей и передачи поворота сегмента между кинк-изомерами можно оценить энергию связи, необходимую для преодоления потенциального барьера, которая должна составлять 33,5 кДж/моль для поворота гош-связи [7] и (2,1—5) кДж/моль для вращения СНг-группы [17, 18]. Следовательно, чтобы преобразовать весь кинк-изомер tgtgttgtgt в транс-конформацию, необходима энергия активации 46—63,6 кДж/моль. Можно предположить, что подобные преобразования напряженных цепей ПЭ к состоянию, свободному от напряжений, действительно происходят при скорости деформирования по крайней мере 1 с при температуре ниже точки плавления, т. е. при 400 К. Теперь мол<но рассчитать скорость данного процесса при 300 К с помощью выражения (3.22), которая оказывается равной 0,0018 с . При деформировании цепи энергия активации вращения сегмента только убывает, а скорость переходов, сопровождающихся ослаблением напряжения, возрастает [19]. С учетом подобного [c.130]

    Бесспорно, что большое число разрывов цепей в процессе механического воздействия [1] само по себе не служит ни доказательством, ни даже указанием на то, что релаксация макроскопического напряжения, деформирование и разрушение материала являются следствием разрыва таких цепей. Как отмечали Кауш и Бехт [2], полученное число разорванных цепей намного меньше (с учетом их потенциальной работоспособности) их числа, необходимого для объяснения уменьшения фиксируемого макроскопического напряжения. Как показано на рис. 7.4, релаксация напряжения в пределах ступени деформирования (0,65%) равна 60—100 МПа. Однако если полагать, что проходные сегменты пересекают только одну аморфную область, то изменение нагрузки, соответствующее работоспособности 0,7-10 цепных сегментов, разорванных на данной ступени деформирования, составляет 2,4 МПа. Оно будет равным 2,4 МПа, если проходные сегменты соединяют п подобных областей. Б этом и большинстве последующих расчетов будет использована сэндвич-модель волокнистой структуры, подобная показанной на рис. 7.5 (случай I). Очевидно, что в случае п = 1 величина релаксации макроскопического напряжения в 25—40 раз больше уменьшения накопленного молекулярного напряжения, рассчитанного исходя из числа экспериментально определенных актов разрыва цепей. Однако в данном случае также следует сказать, что подобное расхождение результатов расчетов само по себе не является ни доказательством, ни даже указанием на то, что релаксация макроскопического напряже- [c.228]

    Что касается значения величины и, входящей в показатель степени экспоненциальной формулы, то все авторы в настоящее время рассматривают ее как энергию активации процесса вязкого потока, т. е. энергию, которую необходимо запасти данной молекуле за счет напряжений сдвига для того, чтобы она смогла в процессе течения переместитьря в новое положение равновесия, преодолев потенциальный барьер молекулярного поля соседних молекул. Далее же энергии активации Ь различные авторы придают различный физический смысл. Эйринг и Юелл, полагая, что в процессе вязкого течения молекулы как бы испаряются в дырки (пустоты), имеющиеся в жидкости, считают. Что и составляет некоторую часть теплоты парообразования Формулу температурной зависЕмости вязкости они пишут в [c.19]

    Как видно из данных табл. 11.21, наибольшими резервами снижения материальных затрат характеризуется производство сульфонатных присадок, тогда как но диалкилдитиофосфатпым присадкам уровень затрат по отдельным составляющим ниже минимально возможного или научно обоснованного уровня. На установке по выпуску сульфонатных присадок по всем основным видам материальных затрат существуют резервы их снижения, в том числе на организационные приходится 21 тыс. руб., или 0,6 % в объеме фактических материальных затрат, потенциальные — 696 тыс. руб., или 19,2 %, и перспективные — 636 тыс. руб., или 17,5 %. Как видно, наибольшая величина резерва и самый низкий уровень напряженности наблюдаются по затратам на масло-сырье, масло-разбавитель, серу техническую газовую и углекислый газ. Так, при общем коэффициенте напряженности в статике 0,81 по маслу-сырью оп составляет 0,76, маслу-разбавителю — 0,88, сере технической газовой — 0,42 и углекислому газу — 0,54. В то же время динамическая характеристика или напряженность плановых заданий по снижению материальных затрат к перспективному резерву несколько ниже статической характеристики и составляет 0,19, в том числе по маслу-сырью — 0,20, маслу-разбавителю — 0,20 и сере технической газовой — 0,14. [c.118]

    В литературе [6] детально обсуждены причины нарушения фокусировки ионного пучка, следствием чего является уменьшение разрешающей силы масс-спектрометра. Здесь целесообразно только обсудить вопрос о том, каким образом можно получить необходимую для работы разрешающую силу у используемох о прибора. Следует обсудить также вопрос о пригодности различных количественных определений разрешающей силы. Наилучшее разрешение двух линий достигается тогда, когда щели коллектора и источника имеют минимальную ширину. Наилучшее возможное разрешение, соответствующее бесконечно малой ширине обеих этих щелей, наиболее полно характеризует потенциальные возможности данного прибора. Управлять шириной щелей можно либо механически, либо электрически [7]. Интересно рассмотреть влияние ширины щелей на форму линии. Линия масс-спектра дает распределение интенсивности в изображении щели источника. Щель коллектора обычно достаточно широка, чтобы можно было регистрировать интеграл этого распределения. По мере уменьшения ширины щели коллектора форма линии приближается к кривой распределения интенсивности в изображении, т. е. сужение этой щели эквивалентно дифференцированию линии масс-сиектра. Если с малой амплитудой модулировать ускоряющее напряжение и регистрировать сигнал на частоте модуляции, то можно записывать непосредственно производную кривой контура линии. При этом изменение амплитуды модуляции эквивалентно изменению ширины щели коллектора. Получаемый таким образом сигнал был математически исследован [8], и можно показать, что сужение щели источника эквивалентно второму дифференцированию кривой контура линии. Было показано, что можно регистрировать дублетные линии, образованные молекулярными ионами, для которых М/АМ составляет 2300, используя прибор секторного типа с радиусом 152 мм. Такую регистрацию проводили при помощи двойного дифференцирования линии обычного масс-спектра. Это наглядно иллюстрирует возможности прибора такого типа. [c.334]

    Энергия напряжения, определяемая как разность между энергией гипотетического плоского СеС1б и изогнутого СбС1б, по-видимому, невелика, так что энергетически ситуация сходна с той, которая приведена для дифенила на рис. 7. Однако энергия взаимодействия атомов X, по-видимому, весьма велика. Использование поля Юри—Брэдли для потенциальной функции и инфракрасные колебания молекулы l приводят к величине около 100 ккал для полного взаимодействия С1... С1. Стоккер и автор, основываясь на функции V (XX), нашли значение на 50% большее. Такие высокие значения могут оказаться вполне реальными мы не замечаем их потому, что они присутствуют всегда и входят в качестве составной части в наблюдаемую энергию связи. Однако определенное подтверждение их существования может быть найдено в теоретических расчетах, проведенных для метана Ван Флеком [21], который пришел к выводу, что в этой молекуле суммарный вклад в энергию всех шести сил Н. .. Н составляет 57 ккал. Если это так, то не удивительно, что силы С1... С1 имеют величину порядка 100 ккал моль. [c.86]

    По уравнениям (3. 32), (3. 3 ), (3. 3 и (3. 40) составим таблицу (табл. 3) и гр ик зависимости Я , На, Я и д от о а- Легко видеть, что при значении 8 >2 Я > Я , т. е. динамическая составляющая напора превышает значение теоретического напора. При Уца= 2, Я = О — потенциальный напор равен нулю. Поэтому таблицу и график составляем в границах изменения у 2 от О до 2. Из таблицы видно, что наибольшее значение коэффициента теоретического напора Н достигается при и а = = 2. Однако при этом весь напор, создаваемый колесом, выражается в приращении кинетической энергии потока потенциальный напор и коэффициент реакции при этом равны нулю. Такого типа лопастные колеса обычно не находят применения в насосостроении, так как преобразование кинетической энергии потока в давление сопряжено с потерями. В вентиляторостроении, когда нет необходимости преобразования кинетической энергии в давление, этот тип проточной части получил распространецие. При заданном значении напора возникает возможность уменьшить наружный диаметр колеса и тем самым снизить напряжение в материале колеса от действия центробежных сил. Для центробежных насосов характерным [c.82]

    Как показывают два примера, приведенные в конце раздела" этой главы, конформации сложных молекул могут быть рассчитаны только на ЭВМ ручные вычисления крайне трудоемки и часто не приводят к желаемым результатам из-за их низкой точности. Важным шагом в составлении программы является выражение координат атомов через выбранные независимые геометрические параметры (в некоторых случаях удается, не вычисляя координат, выразить необходимые расстояния между валентно не связанными атомами). Затем рассчитываются межатомные расстояния, валентные и двугранные углы и составляется выражение для энергии напряжения. Вычисление потенциальной функции оформляется в виде отдельного блока, если программа написана в машинном коде, или в виде процедуры, если используется алгоритмический язык. После этого процедура-функция используется в основной программе, построение которой определяется харак--тером поставленной задачи. [c.123]

    Аналог полимера ПОКЭА, имеющий в главной цепи вместо метильных групп атомы водорода, является более эластичным. Причина этого связана с тем, что величина потенциального барьера связи СН2 = СН—Нг и СНг=С (СНз)—Нг составляют приблизительно 16,3 и 20,1 кДж/моль. Это затрудняет конформационные переходы и обусловливает более высокие значения напряжений при одной и той же деформации и модуля упругости в случае метакри-лового аналога ПОКЭМ. [c.161]

    Исходная теория Линда была развита и вддоизме-нена Мундом, Райдилом и Ливингстоном. По Мунду, центральный ион играет лишь роль катализатора. Находясь вблизи иона, молекулы деформируются, испытывают внутреннее напряжение, становятся химически активными и могут ри соударениях между собой вступать в реакции, невозможные в пространстве, свободном от поля. Иными словами, молекулы активируются и реагируют в поле центрального иона до его нейтрализации. После нейтрализации разлетаются уже продукты реакции, если они успели образоваться. В связи с такой Т0Ч1К0Й зрения возникает вопрос о том, откуда берется энергия, необходимая для прохождения эндотермической реакции, например диссоциации воды. Правда, в процессе самого образования ком плеконого иона происходит превращение потенциальной энергии в иные формы, но чтобы комплекс стал стабильным, необходимо удаление этой избыточной энергии. Таким образом, источник энергии реакции в уже образовавшемся устойчивом комплексном ионе остается неясным. Поэтому Ливингстон вернулся к первоначальной точке зрения Линда, считая, что реакция происходит в результате нейтрализации центрального иона. По теории горячих точек , развитой Ливингстоном, выдающаяся при нейтрализации энергия нагревает комплекс до высокой. температуры. Это следует понимать в том смысле, что непосредственно после нейтрализации комплекс обладает энергией, которую он имел бы, существуя виде достаточно большой массы газа при некоторой высокой температуре. Конечно, малое число молекул, составля- [c.190]

    В амеевике, размещенном в слое (раскаленного огнеупора, вода нагревалась с 15—18 до 90°С. При этом количество воспринимаемого змеевиком тепла составляло от 35 до 39 /о потенциального тепла сжигаемого газа. Тепловое напряжение поверхности нагрева змеевика составляло от 190 до 270 тыс. ккал/(м2-ч) и примерно в 10 раз превышало тепловое напряжение поверхностей нагрева перечисленных выше водогрейных котлов. [c.334]

    Образец нагревали переменны.м током. Температуру измеряли хромель-алюмелевыми термопарами с индивидуальной градуировкой в комплекте с потенциометром Р307. Корольки термопар помещали в специальные отверстия глубиной 1,5—2,0 мм. Осевой тепловой поток определяли, измеряя ток и падение напряжения на рабочем участке (падение напряжения — потенциометром Р56). Потенциальными выводами служили одноименные электроды термопар. Силу тока в цепи образца измеряли трансформатором тока УТТ-6М в комплекте с амперметром Д57. Потери тепла с боковой поверхности образца рассчитывали, измеряя период температур по радиусу теплоизоляционного цилиндра, изготовленного из материала с известной теплопроводностью. Погрешность измерения теплопроводности в интервале 400—1300 К составляла (8—10)%, [c.177]

    Почти 96,5% мировых запасов вод — соленые воды океанов, которые практически не используются человечеством. Количество пресной поверхностной и подземной воды составляет 2,5%, или 35 млн. км . Основная доля пресных вод (24 млн. км , или 68,7%) сосредоточена в ледниках и снежном покрове Антарктиды и Арктики. Главными источниками обеспечения водой для большинства стран останутся реки и озера. Запасы воды в них не превышают 0,27 % ресурсов пресных вод и составляют 95 тыс. км . Этого, может быть, и хватило бы человечеству при рациональном пспользоваиии, но вся сложность проблемы заключается в том, что водные ресурсы распределены чрезвычайно неравномерно по территории земли. Наряду с зонами избыточного увлажнения, в которых количество осадков существенно превышает потенциальное испарение, существуют обширные территории, где количество осадков намного меньше потенциально возможного испарения. Такие зоны занимают около 60 % всей суши Земли, где в настоящее время проживает около 1,5 млрд. чел. (около 30 %), а через 40...50 лет будет проживать до 3...3,5 млрд. чел. (около 50%). Таким образом, несмотря на значительные водные ресурсы на Земле, положение с водой будет все более и более напряженным. [c.22]


Смотреть страницы где упоминается термин Напряжения потенциальная составляющая: [c.310]    [c.372]    [c.85]    [c.372]    [c.189]    [c.189]    [c.86]    [c.99]    [c.126]    [c.119]    [c.42]    [c.193]    [c.116]    [c.150]   
Введение в теорию кинетических уравнений (1974) -- [ c.161 , c.164 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциальная яма



© 2025 chem21.info Реклама на сайте