Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двуокись углерода взаимодействие с водой

    Почему свеча взаимодействует с воздухом, образуя двуокись углерода и воду, а вода и двуокись углерода не реагируют с образованием свечи и воздуха  [c.29]

    При взаимодействии кислоты с карбонатом или бикарбонатом образуются соль и угольная кислота, которая разлагается на двуокись углерода и воду  [c.99]

    Однако вода и двуокись углерода взаимодействуют нормально с образованием [c.621]


    Мочевина взаимодействует с гипохлоритом или гипобромитом в условиях реакции гофмановской перегруппировки амидов при этом образуются азот, двуокись углерода и вода. Эта реакция, хотя и не протекает количественно, часто применяется для определения мочевины в биологических лабораториях. В этой реакции в качестве промежуточного продукта образуется гидразин. Последний легко обнаруживается добавлением бензальдегида, с которым он образует азин (П. Шестаков, 1903 г.). [c.814]

    Образующиеся в зоне пластического слоя вода и двуокись углерода частично взаимодействуют с горячим коксом в зоне цветной капусты , давая водород и окись углерода. [c.169]

    Химические реакции, осуществляемые в процессе создания контролируемых атмосфер из СНГ в смеси с воздухом, весьма разнообразны. Они обязательно сводятся к удалению кислорода. Помимо остаточного кислорода и азота защитные атмосферы в различном соотношении содержат двуокись и окись углерода, водород, пары воды и углеводороды. Дальнейшее изменение состава газовой среды требует специальных реакций. Поскольку двуокись углерода может взаимодействовать с определенными металлами и углеродом, содержащимся в стали, ее содержание в этой атмосфере необходимо снижать или полностью исключать. Для обеспечения взаимодействия между углеродом и поверхностью сплава металла (карбюризация) дополнительно может быть конвертирован пропан, а для нитрирования (азотирования) поверхности стали — введен аммиак. При термообработке стали нежелательно иметь высокую точку росы избыточной влаги, поэтому перед подачей на термообработку газы следует предварительно осушать, а окись углерода удалять во избежание поверхностного науглероживания низкоуглеродистых марок стали. [c.318]

    Молекула СО2 линейна 0=С = 0. Двуокись углерода растворима в воде (приблизительно 1 1 по объему). Часть молекул СО2 взаимодействует с водой с образованием угольной кислоты, которая в свою очередь, подвергается частичной диссоциации. Таким образом, в водном растворе одновременно имеют место следующие равновесия  [c.197]

    В воде двуокись углерода растворима довольно хорошо (приблизительно 1 1 по объему). При растворении происходит ее частичное взаимодействие с водой, ведущее к образованию угольной кислоты  [c.494]

    Загруженное в газогенератор топливо находится на колосниковой решетке, под которую подается дутье (воздух, пар и пр.). Вследствие этого происходит горение топлива, и оно накаляется до высоких температур. Пройдя шлаковую подушку и несколько нагревшись, дутье поступает в слой раскаленного топлива, где кислород дутья вступает в реакцию с углеродом, образуя окись и двуокись углерода. Прн этом двуокиси углерода получается больше, чем окиси углерода. Водород топлива при взаимодействии с кислородом дутья образует воду, которая в парообразном состоянии вместе с другими газообразными продуктами поднимается вверх через слой топлива. [c.302]


    Сжиженный аммиак, двуокись углерода и рециркулирующий раствор карбамата аммония поступают в автоклав, в котором взаимодействуют с образованием мочевины, карбамата аммония и воды. [c.119]

    Описание процесса (рис. 62). Аммиак и двуокись углерода, подаваемые под давлением в реактор, взаимодействуют при давлении 189 ат изб. и температуре 182°С, образуя карбамат аммония, который, в свою очередь, разлагается на мочевину и воду. [c.122]

    Все химические реакции сопровождаются либо выделением энергии, либо поглощением ее. Обычно эта энергия имеет форму теплоты. Если при смешивании каких-либо веществ в сосуде происходит химическая реакция с выделением теплоты, то содержимое сосуда разогревается.. В другом случае, если между этими веществами происходит химическая реакция с поглощением теплоты, содержимое сосуда становится более холодным. Эти факты можно описать, приняв, что каждое вещество имеет некоторую энтальпию и что общая энтальпия продуктов реакции отличается от энтальпии взятых реагентов. В соответствии с законом сохранения энергии теллогареакг и равна разности энтальпий продуктов реакции и реагентов при стандартной температуре. Так, смесь бензина и кислорода имеет большую суммарную энтальпию, чем при той же температуре продукты их взаимодействия, которыми являются двуокись углерода и вода. Как следствие этого, при реакции выделяется некоторое количество тепла, продукты реакции нагреваются и находящиеся с ними в контакте материалы также нагреваются. [c.21]

    Кинетика окисления этилена на серебряном катализаторе исследовалась в изотермическом режиме (при 218 °С) в безгра-диентном реакторе в широком интервале концентраций этилена, кислорода, окиси этилена, воды и двуокиси углеро-дд87, 88, 08, 110, 111 j pjj выводе кинетических уравнений было учтено стационарное течение процесса, использованы представления теории адсорбции Лангмюра и сделано несколько предположений относительно механизма процесса, близкого к иредлол< ен-ному ранее . Считается, что адсорбированный молекулярный кислород быстро распадается иа атомы, покрывающие большую часть поверхности катализатора. Затем атомарный кислород взаимодействует с этиленом, образуя одновременно окись этилена, двуокись углерода и воду. Эти продукты адсорбируются на поверхности катализатора и уменьшают каталитический эффект серебра. [c.285]

    Приведенная схема не отражает взаимодействия катализатора с другими компонентами реакционной газовой смеси, кроме кислорода и этилена, а также различные гомогенные превращения в газовой фазе, так как для этого нет достаточных данных. Из этой схемы следует лишь, что каталитическое окисление идет по перекисному механизму с образованием активных промежуточных продуктов — супероксида серебра и органического перекис ного радикала [С2Н402-1. Повышение температуры должно оказывать отрицательное влияние — вызывать превращение радикала [С2Н4О ] в двуокись углерода и воду, а не в окись этилена. Но в то же время, ввиду тенденции катализатора к образованию плотноупакованной поверхности, повышение температуры должно способствовать образованию промежуточного супероксида серебра. [c.292]

    Нередко в воде растворены молекулы газов, не вступающих в химическое взаимодействие с ней, например, кислорода, азота, благородных газов, метана и др. Тогда их поведение подчиняется общим физическим закономерностям для таких систем уменьшению растворимости с ростом температуры воды и т. п. Другие газы дают с водой химические соединения. Аммиак образует с ней гидгоокись аммония, известную в быту под названием нашатырного спирта. Это соединение щелочного характера. А сероводород или двуокись углерода придают воде кислотные свойства. Таким образом, свойства каждой конкретной системы, относящейся к данной группе, в ттзвестной мере зависят и от химических особенностей входян1их в нее компонентов. [c.134]

    Аммоний углекислый для пищевых целей — смесь углекислого аммония (карбоната аммония) (ЫН4)гСОз, двууглекислого аммония (бикарбонат аммония) NH4H O3 и карбаминовокислого аммония NH2 OONH4. Получают при насыщении аммиачной воды двуокисью углерода или при поглощении водой смеси газообразных аммиака и двуокиси углерода, а также при взаимодействии газообразных аммиака и двуокиси углерода с парами воды. По внещнему виду — твердые куски и кристаллы белого цвета. Пахнет аммиаком вследствие разложения продукта на аммиак, двуокись углерода и воду. С повышением температуры и влажности степень разложения увеличивается. [c.98]

    В 1879 г. Лидс [18] сообщил, что фосфор даже при комнатной температуре может восстанавливать двуокись углерода и воду в окись углерода и фосфин [22]. В 20-х годах XX в. применение фосфора для получения водорода из воды и восстановления СОа в окись углерода стали рассматривать как метод комплексного использования сырья и энергии и повышения экономической эффективности электротермического и доменного способов переработки природных фосфатов в удобрения, сделанные тогда предложения имели целью использование химической активности фосфора (нанример, восстановительного действия) и рекуперацию части энергии, затраченной на его иолучеппе. Действительно, на первом этапе развития электротермического способа для изготовления 1 т фосфора расходовалось до 17—20 тыс. квт-ч электроэнергии. При окислении фосфора кислородом воздуха в фосфорную кислоту затраченная на фосфор энергия не только не рекуперируется, но теряется и то тепло (около 6000 ккал на 1 кг фосфора), которое выделяется при горении Р . В связи с этим в 20-х годах процессы взаимодействия фосфора с водой и двуокисью углерода стали объектами обширных исследований во многих странах (СССР, Швеции, Франции, Германии, США п др.). [c.248]


    В производстве для приготовления рабочего раствора используют отработанный малоосновный ацетат свинца, к нему добавляют воду и уксусную кислоту из расчета получения раствора среднего ацетата с концентрацией 35—55 г/л РЬ(СНзСОО)2. Затем раствор нагревают до 50—80°С и добавляют глет до получения основного ацетата указанного выше состава. Рабочие растворы подвергаются очистке от нерастворившегося глета и его примесей путем отстаивания в отстойниках. Осветленный раствор затем сливают в промежуточный бачок, питающий один из кар-бонизаторов. В карбонизаторе двуокись углерода взаимодействует с гидроокисью свинца. Применяются карбонизаторы различных типов, различающиеся в основном условиями соприкосновения СО2 с раствором. Увеличения поверхности соприкосновения можно достигнуть за счет разделения струи газа, выпуская ее через многочисленные отверстия. Другой метод увеличения реагирующей поверхности заключается в применении инжекторов, в которых либо газ засасывает жидкость, либо, наоборот, жидкость засасывает газ. При этом вследствие турбулентного движения образовавшейся смеси газа с жидкостью происходит разделение газа на мелкие пузыри, подъем которых замедляется, в связи с чем увеличивается время соприкосновения. Поэтому, а также в связи со вспениванием массы при карбонизации, высота карбонизато-ров должна быть в 5—6 раз больше диаметра. В настоящее время применяются карбонизаторы с непрерывной циркуляцией раствора, создаваемой центробежным насосом. В трубопровод между насосом и карбонизатором включен инжектор. Основной ацетат свинца поступает через циркулирующий поток и, проходя через инжектор, засасывает углекислый газ, который подводится к инжектору из газгольдера под давлением 0,5—1,0 кгс/см2. Карбонизацию проводят при 20—25 °С. Расход двуокиси углерода составляет 120% от расчетного. [c.215]

    При получении профильных изделий из пенополисти-рола жидкие вспенивающие агенты часто используют вместе с твердыми соединениями, которые при температуре экструзии разлагаются с выделением газообразных продуктов. Наиболее распространенными из этих соединений являются сульфонилгидразиды, нитрозосо-единения и азосоединения (особенно азодикарбон-амид) 22. Используют также двухкомпонентные системы, выделяющие при нагревании двуокись углерода и воду. Они обычно содержат твердую органическую кислоту (стеариновую, лимонную и др.) и карбонаты или бикарбонаты щелочных и щелочноземельных металлов 2 В качестве кислотного компонента применяют и неорганические кислоты (борная и др.) и кислые соли многоосновных кислот (например, фосфорной) 24.125 Введение карбоксильных групп в полимерную цепь 26 усиливает газообразование при взаимодействии с карбонатами металлов. [c.16]

    Двуокись углерода ири 1 атм взаимодействует с раствором, содержащим 1 моль/л КаОН при 20 "С. Pa твopи гo ть СО2 можно принять равной З-Ю . ноль см -атм), а ее коэффициент диффузии в растворе 1,5-10 см- сек. Константу скорости реакции между СО2 и ОН в растворе принять равной Ю л (моль-сек). В течение какого промежутка времени взаимодействие газа и жидкости можно рассматривать как реакцию псевдопервого порядка Построить график зависимости количества абсорбированной СО2 от времепи контакта для этого периода. Вычислить повышение температуры на поверхности к концу этого периода. Теплоты абсорбции и реакции принять равными соответственно 4760 и 1500 кал моль. Температуропроводность воды составляет около 1,46-10 см сек. [c.54]

    В промышленности уже в течение многих лет применяется окисление прямогонных нефтяных остатков, главным образом с целью изменения реологических свойств получаемых из них битумов. В процессе продувки остатков воздухом кислород взаимодействует с компонентами сырья при температуре 200—350 °С. При этом химический состав и соответственно молекулярная структура и свойства остатков изменяются. Соотношение углерод водород для асфальтенов снижается при окислении с 11 1 до 10,5 1. Для смол и масел это соотношение уменьшается, но в меньшей степени (с 8 1 до 7,7 1). Пары воды, двуокись углерода и низкомолекулярные продукты окисления (эфиры, кислоты и альдегиды) удаляются из реакционного объема вместе с продувочными газами. Целевым продуктом является окисленный битум, который существенно отличается от исходного, неокисленного сырья. При окислении изменяется его групповой состав уменьшается содержание масел и значительно возрастает количество асфальтенов, продуктов поликонденсации. Количество силикагелевых смол в некоторых случаях уменьшается, а в других несколько возрастает. [c.32]

    В опыте Г выделения двуокиси углерода в известковую воду не наблюдалось по. той простой причине, что образующаяся в результате разложения Mg Oa двуокись углерода вступала в химическое взаимодействие с окисью бария  [c.111]

    Составить уравнение взаимодействия однозамещенного фосфата кальция Са(Н2Р04)2 с углекислым кальцием, зная, что при этом получаются двухза-мещенный фосфат кальция СаНР04, вода и двуокись углерода. [c.90]

    В цилиндрический корпус наливают раствор бикарбоната натрия в умягченной (дистиллированиой или дождевой) воде. Для заряда берут 8 л воды и 650—660 г соды. Для лучшего образования пены добавляют 50 г лакричного экстракта. Масса заряженного огнетушителя ОП-3—13,5/сг, а время действия — 45—60 се/с. При пользовании огнетушителем необходимо прежде всего прочистить отверстие спрыска, а затем уже ударить в перевернутом виде кнопкой об пол. При ударе разбивается колба с раствором и двуокись углерода, образующаяся при взаимодействии кислоты с раствором бикарбоната натрия, вытесняет из аппарата раствор в виде сильной пенистой струи, действующей на расстоянии до 8 м. [c.6]

    Опыт 10. Получение средней и кислой соли взаимодействием основания с кислотным оксидом и кислотой. Налейте в пробирку 3—4 мл насыщенного раствора гидроксида кальция (известковой воды). Пропустите в раствор двуокись углерода из аппарата Киппа. Вначале образуется нерастворимая в воде средняя соль — карбонат кальция. Насыщение раствора двуокисью углерода продолжайте до тех пор, пока весь осадок растворится, образовав гидрокарбонат кальция. Пробирку с раствором Са(НСОз)2 нагрейте до кипения и наблюдайте образование СаСОз. Составьте уравнения реакций. [c.76]

    При карбокснлнрованин малореакционноспособцых фенолов необходимо применять тщательно высушенные феноляты вода даст с фенолом более прочные хелаты, чем двуокись углерода, вода проявляет также более сильные кислотные свойства, а поэтому в присутствии воды из фенолята выделяется свободный фенол. Кроме того, под действием влаги фенолят комкуется, что также затрудняет его взаимодействие с двуокисью углерода. [c.436]

    Низкомолекуляриые полипропиленоксиды с концевыми гидроксильными группами можно использовать для приготовления пенопластов посредством реакций, родственных реакциям двух предыдущих примеров. Полимерный гликоль заставляют реагировать с избытком днизоцианата, а затем обрабатывают водей. Вспенивающим агентом является двуокись углерода, выделяющаяся прн взаимодействии воды со свободными изоцианатными группами [39]. Реакции- полимеризации этого вида используются ддя получения некоторы.х из широко примС няемых уретановых поропластов. [c.170]

    ДОВ взаимодействует с водой. Бензоилэтилкарбонат при реак--цни с водой образует бензойный ангидрид, двуокись углерода и этиловый спирт [13 5 , [c.201]

    Коррозийный износ. Основной причиной износа двигателя является коррозия в результате химического воздействия влаги и кислот, образующихся при сгорании топлива. На каждый литр сгоревшего в двигателе топлива в камере сгорания образуется приблизительно 1 л воды. При сгорании топлива образуются также двуокись углерода и небольшое количество окислов серы из органических сернистых соединений, входящцх в состав топлива, следы окиси азота в результате окисления азота при высокой температуре сгорания и небольшое количество соединений брома или хлора, выделяемых из тетраэтилсвинца, содержавшегося в топливе. Все эти продукты сгорания путем конденсации или химического взаимодействия с водой образуют кислоты (угольную, серную, сернистую, азотную и азотистую, бромистоводородную, хлористоводородную) и другие продукты, способные вызвать коррозию. В двигателях, работающих при достаточно жестких температурных режимах, эти продукты сгорания в основном выносятся с выхлопными газами, что ограничивает возможность появления коррозии двигателя. Однако нри работе двигателя с пониженной температурой стенок цилиндра влага и продукты окисления могут легко конденсироваться и скопляться, что способствует коррозийному разрушению поверхности стенок и поршневых колец и попаданию при работе продуктов окисления и коррозии внутрь двигателя и в картерное масло. Высокие окисляющие и корродирующие свойства этих продуктов описаны в главе XII. [c.386]

    Исследования показали, что значения коэффициентов бинарного взаимодействия вода - углеводород (азот, двуокись углерода, сероводород), вычислеппые по углеводородной и водной фазам, значительно отличаются. Для углеводородной фазы значения к у вода - углеводород мало чувствительны к изменению температуры и для большинства углеводородов находятся в пределах 0,5+0,05. [c.107]

    В парах воды окисляется при 600—700°. С фтором реагирует при комнатной температуре, с сухим хлором — заметно с 300°, особенно в виде порошка. Пары иода и брома на холоду и при слабом нагревании не взаимодействуют с ним. Твердый углерод во всех формах, атакже углеводороды и окись углерода заметно карбидизируют вольфрам выше 1000°. Двуокись углерода окисляет его начиная с 1200°. Взаимодействие с серой начинается выше 450°. Сероводород действует на него выше 700°. В токе хлористого водорода при доступе воздуха вольфрам улетучивается в составе оксихлоридов W0 14, W0 2 I2. [c.223]

    Кремнийорганические жидкости, как правило, не растворимы в воде и в низкомолекулярных алифатических спиртах, но хорошо растворяются во многих ароматических и хлорированных углеводородах. Эти жидкости не подвержены действию разбавленных кислот и ш елочей и вступают во взаимодействие лишь с концентрированными ш елочами и кислотами. Они горят значительно менее энергично, чем углеводородные масла и большинство органических жидкостей продуктами их полного сгорания являются двуокись углерода, водяные пары и двуокись кремния (в виде очень тонкого порошка). [c.353]

    Взаимодействие поверхности серебряного катализатора с компонентами реакционной газовой смеси является наиболее существенной стадией каталитического процесса окисления этилена. При этом важно знать, в какой форме находится кислород на поверхности серебра, т. е. в виде каких частиц из следующих известных Оа, О2, От, О, О", О , Оз или 0.1. От этого зависят такие свойства поверхностных соединений серебра и кислорода, как состав, строение, термическая стойкость и особенно прочность связей металл — кислород, определяющая реакционную способность этих соединений. Поэтому стадия образования нестойких поверхностных кислородных соединений серебра, которые сравнительно легко разрушаются,образуя активные промежуточные продукты (например, перекись этилена), способные повести процесс превращения дальше — в те или иные конечные продукты (окись этилена, двуокись углерода, вода и т. п.), — является чрезвычайно важной при каталитическом окислении. Иными словами, форма кислорода может в.лиять на вид кинетических уравнений процесса каталитического окисления этилека. [c.270]

    Предполагают [2], что различие в скоростях абсорбции СО2 и НдЗ ьызвано неодинаковыми скоростями диффузии этих газов в растворах сульфида. карбамината и карбоната аммония. Однако правильнее объяснить это положение, вероятно, можно, основываясь на том, что сероводород сразу же ионизируется в растворе, образуя ионы Н8 и Н+, которые быстро реагируют с ионами гидроксила. Двуокись углерода же сначала взаимодействует с водой, образуя угольную кислоту, которая после ионизации реагирует с аммиаком. Скорость реакции гид])атации очень мала, она, по-видимому, и является стадией, определяющей скорость суммарного процесса. [c.72]

    Регенерированный абсорбент, выходящий с низа от-нарной колонны, ностунаст в сепаратор, где выводится избыток воды (для удадссния сульфата натрия пз системы). Ксилидин и вода в требуемых со-отиошсниях через холодильник подаются насосом на верх второго абсорбера. К циркулирующему потоку жидкости во втором абсорбере периодически добавляется водный раствор карбоната натрия, который образует со свободным 80 2 сульфит натрия и двуокись углерода последняя выводится из колонны с отходящим газом. Сульфит натрия взаимодействует с ионами сульфата, которые могли образоваться в результате окисления, и получающийся сульфат натрия выводится из системы в сточных водах. [c.146]

    Основное количество окиси углерода, содержащегося в неочищенном синтез-газе, сначала подвергают каталитической конверсии взаимодействием с водой с образованием двуокиси углерода и дополнительного количества водорода. Двуокись углерода легко можно удалить абсорбцией водой или щелочными растворителями, кмк было подробно описано в предыдущих главах однако получаемый газ все ехце содержит 2—4% окиси углерода, которую необходимо удалить практически полностью, чтобы предотвратить отравление катализатора синтеза аммиака. Хотя разработаны и некоторые другие процессы удаления небольших количеств окиси углерода, например метанирование или абсорбция жидким азотом, на протяжении многих лет важное промышленное значение сохраняет процесс абсорбции медноаммиачными растворами. [c.349]

    В отличие от реакции окисления изобутана, направленной п сторону образования перекисей, было найдено, что окисление и юпана и бутана (отношение углеводорода к кислороду 9 1, температура около 450°С, время контакта — 4 сек) приводит к получению смеси продуктов, содержащей органические перекиси, перекись водорода, альдегиды, спирты, окись и двуокись углерода, воду, олефины и водород . Органические перекиси в этом случае состоят, вероятнее всего, йз оксигидроперекисей и диоксиперекисей, образующихся в результате взаимодействия 1 рисутствующих в окисляемой среде альдегидов (например, формальдегида) и перекиси водорода. В более поздней работе описан способ превращения этана в гидроперекись путем окисления при 10—80° С под действием ультрафиолетового излучения в присутствии паров ртути, цинка или кадмия в качестве [c.20]

    Матида [172, 173], исследовавший полимеризацию этиленимина, показал, что вода является инициатором реакции полимеризация, так же как двуокись углерода и различные кислоты. Полиэтиленимин можно получить также из окиои этилена я м-очевины при. нагреваиии. Растворы полимера в воде обладают основными свойствами при взаимодействии с формальдегидом образуется сшитый полимер. [c.243]


Смотреть страницы где упоминается термин Двуокись углерода взаимодействие с водой: [c.284]    [c.290]    [c.79]    [c.244]    [c.66]    [c.107]    [c.256]    [c.256]    [c.115]    [c.405]   
Лекции по общему курсу химии (1964) -- [ c.191 , c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Двуокись взаимодействие с водой

Углерода и водой



© 2024 chem21.info Реклама на сайте