Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронные спектры и основности

    В масс-спектре фракции 1 присутствуют пики с т/е 228 (100 7о), 226 (28 %), 229 (24%) и 227 (15 %). В электронном спектре основной максимум поглощения наблюдается при 258 нм, менее интенсивны максимумы 249, 273, 285, 303 нм и уширенный в области 325 нм (рис. 2,а). Сопоставление этих данных с литературными 1, 2] показывает, что фракция ПАУ со временем удерживания на колонке с обращенной фазой 7,4 мин представлена трифениленом. [c.109]


    Глава 3 Электронные спектры основных классов органических соединений [c.98]

    Электронные спектры комплексов кобальта(П) во многих случаях могут дать ценную структурную информацию. Большинство шестикоординационных комплексов имеют высокоспиновую электронную конфигурацию. Диаграмма Оргела этих комплексов представлена на рис. 10.11. Основное их состояние — Tig, и спин-орбитальное взаимодействие значительно. В комплексах этой группы теоретически допустимы три перехода  [c.106]

    Известно очень немного спектров ЭПР для " -электронной конфигурации. Основное состояние этой системы в слабом кристаллическом поле 0 не имеет орбитального углового момента, поэтому S—хорошее квантовое число. Расщепление в нулевом поле уровней +2, + 1 и О приводит к четырем переходам, если расщепление мало, как это показано на рис. 13,14, и ни к одному, если расщепление велико. Ожидаемые ян-теллеровские искажения и сопровождающие их большие расщепления в нулевом поле часто делают невозможной регистрацию спектров. [c.236]

    Наряду с обменом колебательной, вращательной в поступательной эпергии при столкновениях молекул, находящихся в основном электронном состоянии, значительный интерес представляет обмен энергии электронновозбужденных молекул. Практически единственным экспериментальным методом определения вероятности или констант скорости этих процессов является оптический метод, основанный на измерениях интенсивности электронных спектров испускания (флуоресценции). [c.100]

    Флуориметрический метод анализа основан на возбуждении электронных спектров испускания молекул определяемого вещества при внешнем УФ-облучении и измерении интенсивности нх фотолюминесценции. Для возникновения явления люминесценции молекулы вещества необходимо перевести из основного состояния в возбужденное с длительностью его существования, достаточной для осуществления излучательного электронного перехода из возбужденного состояния в основное. Это возможно для молекул с относительно устойчивым возбужденным состоянием. [c.94]

    Неорганические соединения, у которых возможен переход возбужденных электронов на основной уровень только с определенных энергетических уровней, обладают флуоресценцией. Этим требованиям удовлетворяют соединения редкоземельных элементов и урана (1П, IV, VI). Флуоресценция свойственна, в основном, органическим соединениям. Поэтому в анализе неорганических веществ используют флуорогенные органические аналитические реагенты, образующие флуоресцирующие комплексы с нонами металлов. Чем сильнее поглощает органическое соединение в ультрафиолетовой области спектра, тем интенсивней его флуоресценция. Этому условию удовлетворяют алифатические, насыщенные циклические соединения, соединения с системой сопряженных двойных связей, и в меньшей степени ароматические соединения с гетероатомами. Введение электро-нодонорных заместителей в молекулу органического соединения [c.95]


    В фотометрических методах используют избирательное поглощение света молекулами анализируемого вещества. В результате поглощения излучения молекула поглощающего вещества переходит из основного состояния с минимальной энергией , в более высокое энергетическое состояние Е . Электронные переходы, вызванные поглощением строго определенных квантов световой энергии, характеризуются наличием строго определенных полос поглощения в электронных спектрах (см. разд. 4.1.2) поглощающих молекул. Причем поглощение света происходит только в том случае, когда энергия поглощаемого кванта совпадает с разностью энергий Д между квантованными энергетическими уровнями в конечном (Ег) н начальном ( 1) состояниях поглощающей молекулы  [c.177]

    Как указывалось выще, электронные спектры люминесцирующих веществ обусловлены энергетическими переходами между невозбужденным и возбужденным состоянием молекул, атомов или ионов. Переходы из основного в возбужденное состояние характеризуются спектром поглощения, а обратные переходы — спектром испускания (люминесценции).  [c.90]

    В спектроскопии ЭПР имеется также круг объектов, которые представляют собой простейшие парамагнитные центры — электроны или дырки в твердых телах или растворах. Это могут быть, например, захваченные электроны в кристаллах, в частности различных галогенидов щелочных металлов, называемые f-центрами. При нагревании кристалла, например LiF, в присутствии паров металла и последующего быстрого охлаждения образуется вакансия аниона, занимаемая электроном, т, е. f-центр. Система имеет характерную окраску, обусловленную f-полосой поглощения в видимой области оптического спектра, а в спектре ЭПР появляется широкая полоса i -центров в области чисто спинового значения -фактора. Ширина сигнала связана с перекрыванием линий сверхтонкой структуры, обусловленных взаимодействием с ядром окружающих катионов и в меньшей степени с ядрами анионов. Плотность захваченного электрона в основном локализуется на вакансии и мало размывается на окружение, хотя между вакансией и шестью окружающими ее катионами решетки идет конкуренция за электрон. Так, при увеличении размеров катиона и постоянном анионе (вакансии) s-характер электронной плотности на шести ближайших катионах возрастает, а при одном и том же катионе и увеличении размеров аниона (от F к С1 ) 5-характер электронной плотности на катионах убывает. Существуют и некоторые другие электронно-избыточные центры и предложены различные теоретические модели их описания. [c.76]

    Колебательные уровни, между которыми происходит переход, принадлежат основному электронному состоянию молекулы. Поглощение в УФ и видимой областях спектра обусловлено переходами между электронными состояниями молекулы, и поэтому спектры в УФ и видимой областях часто называют электронными спектрами. При поглощении энергии в этой области спектра происходит одновременно и изменение в колебательных состояниях. Поэтому электронные спектры состоят из широких полос поглощения, на которых иногда видна колебательная структура, принадлежащая колебательным переходам в возбужденном электронном состоянии. [c.192]

    Рассматривая вопрос о связи колебаний молекулы с электронными спектрами, следует отметить, что электронные переходы осуществляются в течение чрезвычайно коротких промежутков времени порядка 10 —10 5 с. За это время атомы в молекуле не успевают заметно изменить свои положения, и потому геометрическая конфигурация возбужденной молекулы, а следовательно, и кинетическая энергия колебательного движения остаются теми же, что и в основном состоянии в момент взаимодействия с фотоном. Это положение получило название принципа Франка—Кондона. [c.161]

    Поскольку при обычных температурах, прн которых, как правило, записывают инфракрасные спектры веществ, возбужденные колебательные состояния заселены в незначительной степени, то спектры поглощения отвечают переходам из основного состояния в различные возбужденные состояния. Каждому такому переходу соответствует набор линий поглощения, поскольку колебательные переходы могут сопровождаться различными переходами между вращательными состояниями. При записи спектров в жидкой фазе эта система линий сливается в одну широкую полосу поглощения. Таким образом, как и электронные спектры многоатомных частиц, колебательные инфракрасные спектры представляют собой систему полос, число которых определяется в первую очередь числом колебательных степеней свободы. Только двухатомные молекулы имеют одну колебательную степень свободы. Волновые числа, соответствующие переходу в первое возбужденное состояние для некоторых двухатомных частиц, приведены ниже  [c.155]


    В спектрах поглощения рентгеновского излучения наблюдаются скачки, так называемые края полос поглощения, которые и соответствуют длинам волн излучения с энергией, необходимой для того, чтобы выбить электроны (в основном с [c.9]

    Факторы, влияющие на электронные спектры. Электронные спектры являются типичным свойством электронной системы как совокупного целого и, следовательно, свойством всей молекулы. Поэтому все факторы, влияющие на электронную систему, отражаются на электронных спектрах. При замещении алкилов вследствие эффекта гиперконъюгации уменьшается разность энергий возбужденного и основного состояний. Поэтому область поглощения соответствующих соединений смещается в сторону меньших частот (батохромное или красное смещение поглощения, батохромный эффект). Влияние алкильных и других заместителей в случае сопряженных диенов и полиенов описывается эмпирическим правилом Вудварда [64]. [c.233]

    Поглощение световой энергии в видимой и ультрафиолетовой областях связано с переходом валентных о- и я-электронов, а также неспаренных (не участвующих непосредственно в образовании связей) электронов из основного состояния в состояние с более высокой энергией (переход на свободные молекулярные орбитали). Понятно, что валентные электроны, участвующие в образовании разных связей, требуют для своего возбуждения и разную энергию. Так, наибольшая энергия требуется для возбуждения электронов, участвующих в образовании ординарных связей (ст-связей), наименьшая — для электронов, участвующих в образовании ненасыщенных связей сопряженных систем. Следовательно, характеристические линии поглощения первых будут лежать в области УФ-спектра с длиной волны менее 200 нм, и для исследования такого спектра необходимы особые вакуумные спектрофотометры. Спектр поглощения молекул, содержащих сопряженные системы, будет находиться в видимой и ближней ультрафиолетовой области исследование такого спектра можно проводить на обычном лабораторном спектрофотометре. [c.199]

    Как явствует из их названия, донорно-акцепторные комплексы [29] всегда состоят из двух молекул донора и акцептора. Донор может поставлять либо неподеленную пару электронов (п-донор), либо пару электронов л-орбитали двойной связи или ароматической системы (я-донор). Присутствие такого комплекса можно установить по электронному спектру, такой спектр (наличие полосы переноса заряда) обычно отличается от суммы спектров двух индивидуальных соединений [30]. Поскольку первое возбужденное состояние комплекса относительно близко по энергии основному состоянию, в спектре присутствует пик в видимой или близкой ультрафиолетовой области донорно-акцепторные комплексы часто бывают окрашены. Многие комплексы неустойчивы и существуют только в растворах в равновесии со своими компонентами однако известны и устойчивые комплексы, существующие в твердом состоянии. В большинство комплексов молекулы донора и акцептора входят в соотношении 1 1 или в других соотношениях целых чисел, но известны некоторые комплексы с нецелочисленным соотношением компонентов. Существует несколько типов акцепторов, и в зависимости от их природы можно классифицировать донорно-акцепторные комплексы на три группы. [c.117]

    Рис. 8.18 иллюстрирует схему возможных электронных л-л -переходов в молекуле бутадиена. Показаны электронные конфигурации различных возбужденных состояний, возникающих в результате перехода электрона с одной из занятых в основном состоянии МО на возбужденную орбиталь, так как обычно в электронных спектрах органических соединений достаточно интенсивны лишь одноэлектронные переходы. [c.311]

    Другим двухатомным свободным радикалом, для которого был обнаружен чисто вращательный спектр в микроволновой области, является радикал СЮ. Амано, Хирота и Морино [2] получили этот радикал при пропускании смеси I2 с Ог через микроволновой разряд и затем через волновод, который использовался в качестве поглощающей кюветы. Как было известно из предыдущих исследований электронного спектра, основным электронным состоянием радикала СЮ является обращенное П-состояние. Микроволновые переходы были найдены для уровней как верхней, так и нижней компонент 2П1Д и Пз/ДЗ]. На рис. 28 в виде диаграммы уровней энергии для перехода даны наблюдаемые переходы в сос- [c.57]

    Диаграммы Оргела используются для представления части той информации, которая полностью дана в диаграммах Танабе—Сугано. В диаграммы Оргела входят лишь те термы, мультиплетность которых совпадает с мультиплетностью основного состояния. С помошью диаграмм Оргела вполне можно интерпретировать электронные спектры разрешенных по мультиплетности переходов, поэтому в оставшейся части главы (например, рис. 10.9) мы часто будем прибегать к этим диаграммам. [c.83]

    Использование электронных спектров для получения структурной информации прекрасно иллюстрируют результаты исследования электронной структуры иона ванадила [38]. При интерпретации спектра ва-надил-иона VO полагают, что в связи V — О имеет место значительное я-связывание. Соединения, в которых, согласно данным рентгеноструктурного анализа, содержится группа VO , дают сходные электронные спектры переноса заряда и в твердом состоянии и в растворе. Поэтому можно предположить, что водные растворы этих комплексов содержат группы УОЩ О) , а не ViH O) . Протонирование VO в принципе должно заметно влиять на спектр переноса заряда. Предполагается, что кислород не протонируется, поскольку его основность ослаблена из-за образования я-связи с ванадием. Полный расчет по методу МО для VOiHjO) представлен в статье [38], там же дано отнесение полос в спектре водного раствора V0S04-5H20. Аналогичные исследования других окси-катионов также свидетельствуют о значительном п-связывании металл — кислород [39] и помогают установлению электронной структуры этих частиц. [c.108]

    В литературе опубликован электронный спектр трис(оксалат)хрома(1П), внесенного в решетку NaMgAl( ,04), 9Н2О. Если предположить, что это октаэдрический комплекс, то основное его состояние — а низшие возбужденные состояния (не молекулярные орбитали)—и Наблюдаемые частоты полос и коэффициент поглощения приведены ниже  [c.128]

    I, 2, 4 и 1, 2, 3. Спектры фракций № 3, 4 похожи друг на друга. Основные максимумы поглощения этих фракций и расшифровка индивидуальных углеводородов по электронным спектрам поглощения приведены в табл. 2. Появление плеча 2756—2770 А во фрак-щии № 6 говорит о присутствии тетраметилбензолов типа 1, 2, 4,5.. Максимум поглощения 2728 А во фракции № 9 свидетельству-.ет о присутствии тетраметилбензолов строения 1, 2, 3, 4. Так как максимумы поглощеиия индановых углеводородов в ультрафиолетовой области в большинстве случаев совпадают с длинами волн максимумов алкилбензолов, а интенсивность поглощения инданов лишь в 2—3 раза выше интенсивности поглощения бензолов, то в смеси углеводородов инданы могут быть обнаружены лишь в количествах более 10— 20% от общего количества углеводородов. [c.34]

    Возникновение электронных спектров. Электронные переходы. Поглощение света в видимой и ультрафиолетовой областях спектра связано с возбуждением молекулы вещества квантом света и последующими электронными переходами со связывающей (а, п) или несвязывающей (п) орбитали на разрыхляющую орбиталь (а или я ). Последняя имеет более высокую энергию и в основном (невозбужденном) состоянии свободна (вакантна). Энергии электронных переходов составляют 1,77 —6,7 Эв, что соответствует X = 700—200 нм, или 50 ООО — 16 ООО см . [c.126]

    Если возбужденная молекула при излучении возвращается на значительно более низкий колебательный энергетический уровень, возникает спектр флуоресценции. По правилу Стокса длина волны флуоресценции больше длины волны возбуждающего излучения или, по крайней мере, имеет такую же величину. Продолжительность возбужденного состояния при этом составляет примерно 10 с, поэтому флуоресценция наблюдается практически одновременно с возбуждением. Иногда излучение может быть значительно более длительным (в пределах нескольких секунд). Такое явление называют фосфоресценцией. При достаточно большом давлении газа или в конденсированной фазе электроны в возбужденном состоянии из-за взаимных столкновений часто переходят на самый нижний энергетический колебательный уровень, прежде чем произойдет излучение энертии. Спектр флуоресценции характеризует колебательную структуру основного состояния электронов, спектры поглощения преимущественно отражают колебательную структуру возбужденного состояния. Поэтому полосы флуоресценции часто являются зеркальным отражением полос поглощения. [c.354]

    Существует несколько методов множественного резонанса в спектроскопии ЭПР, из которых основными являются рассматриваемые ниже двойной электрон-ядерный резонанс (ДЭЯР) и электрон-электронный двойной резонанс (ЭЛДОР или ЭДР) . Как правило, хорошо разрешенные спектры ЭПР регистрируются для невязких жидкостей и кристаллов при низких температурах, а для многих структурно неупорядоченных сред характерны неразрешенные или плохо разрешенные спектры. Основной задачей развития указанных специальных методов явилось повышение спектрального разрешения. В методе ДЭЯР оказывается одновременное воздействие на систему при неразрешенной сверхтонкой структуре в спектре ЭПР двух переменных электромагнитных полей, одно из которых вызывает электронные, а второе — ядерные зеемановские переходы. [c.79]

    Электронные спектры веществ снимают в растворе. В качестве растворителей применяют жидкости, наиболее прозрачные в УФ-области. Обычно это вода, этиловый спирт, гексан, ацетонитрил. Если концентрация исследуемого вещества (с) выражена в молях на литр, а толщина поглощающего слоя с1) - в сантиметрах, то интенсивность монохроматического светового потока (7), прошед-1пего через слой раствора, по закону Бугера Ламберта - Вера (основной закон светопоглощения) равна  [c.273]

    Физические методы определения структуры молекул занимают теперь центральное место в арсенале средств, испол ьзуемых хими ками -органи ками. Элементарное знакомство с важнейшими из них осуществляется уже в общем курсе и практикуме по органической химии. Современные учебники по органической химии содержат основные сведений о физических методах структурного анализа, а иногда — примеры и задачи по интерпретации простейших спектров протонного магнитного резонанса, иноракрасных и электронных спектров. Для более глубокого изучения физических методов и систематического развития необходимых практиче-ск 1Х навыков служат специальные циклы лекций, лабораторные и семинарские занятия для студентов старших курсов и аспирантов. Литература на эту тему весьма многочисленна и разнообразна по содержанию и уровню изложения. Однако учебных пособий, которые служили бы для выработки и закрепления элементарных навыков истолкования спектральных данных и результатов измерений важнейших физических параметров молекул, явно недостаточно, особенно сборников примеров и упражнений с иллюстрациями, точно воспроизводящими в достаточно крупном масштабе подлинные спектры, полученные на современной аппаратуре. Такие пособия необходимы для тренировки визуального восприятия и интерпретации спектрограмм, оценки их качества, развития элементов зрительной памяти, очень облегчающих и ускоряющих расшифровку молекулярных спектров. Данная книга [c.3]

    Спектроскопические методы структурного анализа связаны с поглощением молекулами лучистой энергии. Обычно считают, что молекулы могут поглощать энергию в четырех областях электромагнитного спектра (рис. 6-1), в результате чего появляются так называемые вращатвльны , колебательно-вращательные, колебательные и электронные спектры. Для возбуждения электронов обычно требуется энергия порядка 1,5—8,0 эв, т. е. энергия, которая обусловливает излучение в видимой области или в близкой ультрафиолетовой области спектра, т. е. в границах длин волн от 1500 до 8000 А. Электронный спектр позволяет получить дан-пые о строении как основного, так и возбужденного состояний мо- [c.194]

    Коротковолновая часть оптических электронных спектров формируется, как правило, в результате переходов с переносом заряда, которые проявляются в виде [пироких и интенсивных полос па краю видимой и в основном ближней УФ-областн. Термин перенос згряда в случае оксидов имеет вполне отчетливый смысл. Рс 1, идет о возбуждении электронов с несвязывающих орбиталей кислорода зоны М0 в зону (п—1) -состояний металла (см. рис. 8.3). Легко видеть, что край полосы в спектре переноса заряда соответствует переходу э.лектронов с верхней заполненной орбитали валентной зоны на нижнюю вакантную орбиталь зоны проводимости. Соответствующий энергетический зазор определяется в физике твердого тела термином ширина запрещенной зоны (в строгом смысле, при абсолютном нуле). Это фундаментальная характеристика твердого вещества. В случае, когда кран полосы в спектре переноса заряда выражен отчетливо, возможно достаточно надежное определение ширины запрещенной зоны АЕ (при соответствующей температуре) графическим методом, как это показано на рис. 8.6 (зная >1.кр, можно определить АЕ). [c.167]

    При расчете молекул, содержащих несколько атомов, решение векового уравнения позволяет найти энергетические уровни электронов, разности которых приблизительно определяют частоту электронного спектра. Число таких энергетических уровней сравнительно велико. Если учесть, что оптические переходы возможны не только между основным и возбужденными, но и между двумя возбужденными состояниями, можно ожидать появления большого числа спектральных линий. Однако в спектре даже сравнительно сложных молекул (бензол, хинолин и т. п.) наблюдается всего несколько линий, характерных для -соответствующего я-электронного фрагмента. Например, в спектре бензола отмечается три линии вблизи частоты 3600 см- одна интенсивная и две слабые. Причина этого заключается в том, что далеко не между всеми энергетическими уровнями оптический переход разрешен. Как известно из теории квантовых переходов под влиянием световой волны, вероятность дипольного перехода между уровнями Ея и Ем пропорциональна матричному элементу Окм= < к1г1 м>, значение которого при наличии разной пространственной симметрии функций и Ч м становится равным нулю (см. 7 гл. IV). Если симметрия молекулы нарушается (например, вследствие движения ядер, влияния полей, действующих [c.135]

    Вопрос о том, какой уровень приближения следует выбрать для решения той или иной задачи, решается в прямой зависимости от характера последней. Большая часть задач теоретической химии носит качественный характер, и ответы на них могут быть получены при помощи весьма простых расчетов, воспроизводяш1их лишь самые главные свойства волновых функций (узловые характеристики и порядок энергетических уровней граничных МО). Другая часть задач требует точной количественной оценки какого-либо одного или нескольких структурных и физических параметров (теплоты образования, электронного спектра поглощения и т. д.), тогда как остальные свойства молекулы могут быть оценены менее точно. Обе эти группы задач, как правило, целесообразно решать, используя так называемые полуэмпирические методы квантовой химии, в которых вычисления ряда интегралов в уравнениях (4.62) заменяются подстановкой эмпирических параметров, а большей частью этих интегралов вообще пренебрегают. Некоторые современные полуэмпирические методы обладают достаточно большой гибкостью, т. е. параметризованы таким образом, что позволяют с хорошей точностью предсказывать целый ряд свойств основных и возбужденных электронных состояний молекул при довольно малых затратах машинного времени. [c.204]

    Уравнения (7.63) были предложены Дж. Поплом (1953). Метод Попла, чаще его называют методом Паризера—Парра—Попла (ППП), — это весьма точный полуэмпирический метод. Вначале метод был параметризован для воспроизведения электронных спектров молекул. Позднее Дьюар (1965) предложил новую параметризацию для расчета свойств молекул в основных электронных состояниях. [c.241]

    Для тетраэдрического поля лигандов порядок расположения расщепленных состояний каждого терма обращен по сравнению с октаэдрическим полем, поэтому диаграммы расщепления на рис. 60 и 61, называемые диаграммами Оргела, исчерпывают все возможности для — -конфигураций центральных ионов в тетраэдрическом и октаэдрическом полях лигандов. На рис. 60, 61 показано расщепление лишь термов основных состояний, которое, как можно видеть, возрастает с увеличением силы поля лигандов. В общем случае, пользуясь схемой составления термов многоэлектронных атомов из микросостояний и определив термы возбужденных состояний, можно затем по правилам (6.11) получить, учитывая условия дополнительности, полные диаграммы расщеплений. Знание их особенно важно для интерпретации электронных спектров поглощения. Так, из схеуы расщепления на рис. 60 следует, что для октаэдрических комплексов Ni2+( ) в длинноволновой области поглощения возможны три разрешенных правилами отбора (А5 = 0, Д1= 1) электронных перехода  [c.186]

    Осталось определить резонансный интеграл р. Как и в методе МОХ, величину р не удается параметризовать так, чтобы одновременно удовлетворительно рассчитывать свойства основного и возбужденных состояний, например теплоты образования и электронные спектры поглощения. Проиллюстрируем этот факт на примере молекулы бензола. Вследствие высокой симметрии этой молекулы ( )б/ ) коэффициенты в разложении МО по АО можно получить без процедуры самосогласования. Кроме того, все диагональные элементы матрицы плотности Рцц=1, так как бензол является альтернантым углеводородом. Энергии перехода в возбужденные состояния для бензола имеют вид [c.271]

    Электронные спектры поглощения — один из основных физических методов исследования, к которому обращается иолуэмпириче-ская квантовая химия как к источнику экспериментальных данных для подбора параметров и проверки точности расчета. Вместе с тем интерпретация электронных спектров (отнесение наблюдаемых полос поглощения или испускания к определенным типам переходов в молекуле, анализ перераспределения электронной плотности при возбуждении и т. д.) нуждается в проведении квантовохимических расчетов. Эта взаимосвязь и привела к тому, что электронные спектры поглощения сопряженных систем являются наиболее точно рассчитываемой с помощью метода ППП наблюдаемой величиной. [c.289]


Смотреть страницы где упоминается термин Электронные спектры и основности: [c.261]    [c.91]    [c.144]    [c.162]    [c.243]    [c.223]    [c.432]    [c.268]    [c.349]   
Успехи стереохимии (1961) -- [ c.597 ]




ПОИСК





Смотрите так же термины и статьи:

Спектры электронные



© 2025 chem21.info Реклама на сайте