Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен разложение

    Нержавеющие стали хотя и стойки к перекиси, но вызывают ее разложение, особенно при длительном контакте. К концентрированной перекиси водорода устойчивы поливинилхлориды, полиэтилен, тефлон, полистирол, пластифицированные трикрезилфосфатом ме-тилметакрилаты. Для набивок пригоден асбест, пропитанный парафином или силиконовыми смазками. [c.132]

    Разложением диазометана в эфирном растворе в присутствии катализатора (медный порошок или трехфтористый бор) можно получить полиэтилен линейного строения  [c.210]


    Полиэтилен после трехлетней наружной экспозиции стал хрупким, а содержание кислорода в нем достигло 3%. Значительно ускоряется в условиях наружной экспозиции разложение поливинилхлорида в сравнении с выдержкой его в темноте или в закрытых помещениях. [c.89]

    Температура плавления его 103—104°С, температура разложения 120° С. Этот порофор представляет собой мелкий порошок, что обеспечивает возможность его равномерного смешения с полиэтиленом. Последний рекомендуется применять с этой же целью в виде мелких гранул. Желательно полиэтилен и порофор предварительно смешивать с инертным наполнителем (например, тальком) в соотношении 1 1. Перемешанный с порофором полиэтилен загружают, как обычно, в бункер шприц-пресса. Газообразование происходит в цилиндре и головке шприц-пресса одновременно с наложением изоляции. Реакция газообразования протекает по уравнению  [c.102]

    Перекись с полиэтиленом может быть смешана при температуре 110° С. Чтобы избежать преждевременную вулканизацию, температура разложения перекиси должна быть выше этой температуры. Перекись дикумила удовлетворяет этому требованию (температура разложения 124—160°С), чем определяется выбор ее как вулканизующего агента для полиэтилена и некоторых эластомеров. Другие перекиси, в частности применяемая в других случаях перекись бензоила, разлагаются при 80° С, поэтому непригодны. [c.105]

    Комбинированная промывка полиэтилена спиртом, а затем водой позволяет получить полиэтилен с зольностью, не превышающей 0,01—0,12%. Промывка полиэтилена лишь одной водой дает полимер с высокой зольностью (порядка 0,6%), так как при разложении катализатора водой образуются окислы титана я алюминия, которые остаются в полимере. [c.123]

    Полиэтилен со строго линейной формой макромолекул можно получить разложением диазометана в растворе на холоду в присутствии медного порошка в качестве катализатора [c.303]

    Ядерные излучения используют для получения новых веществ, для улучшения свойств полимеров и т. д. Большой интерес представляет изменение свойств различных материалов под влиянием этих облучений. Например, оказалось, что из предварительно облученного угля легче извлекается частый его спутник германий каучуки вулканизуются без добавок серы полиэтилен становится более устойчивым к нагреванию и органического стекла (см. гл. ХП1) нагреванием и облучением можно получить пенопласт и т. д. Ядерные излучения возбуждают множество цепных реакций. В полупроводниковых кристаллах они увеличивают число различных дефектов, что резко изменяет их свойства, особенно электрофизические. В связи с этим упомянем о чувствительности к излучениям, радиодеталей, применяемых в управляющих и регистрирующих приборах атомных реакторов. Радиолампы меняют параметры незначительно. Полупроводниковые приборы теряют свои свойства уже при малой дозе облучения. Масляные конденсаторы вспучиваются при облучении вследствие разложения масла. Керамические и слюдяные конденсаторы меняют свойства только после длительного облучения. У металлических сопротивлений электрические свойства практически не меняются, а у угольных сопротивление уменьшается. Магнитные свойства силиконового железа, пермаллоя (см. гл. ХИ, 7) и др. ухудшаются. Как видно, электронные приборы можно использовать в полях излучений (в частности и космических) при условии не слишком больших доз облучения и очень осмотрительно. [c.47]


    Технологическая схема производства ПЭВД в трубчатом реакторе представлена на рис. 4.2. Входной поток этилена поступает в буферную емкость 1, где смешивается с возвратным потоком этилена низкого давления. Из буферной емкости 1 смешанный этилен выходит двумя потоками. Первый, поступая на участок 2 смешивания с инициатором — кислородом, подается к компрессорам первого каскада 3 и далее разделяется на два потока при помощи регулятора соотношения 4. Регулятор соотношения обеспечивает заданную концентрацию инициатора — кислорода в обоих исходных потоках реакционной смеси. Второй поток, выходящий лз буферной емкости 1, после сжатия до промежуточного давления компрессорами первого каскада 3 смешивается с возвратным потоком этилена промежуточного давления и разделяется на два равных потока. Исходные потоки реакционной смеси подаются ж компрессорам второго каскада 5 и б, которые создают рабочее давление. Далее реакционная смесь нагревается в подогревателях 7 ж 8 перегретой водой, а затем поступает в трубчатый полимери-зационный реактор. Реактор состоит из двух зон 9 и 10. На входе в каждую из зон реактора в реакционную смесь вводится второй инициатор — смесь органических перекисей, которая имеет более низкую температуру разложения по сравнению с кислородом. В рубашке реактора противотоком циркулирует перегретая вода. Выходящая из второй зоны реактора смесь этилена и полиэтилена поступает в холодильники 11, 12 и далее в отделители промежуточного 13 и низкого 24 давления, В отделителях непрореагировавший этилен выделяется из смеси. Расп пав полиэтилена поступает в гранулятор 15. Приготовленный полиэтилен в виде гранул направляется для дальнейшей переработки или отгружается потребителям. Возвратные потоки этилена подаются в исходную смесь. В цикл возвратного газа низкого давления подается модификатор — пропан. Для контроля за качеством продукции, в частности для определения показателя текучести расплава, используют полиэтилен после гранулирования. [c.160]

    При компаундировании асфальтита с термопластичными полимерами полиэтиленом, полистиролом и сополимером этилена с пропиленом получены пластики, которые в 20-40 раз превосходят асфальтиты по диэлектрическим свойствам, что делает перспективными их применение в высокочастотной технике (табл. 105). Преимуществом асфальтовых пластиков является их низкая стоимость, повышенная термостойкость, выражающаяся в более высокой температуре начала разложения компаунда. [c.150]

    В настоящее время в мировой промышленности существуют четыре метода производства полиэтилена. Один метод при высоком давлении и три — при низком давлении. Полиэтилен высокого давления (ПЭВД) имеет целый ряд преимуществ по применению в тех областях, где требуется высокая прозрачность и чистота материала, поскольку не содержит остатков катализатора. Здесь рассматривается один из возможных способов получения ПЭВД. Одним из основных элементов технологической схемы непрерывной полимеризации этилена при высоком давлении является химический реактор. Подлежащий полимеризации газ после предварительной обработки поступает в химический реактор с мешалкой при температуре 30-50 °С. В качестве инициатора полимеризации этилена при высоком давлении используют молекулярный кислород. Процесс полимеризации очень чувствителен к концентрации кислорода, поэтому дозирование кислорода должно быть стабильным. В результате реакции выделяется большое количество теплоты и в реакторе устанавливается относительно высокая температура, которую, ввиду опасности взрывного разложения, следует ограничить максимальной величиной в 280 С. Поэтому степень превращения этилена в реакторе около 20 %. Время пребывания tau реакционной смеси колеблется в пределах 20-300 с. [c.189]

    В состав большинства трассирующих боеприпасов входит ряд основных материалов, которые приводятся далее в порядке убывания их содержания нитрат стронция, пероксид магния и стронция, поливинилхлорид, резинат кальция, пероксид бария, оксамид, стеарат цинка, полиэтилен, оксалат стронция, диоксид свинца. Нитраты стронция и магния составляют 60 % от общего количества. Использованный пиротехнический материал обычно сжигают или подвергают химическому разложению, что приводит к загрязнению окружающей атмосферы и водоемов. [c.254]

    Если Гст ниже комнатной температуры, то кристаллизация происходит при обычных условиях (полиэтилен, полиамиды, политетрафторэтилен). У полимеров с несимметричным расположением полярных групп, когда Гст нередко оказывается выше температуры разложения, можно добиться кристаллизации, искусственно снижая температуру стеклования, например введением пластификатора. В случае же полимеров с низкой Гст (натуральный каучук) некоторые пластификаторы, наоборот, тормозят кристаллизацию. [c.443]


    Полипропилен имеет более высокую температуру плавления, чем полиэтилен и соответственно более высокую температуру разложения. Чистый изотактический полипропилен плавится при 176 °С. Максимальная температура эксплуатации полипропилена 120—140 °С. Все изделия из полипропилена выдерживают кипячение и могут подвергаться стерилизации паром без какого-либо изменения их формы или механических свойств. [c.33]

    Полиэтилен разлагается полностью в интервале температур 400—520° С через 30 мин. от начала опыта. Подобное явление наблюдается и при разложении полиэтилена в вакууме (1 мм рт. ст.) [4]. [c.37]

Рис. 5. Зависимость скорости разложения веществ от те.мпературы / — полиэтилен 2 — ацетилцеллюлоза 3 каучук 4 — эпоксидная смола 5— изопропилфенантрен фенол-формальдегид-ная смола Рис. 5. <a href="/info/361093">Зависимость скорости</a> <a href="/info/39340">разложения веществ</a> от те.мпературы / — полиэтилен 2 — ацетилцеллюлоза 3 каучук 4 — <a href="/info/12174">эпоксидная смола</a> 5— изопропилфенантрен <a href="/info/27920">фенол-формальдегид</a>-ная смола
    Молекула этилена СНа=СНа имеет симметричное строение и ие содержит полярных заместителей Этим объясняется его невысокая химическая активность В зависимости от способа получения различают полиэтилен высокого и низкого давления Полимеризация этилена по радикальному механизму протекает при высоком давлении (200—300 МПа) и температуре 180—200 С Для инициирования полимеризации применяют молекулярный кислород или органические пероксиды, при термическом разложении которых образуются свободные радикалы Началом реакции является присоединение этилена к свободному радикалу [c.144]

    Выделенные бензин и циклогексан направляются на ректификацию, а выпавшие в осадок полиэтилен, воск и продукты разложения катализатора направляются в отвал или на сжигание. [c.220]

    Полученные описанным способом алкплаты алюминия можно также подвергнуть разложению водой с образованием смесей парафиновых углеводородов, начиная от мягкого и твердого парафина и до углеводородов, аналогичных полиэтилену, но не столь высокого молекулярного веса. [c.68]

    Как уже отмечалось выше, полиэтилен является родоначальником высокомолекулярных алифатических углеводородов. Хотя состав его незначительно колеблется, например, вследствие наличия небольшой непредельности, все же его основные свойства обусловлены простотой строения. Другие члены этого семейства включают полиметилен, полученный при разложении диазометана [1], продукты разложения других диазоуглеводородов, углеводороды, полученные по процессу Фишера— Тропша и ГайдроЯолз, или гидрированные полибутадиены [17]. [c.168]

    Были получены также углеводороды путем взаимодействия этилена, окиси углерода и водорода в присутствии катализаторов Фишера—Тропша. Характер этих соединений по своим свойствам варьирует в широких пределах — от масел до хрупких парафинов и от гибких пластичных полимеров, как полиэтилен, до очень твердых полимеров, которые получаются при разложении диазометана. Эти различия в свойствах являются результатом двух независимых друг от друга структурных факторов. [c.168]

    Баклей [6] также получил нерегулярно разветвленные углеводороды путем совместного разложения диазометана и диазоэтана. При применении смесей, содержащих небольшие количества диазоэтана, были получены не растворимые в эфире кристаллические полимеры, напоминающие полиэтилен. Если же в смеси содержалось много диазоэтана, то получались крупные стеклообразные продукты, напоминавшие полиэтилиден. [c.170]

    Реакции Циглера открывают совершенно новые пути использования олефинов синтез полиэтиленов и димеров олефинов для превращения в синтетические каучуки и ароматические углеводороды, получение первичных спиртов, синтетического волокна и т. д. Полимеризация этилена в смазочные масла в Германии проводится с 95—99% этиленовой фракцией путем обработки ее, после очистки от кислорода и сернистых примесей, хлористым алюминием при 180—200° и 10—25 ат. Давление в автоклавах при этом процессе приходится регулировать, так как оно непрерывно растет из-за образования газов (метана, этана и других углеводородов). Сырой полимеризат после дегазации нейтрализуют при 80—90 взвесью извести в метаноле (разложение А1С1,-комплекса), фильтруют центрифугируют. Из остаточных газов выделяют этилен, который поступает обратно на полимеризацию. Для обеспечения низкой температуры застывания и пологой температурной кривой вязкости к таким смазочным маслам прибавляют эфиры адипиновой кислоты или другие добавки [18]. [c.597]

    I. Как уже было указано, деполимеризация высокомолекулярных соединений часто происходит при нагревании до высокой температуры Из некоторых полимеров (например, эфиров полиметакриловой кислоты при 200° снова образуется исходный мономер в других случаях (на пример, полиэтилен) происходит беспорядочный разрыв цепей или от щепляются продукты разложения (уксусная кислота из поливинилаце тата, НС1 из поливинилхлорида и т. д.). [c.949]

    Регулярность структуры. Кристаллизоваться могут только такие полимеры, молекулы которых построены регулярно. Б гомополимерах может возникнуть нерегулярность за счет разного пространственного расположения заместителей. Поэтому к кристаллизации способны только стереорегулярные полимеры. Чем больше нарушений регулярности в полимере, тем меньше содержание его кристаллической части. В таких промышленных полимерах, как полистирол или полиметилметакрилат, заместители расположены нерегулярно, эти полимеры аморфны и не содержат кристаллической части. Поливинилхлорид содержит сильно полярные атомы хлора, которые взаимно отталкиваются и поэтому значительная часть макромолекул поливинилхлорида построена относительно регулярно даже при получении полимера методом эмульсионноГ полимеризации. Поэтому поливинилхлорид частично кристаллизуется. В полиэтилене нет заместителей, поэтому полиэтилен мог Оы быть идеально кристаллическим. Однако в условиях синтеза в макромолекулах его возникают разветвления, которые нарушают регулярность, и это приводит к снижению степени кpи тaJrличнo ти в тем большей степени, чем больше разветвлений. Так, полиэтилен, полученный путем разложения диазометапа (так называемый полиметилен), является полностью линейным. Степень кристалличности достигает в нем 95%. Полиэтилен высокой плотности, полученный на катализаторах Циглера — Натта, разветвлен в большей степе- [c.182]

    Полиэтилен. Строение полиэтилена схематически представлено на рис. 2. Степень кристалличности, зависящая от числа боковых цепей в молекулах полимера, закономерно возрастает от обычного полиэтилена, приготовленного полимеризацией под высоким давлением, к полимеру, получаемому при применении новых твердых катализаторов. Боковые цепи, связанные с главной цепью полимера, создают аморфные зоны, так как нарушают регулярность строения, обусловливающую кристалличность продукта. Кристалличность обычного промышленного полиэтилена вследствие значительной разветвленности его строения, составляет примерно 60—70% [82]. Полиметилен, полученный разложением дпазометана, имеет линейную цепь, состоящую из метиленовых групп кристалличность его превышает 95% [54]. Между обеими этими крайностями находятся новые типы полиэтиленов со степенью кристалличности в пределах 70-95%. [c.290]

    Механохим. разложение м.б. полным или частичным. Пример полного разложения-инициирование ударом распада нек-рых ВВ (напр., азидов). Сравнительно легко разлагаются, выделяя воду, кристаллогидраты, напр, медный купорос и каолин более трудно и лишь частично-нитраты, карбонаты и др. соли. При мех. деструкции полимеров связи осн. цепи разрываются по гомолитич. механизму. Энергетич. выход разрывов с образованием своб. радикалов увеличивается с ростом жесткости полимера от 10 моль/МДж (полиэтилен) до 10 (сшитые полиэфиракрилаты). В результате снижается мол. масса, а вторичные радикальные р-ции приводят к разветвлениям и сшивкам макромолекул. В присут. кислорода своб. радикалы инициируют цепное окисление, к-рое иногда вызывает глубокие изменения структуры и св-в полимера (напр., пластикация каучуков). [c.77]

    Образующиеся продукты разложения растворимы в спиртах и в спирто-бензиновых смесях. Из аппарата 7 суспензия полиэтилена поступает на центрифугу 8, откуда спирто-бензиновая смесь передаегся на нейтрализацию метилатом натрия и далее на регенерацию. Полиэтиленовая паста промывается в аппарате 9 спир-то-бензиновой смесью. Окончательная промывка полимера проводится на центрифуге 10 регенерированным растворителем или водой. Отжатый полиэтилен поступает на сушку в кипящем слое горячим азогом, а затем —на грануляцию. [c.78]

    Проба на хлоропреновый каучук, поливинилхлорид и хлорсульфированный полиэтилен [209]. Для установления природы полимера около 0,3—0,4 г мелконзмельченной пробы (после экстракции) помещают в пробирку с 5 мл азотной кислоты плотностью 1,40 г/см и нагревают до кипения в пламени газовой горелки. В присутствии хлоропрена наблюдается разрушение кусочков резины и продукты разложения однородно распределяются в растворе. В присутствии хлорсульфированного полиэтилена или по-лив1инилхлорида кусочки пробы остаются даже после кипячения. [c.85]

    Из этих данных следует, что ацетилцеллюлоза ведет себя в процессе пиролиза несколько иначе, чем полиэтилен. При температуре 80—100° С (через 4—5 мин. после олыта) происходит некоторое изменение веса (от 0,42 до 0,40 г), сопровождающееся выделением влаги в течение 10 мин. При нагреве от 200 до 300° С. существенных изменений веса вещества не обнаружено. При температуре выще 340° С термогравиметрическая кривая идет круто вниз, что обусловлено резким изменением веса (от 0,38 до0,04г). Значительное разложение вещества установлено в интервале 340—450° С, которое завершается через 25 мин. от начала опыта. Дальнейшее изменение веса ацетилцеллюлозы с повышением температуры незначительно. После опыта на стенках тигля образуется остаток (10% от взятой навески) в виде черного кристаллического налета. [c.38]

    Установлено, что начальная температура разложения полиэтилена составляла 400°С, каучука 350°С, ацетилцеллюлозы П0°С, эпоксидной смолы 100° С и изопропилфенантрен-фенол-формальдегидной смолы 100° С. Однако этот фактор не определяет термическую устойчивость вещества при нагреве. Так, полиэтилен, имея наиболее высокую начальную температуру разложения, полностью разлагается в течение 10 мин., каучук за это же время разлагается на 99% в течение 10 мин., эпоксидная смола — на 87% за 12—15 мин., изопропилфенантрен-фенол-формальдегидная смола —на 45—507о за 30—35 мин. [c.39]

    Тун [43] применил метод дробного осаждения для фракционирования цолиэтилена низкого давления в системе ксилол (растворитель)— триэтиленгликоль (осадитгль) были выделены 10—12 фракций. Было установлено, что полиэтилен типа марлгкс-50, как и полиэтилен, полученный разложением диазометана, имеет очень широкую кривую распределения и содержит значительное количество низкомолекулярных фракций (рис. 18). [c.36]

    Термическая деструкция полиэтилена протекает по механизму, совершенно противоположному механизму разложения двух ранее рассмотренных полимеров. Однако наличие разветвленности в полимере изменяет механизм, по-видимому, вследствие увеличения отношения внутримолекулярной передачи к межмолекулярной [87]. При пиролизе любого полиэтилена выделяется не более 1% мономера. Молекулярные веса полиэтиленов резко уменьшаются [48]. Методом инфракрасной спектроскопии было показано, что на начальных стадиях деструкции разветвленного полиэтилена винильные группы образуются медленнее, чем двойные связи других типов. Это указывает на преимущественный разрыв цепей по местам разветвлений или вблизи этих мест. Ход изменения среднечисловой СП для линейного полиэтилена (полиметилен, полученный полимеризацией диазометана под действием эфирата трехфтористого бора) представлен кривой В на рис. 102. Эта кривая показывает быстроту падения СП при разрывах, протекающих по закону случая. При конверсии в пределах 2% СП уменьшается в 1000 раз. Кривые скоростей для сильно разветвленного полиэтилена показаны на рис. 105. Отсутствие максимума и форма кривых указывают на реакцию с большой длиной зипа с другой стороны, кривые линейных полимеров, имеющие максимумы, хорошо согласуются с теорией деструкции по закону случая. На рис. 103 приведена скорость выделения летучих веществ из линейного полимера с молекулярным весом около 5 000 000. Полагая L = 72, из величин максимумов можно непосредственно получить константы скоростей деструкции по закону случая. Были вычислены теоретические кривые, имеющие то же значение максимума оказалось, что они хорошо согласуются с экспериментальными данными. Для константы скорости получено следующее выражение  [c.183]

    Исследовали и другие полимеры [И—13], включая полиэтилен, натуральный каучук, поликсилилен, полифепил, полиамиды и целлюлозу. Из них получается много различных веществ в большинстве случаев соответствующие ноны с трудом поддаются идентификации. Однако наиболее крупные из наблюдаемых масс для сравнения приведены в табл. 33. Эти данные интересны потому, что они позволяют установить минимальную величину Ь — степени полимеризации наименьшего полимера, который еще не может испариться без разложения. Легко видеть, что Ь может принимать довольно большие значения, и, следовательно, молекулярный вес разлагающегося полимера может быть довольно большим. Молекулярный вес разлагающегося полимера достигает значения Ь при 100%-ной конверсии. [c.220]

    Хотя данные о выходах мономера дают ценную качественную картину реакций деполимеризации различных полимеров, очевидно, что не только структурные факторы должны играть в процессах термодеструкции определенную роль. Из данных по характеристике скоростей процессов термодеструкции, приведенных в четвертой колонке обсуждаемой таблицы, видно, что они не всегда соответствуют результатам, которых можно было бы ожидать на основании выходов мономера. В соответствии с обсужденной выше теорией следовало ожидать, что максимальная скорость реакции должна наблюдаться нри образовании 20—30% летучих продуктов деструкции и низких выходах мономера. Но тогда возникает вопрос почему при термодеструкции полистирола максимальная скорость реакции наблюдается при превращении в летучие продукты 40% полимера и почему максимальная скорость реакции имеет место для а-заме-щенных нолистиролов при ожидаемой на основании теории степени превращения 25 %, тогда как при термодеструкции этих полимеров выходы мономера даже выше, чем при термодеструкции полистирола При термодеструкции таких полимеров, как полиэтилен и полипропилен, скорость реакции вообще не имеет максимума, несмотря на то что, судя по образующимся продуктам деструкции, в этих процессах преобладают реакции передачи цепи. С другой стороны, нри деструкции таких полимеров, как полиметакрилат и полиметакрилонитрил, которые на начальных стадиях термодеструкции образуют почти чистый мономер, очень быстро повышается их устойчивость к термическому разложению, и для дальнейшего превращения их в летучие продукты требуется применение гораздо более высоких температур, причем в этих условиях образуются отличные от мономера осколки полимерной цепи. [c.26]

    Уолл и Страус [53, 54] произвели сопоставление характера кривых скорости деструкции ряда препаратов полиэтилена, характеризующихся определенной степенью разветвленности. Оказалось, что не только линейный полиэтилен, но и линейный полипропилен, а также линейные сополимеры этилена и пропилена обладают максимумами скорости термодеструкции. Эти максимумы не наблюдаются для препаратов разветвленного полиэтилена и полипропилена, для сополимеров, полученных при линейной сополимеризации этилена с б утиленом-1 и амиленом-1, а также для сополимеров, которые образуются при разложении смесей диазометана и диазогексана. Максимум скорости при термодеструкции вновь появляется у сополимеров диазометана и диазоэтана. Следовательно, протекание термодеструкции по закону случая, поскольку это проявляется в наличии максимума на кривой, характеризующей скорость реакции, имеет место только для таких препаратов полиэтилена, в молекуле которых разветвления представляют собой метильные группы, в то время как препараты полиэтилена, содержащие боковые этильные и более длинноцепочечные алкильные группы, деструктируются не по закону случая, что находит свое выран<ение в непрерывно уменьшающейся скорости реакции. [c.51]

    Шелтон и Винсент [2] и Бейтман с сотр. [3] предположили, что для большинства полимеров разложение перекисей, указанное в реакции (Х1П-4), является основным источником радикалов, которые инициируют окисление. В процессе переработки полимеров обычно образуются в небольших количествах перекиси и другие примеси. На первых стадиях окисления Шелтон наблюдал изменение скорости, которое он объяснил началом бимолекулярного разложения, по мере того как накап.т1ивались гидроперекиси. Большинство полимерных углеводородов окисляются с заметной скоростью при действии ультрафиолетового излучения и/или повышенной температуры. В условиях атмосферных воздействий у полиэтилена, нанример, менее чем через 2 года происходит ухудшение механических и диэлектрических свойств [4, 5]. Как полиэтилен, так и полипропилен окисляются с заметной скоростью в темноте при 60° [6]. Фотоокисление полиэтилена становится заметным только через несколько месяцев экспозиции на открытом воздухе [4, 5]. Ионы некоторых металлов увеличивают скорость инициирования, ускоряя разложение гидроперекисей, вероятно, путем гомолитического распада их на радикалы. Медь является одним из активных катализаторов реакций окисления полиоле-фина. Этот эффект значительно больше для полипропилена, полиизобутилена и других полиолефинов аналогичного строения, содержащих больше третичных атомов углерода в основной цепи, чем в молекуле полиэтилена. Некоторые остатки катализатора, удерживаемые полимерами в процессе полимеризации, становятся активными катализаторами окисления. [c.452]

    Фирма Бритиш Петролеум совместно с фирмой Дистиллере на основании исследований, проведенных в 1947 г., реконструировала завод в Грэиджмаунте и теперь он является одним из крупнейших заводов по выработке нефтехимических продуктов. Сырьем на этом заводе служат газы термического разложения нефтяных фракций. Получаемые на нем первичные продукты этиловый спирт, полиэтилен, стирол, фенол, ацетон, изопропиловый спирт и тетрамеры пропилена перерабатываются далее в каучуки, пластмассы, моющие вещества и т. д. Мощность завода по исходному газовому сырью была в 1955 г. 198 тыс. т г, а в 1957 г. возросла до 265 тыс. т. Нефтехимический комплекс в настоящее время расширяется в результате строительства еще двух полиэтиленовых установок фирмы Бритиш Кемикл мощностью И тыс. т и фирмы Юнион Кэрбид мощностью 12 тыс. т [10, 11 ]. [c.11]

    Наилучшей гарантией стабильности перекиси водорода является обеспечение ее чистоты как при производстве, так и в процессе хранения, транспорта и перекачек. При попадании в перекись водорода небольшого количества вредных примесей стабилизаторы оказываются достаточно эффективными, нри значительном загрязнении никакие стабилизаторы не могут затормозить процесса ее разложения. С повышением температуры чувствительность перекиси водорода к ката-лизируюш,ему действию примесей увеличивается. Концентрированную перекись водорода храпят и транспортируют в специальных емкостях (резервуарах, цистернах, бочках), изготовленных из чистого алюминия (рис. 274). В отдельных случаях может быть применена нержавеюш ая сталь. В качестве прокладочно-уплотнительного материала используют попихлорриниловый пластикат. Стоек к перекиси водорода также тефлон и в меньшей степени полиэтилен [26, 27]. [c.654]

    К этой суспензии добавляется четыреххлористый титан. При взаимодействии изоамилнатрия с четыреххлористым титаном образуется каталитический комплекс. Суспензия каталитического комплекса переводится в реактор с растворителем, куда при давлении 5 ат подается очищенный этилен. После окончания реакции разложение каталитического комплекса проводится этиловым или изопропиловым спиртом. После разложения катализатора суспензия полимера фильтруется 0"р растворителя. После промывки полимера спиртом проводится водная промывка и сушка полимера воздухом. Особенностью полиэтилена, полученного с изоамилнат-рием, является его высокая температура плавления, которая составляет 196—208° С в атмосфере инертного газа полимер плавится при 300° С. Полимер, расплавленный при 200° С, при повторном нагревании плавится при 130° С, т. е. как и обычный полиэтилен. Полиэтилен, полученный по методу Неницеску, по-видимому, обладает сшитой структурой, с чем и связана его высокая температура плавления. Это подтверждается спектрами, где отсутствуют полосы, соответствующие двойным связям. Кристалличность полиэтилена невысокая и составляет 50%, мол. вес около 1 ООО ООО и плотность 0,95—0,96, предел прочности на разрыв 230— 290 кг/сж . Молекулярный вес может варьироваться, применяя различные соотношения компонентов катализатора, в пределах от 200000 [c.80]


Смотреть страницы где упоминается термин Полиэтилен разложение: [c.218]    [c.8]    [c.101]    [c.53]    [c.488]    [c.37]    [c.781]    [c.99]    [c.100]   
Конструкционные свойства пластмасс (1967) -- [ c.22 , c.26 , c.33 ]

Стабилизация синтетических полимеров (1963) -- [ c.42 , c.83 , c.174 , c.176 , c.179 , c.181 , c.182 ]

Конструкционные свойства пластмасс (1967) -- [ c.22 , c.26 , c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Термическое разложение полимеров полиэтилена



© 2025 chem21.info Реклама на сайте