Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

атоме и атомной энергии

    Взаимодействия атомов и молекул с поверхностями твердых тел в рамках молекулярных моделей принято подразделять на два типа. Взаимодействие типа физической адсорбции имеет место, когда молекула удерживается у поверхности силами Ван-дер-Ваальса, т. е. не происходит перераспределения электрического заряда в системе. Полуэмпирический подход к расчету взаимодействий адсорбент—адсорбат основан на методе атом-атомных потенциалов, согласно которому энергия межмолекулярного взаимодействия представляется в виде суммы энергий парных взаимодействий атомов, а параметры атом-атомных потенциалов определяют исходя из опытных данных. Другой тип взаимодействия атомов и молекул с поверхностями твердых тел представляет хемосорбция. В этом случае происходит перераспределение заряда в системе и образуется химическая связь между поверхностью и субстратом. Хемосорбция представляет наибольший интерес с точки зрения гетерогенного катализа, поскольку катализ имеет донорно-акцепторный механизм [2]. [c.61]


    Если в молекуле все связи однотипны, то, разделив атомную теплоту образования на число связей, найдем энергию отдельной химической связи. Так, энергия связи 0 Н равна /г ат воды. Энергии связей могут использоваться для нахождения тепловых эффектов реакций. [c.73]

    Молекулярно-статистические выражения константы Генри для адсорбции на инертном адсорбенте с однородной поверхностью и потенциальная энергия межмолекулярного взаимодействия адсорбат — адсорбент. Нахождение атом-атомных потенциалов, удовлетворяющих экспериментальным значениям констант Генри для адсорбции на графитированной саже опорных молекул алканов, алкенов, алки-нов и ароматических углеводородов, и проверка возможности переноса найденных потенциалов на другие углеводороды. Адсорбция дейтерированных углеводородов. Нахождение атом-атомных потен-ци-алов для кислородсодержащих соединений, в частности гетероциклических. Зависимость атом-атомных потенциалов межмолекулярного взаимодействия от электронной конфигурации атомов в молекуле. [c.160]

    Для полярных молекул вычисление дополнительного вклада электрической энергии в виде суммы парных взаимодействий зарядов на атомных ионах является наиболее простым и естественным приближением в рамках метода атом-атомных потенциалов. Однако заряды на атомах молекулы зависят от атомного окружения и типа связей в молекуле, в состав которой входит данный атом. Поэтому выбрать значения зарядов для каждого атома данной молекулы затруднительно. Здесь необходимо привлечение квантово-химических расчетов. Эти расчеты должны дать такие значения зарядов на атомах, которые бы воспроизводили определенные экспериментально электрические дипольные и квадрупольные моменты молекул. [c.217]

    Атом-атомные и связь-связевые поляризуемости. Изменение кулоновского интеграла на атоме ы отразится на величине полной энергии так же, как возмущение второго порядка, так как изменение электронной плотности на атоме 1 повлечет за собой перераспределение электронных плотностей на других атомах. Степень такого перераспределения характеризует величины атом-атомных поляризуемостей  [c.239]

    Для отрыва последнего электрона от атомного ядра с зарядом 2 требуется затратить в раз больше энергии, чем для ионизации атома водорода. По расчету на грамм-атом эта энергия равна 313,6 2 ккал. Радиусы К-слоев в сложных атомах относятся друг к Другу, как обратные значения зарядов ядер, т. е. с возрастанием атомного номера элемента последовательно уменьшаются. Однако даже у наиболее тяжелых атомов они все еще в сотни раз превышают собственные размеры атомных ядер. [c.84]


    В последние годы получили распространение потенциалы, называемые атом-атомными. Основная идея подхода состоит в представлении потенциальной энергии взаимодействия молекул в виде суммы парных взаимодействий образующих молекулы атомов (учитываются взаимодействия данного атома со всеми атомами другой молекулы). Атом-атом-ные взаимодействия описываются парными потенциалами, зависящими лишь от расстояния между атомами (потенциалы Леннард-Джонса, ехр — 6 и др.). Параметры атом-атом-потенциалов определены для ряда систем с помощью экспериментальных данных о структуре и энергии кристаллов и др. Очевидно, суммарная энергия взаимодействия всех пар атомов, образующих молекулы, в общем случае оказывается зависящей от ориентации молекул. [c.283]

    Для образования химической связи, бериллию нужны неспаренные электроны, иначе он был бы так же химически неактивен, как и гелий. Если один из 25-электронов перейдет (промотируется) на 2р-орби-таль, то у атома появятся два неспаренных электрона. Для промотиро-вания электрона атому необходима энергия его характеризуют как возбужденный ( ) атом. Теперь бериллий образует связи не с помощью орбиталей двух разных типов, происходящих от простых 5-и р-орбиталей, а с помощью двух одинаковых гибридных орбиталей. При образовании молекулы электронные плотности атомных 5- и р-орбиталей смешиваются и получаются гибридные 5р-орбитали, форма которых показана на рис. 5.9. [c.112]

    Полная потенциальная энергия молекулярного кристалла в атом-атомном приближении получается суммированием энергий взаимодействия по парам молекул. Ожидается, что результат будет приблизительно тем же, что и теплота сублимации, экстраполированная к О К при условии, что при возгонке не происходит изменений в конформации молекул и колебательных взаимодействиях. [c.465]

    Энергию кристаллич. структуры М. к., приближенно равную энтальпии сублимации, экстраполированной к абс. нулю т-р, вычисляют с помощью эмпирич. атом-атомных потенциалов (часто с учетом электростатич. взаимод. остаточных атомных зарядов). Оптим. упаковка молекул отвечает минимуму этой энергии и в простых случаях м. 6. найдена расчетным путем. [c.117]

    Несмотря на ряд серьезных допущений, представление потенц. энергии с помощью потенциалов Н. в. позволяет с хорошей точностью судить о конформации молекул, равновесной кристаллич. структуре, рассчитывать частоты внутри- и межмол. колебаний, упругие св-ва в-ва, термодинамич. ф-ции, локальную структуру дефектов в кристаллах, ф-ции радиального распределения в жидкостях, вириальные коэф. в газах, параметры адсорбции газов на твердых телах и т. п. Полезным св-вом модели атом-атомных потенциалов является возможность описания одними и теми же потенциалами широкого круга родственных по хим. строению мол. систем ( переносимость потенциалов). [c.200]

    Предположим, что два кристалла приведены в соприкосновение таким образом, что атомы могут диффундировать из одного кристалла в другой. Кристаллы должны быть похожими настолько, чтобы этот процесс происходил без изменения энергии системы другими словами, мы считаем, что кристаллы имеют одинаковую структуру решеток и что различные атом-атомные взаимодействия идентичны, поэтому образующиеся смешанные кристаллы представляют идеальные твердые растворы (разд. 4.17). Как показано на рис. 2.1, первоначально имеются четыре атома А в кристалле А и четыре атома В в кристалле В. Это распределение атомов является единственно возможным для системы в начальный момент  [c.56]

    В программе оперируют числовые элементы 12 массивов (М1-М12). Mi и М2 - массивы значений валентных углов и длин связей, М3 - массивов углов вращения, М4 - массив, включающий требуемые математические и физические константы, эмпирические параметры потенциалов атом-атомных взаимодействий, заряды на атомах и соответствующие признаки в случае циклической молекулы. Массивы М1-М4 сохраняются без изменений при исследовании соединений одного класса. М5 - массив нулевых приближений, задающий значения варьируемым параметрам массивов М1-МЗ. Мб - массив фазовых углов, заполняется автоматически и состоит из величин, отвечающих качественно отличным частям молекулы Можно отметить два основных типа фазовых углов, связывающих векторы при двух парах атомов - sp -sp и sp -sp гибридизациях. Массивы М7-М12 -основные для цифровой шифровки молекулы. М7 - двумерный массив номеров, предшествующих троек векторов, посредством которых вычисляются последующие векторы молекулярной системы. М8 - основной массив для вычисления направляющих косинусов векторов рассматриваемой системы. М9 - двумерный массив пар чисел для каждого вектора. Он используется при вычислении координат атомов и автоматической отсортировки фиктивных векторов, вводимых для удобства вычисления фазовых углов. Первое число каждой пары соответствует номеру атома, от которого берет начало вычисляемый вектор, второе - номер валентной связи в массиве М2, вдоль которой направлен искомый вектор (для фиктивных векторов это число равно 0). М10 - массив пар номеров атомов, взаимодействие между которыми не учитывается. К таким парам, например, относятся атомы, расстояния между которыми в любых конформациях остаются неизменными, что позволяет существенно ускорить процесс поиска локальных минимумов. При замене одного из логических условий в блоке VI массив М10 принимает участие уже в противоположном процессе. В этом случае каждая пара чисел представляет собой номера атомов, взаимодействие между которыми, и только между ними, дает вклад в общую энергию. Такой прием иногда бывает полезен при вычислении энергии взаимодействия между отдельными небольшими частями большой молекулы. МП - массив пар номеров атомов, участвующих в водородном связывании, а М12 - массив признаков атомов по их принадлежности к тому или иному химическому элементу. Необходимость массива М12 связана с выбором соответствующей потенциальной функции для учета энергии взаимодействия между конкретной парой атомов. [c.238]


    Однако в реальной природе идеальных (без дефектов) атомных решеток и идеальных электронов (например, обладающих массой пц) не существует. Электроны в реальных атомных структурах обладают эффективными массами, скоростями и соответственно энергиями, присущими лишь данному атому. Их энергии, амплитуды и соответственно скорости принадлежат только этой атомной структуре, имеющей собственное и единственное в природе пространство импульсов. Электроны другого атома имеют другие амплитуды и скорости энергии (принадлежат другому единственному и природе пространству импульсов). [c.77]

    Для определения числа и природы вращательных изомеров, а также заселенностей конформаций дивинилсульфида и его ana-, логов использованы методы атом-атомных потенциалов и карт потенциальной энергии [499]. Как уже отмечалось выше, положение минимумов на потенциальной поверхности внутреннего вращения определяется соотношением. двух конкурирующих факторов пространственного затруднения и р—я-взаимодействия. Первый фактор характеризует взаимодействие несвязанных между собой атомов, которое препятствует реализации плоских конформаций рассматриваемых молекул. Наибольшую роль пространственное затруднение должно играть в г мс-г ис-форме за счет сильного отталкивания. -водородных атомов винильных групп. Для расчета энергии пространственного затруднения избран метод атом-атомных потенциалов, количественно учитывающий способность молекулы к деформации валентных углов по сравнению с их значениями в ненапряженных молекулах. Второй фактор (р-я-взаимодействие) для каждого из двух внутренних вращений может быть представлен первыми двумя членами разложения в ряд Фурье — [c.174]

    Таким образом, общий теоретический анализ сил отталкивания указывает на то, что во многих случаях их энергия приближенно может быть представлена в виде суммы энергий соответствующих атом-атомных взаимодействий. [c.250]

    Положения силовых центров атомов обычно выбираются в ядрах атомов [173, 182, 198]. Однако рассеивание рентгеновских лучей и теоретические расчеты указывают на то, что центры распределения электронной плотности в валентно связанных атомах Н не совпадают с положением их ядер [158]. Поэтому в некоторых работах [170, 171, 254] положение силового центра валентно связанного атома водорода принималось на 0,07—0,1 А смещенным в сторону связи. Однако сумма атом-атомных потенциальных функций межмолекулярного взаимодействия, зависящих только от межатомных расстояний, по-видимому, не передает точно зависимость энергии межмолекулярного взаимодействия молекул углеводородов от их ориентации [197]. Смещение положения силового центра атома Н в сторону атома С не позволяет значительно исправить эту погрешность [197]. [c.255]

    Однако эта зависимость, но-видимому, имеет небольшое влияние на результаты расчета межмолекулярной энергии, так как во время суммирования атом-атомных потенциалов происходит усреднение различных направлений межатомных векторов но отношению к валентным связям [204]. [c.267]

    Поскольку по условиям симметрии -орбиталь атома И к л-свя-зыванию неспособна, 2ру- и 2рг-орбитали атома Ве в образовании молекулярных орбиталей участия не принимают. Поэтому они переходят Б молекулу ВеНг в неизменном состоянии (рис. 51) в качестве несвязывающих одноцентровых молекулярных орбиталей, принадлежащих лишь атому бериллия. Энергия электронов на несвязьшающих молекулярных орбиталях такая же, как и на атомных орбиталях. В символах метода МО эти орбитали обозначают я-МО. [c.96]

    При адсорбции на обработанной водородом при 1000—1400 С ГТС (см. лекцию 1) замещенных н-алканов, содержащих полярные группы — эфирную, карбонильную, гидроксильную, амннную, нит-рильную или нитрогруппу, из хроматографических измерений получаются линейные зависимости п К и дх от числа атомов углерода в молекуле. Эти зависимости указывают на аддитивность энергии межмолекулярного взаимодействия с ГТС и на возможность определения вкладов, вносимых в эту энергию соответствующими полярными группами. Однако для нахождения соответствующих атом-атомных потенциалов удобнее воспользоваться адсорбцией квазижестких молекул, не способных к внутреннему вращению. [c.181]

    Проблемы, существовавшие в то время в теории строения атома, не были проблемами, касающимися исключительно расположения электронов и ядра в атоме. Следовало еще выяснить, как атом может дать дискретный спектр, если этот спектр испускается атомом как таковым. Ни Томсон, ни Резерфорд не могли дать удовлетворительного ответа на этот вопрос. Важный вклад был сделан в 1907 г. Конвэем, который впервые попытался объяснить это явление в плане квантовых идей. Не используя никакой атомной модели, Конвэй сделал заключение о том, что атом испускает энергию, соответствующую спектральной линии, и что появление полного спектра объясняется очень большим числом атомов, в каждом из которых один электрон находится в возбужденном состоянии. [c.29]

    Энергию вандерваальсовых кристаллов, образованных многоатомными молекулами, оценивают часто, суммируя парные атом-атомные взаимодействия (об атом-атомных потенциалах см. разд. П.6). [c.182]

    Поскольку парциальные заряды на полярных атомах боковых групп (лизина, аргинина, глутаминовой и аспарагиновой кислот)обычно в несколоко раз выше, чем для атомов основной цепи [101, то электростатические контакты между ними должны давать значительный вклад в стабилизацию белковой конформации. Исследование атом-атомных взаимодействий в -спиральных белках с известной пространственноЛ структурой позволяет сделать вывод о значительном количестве (9 ) электростатических контактов внутри структуры белка. Вклад одного гидрофобного контакта дает выигрыш энергии л/ o.s ккал/моль, а одного электростатического до 4 ккал/моль. В связи с этим проведенный адализ подтверждает необходимость учета этого типа взаимодействий при расчете энергии определенных конформаций белка. [c.141]

    МОЛЕКУЛЯРНАЯ МЕХАНИКА (метод атом-атомных потенциальных функций), расчетный эмпирич. метод определения геом. характеристик и энергии молекул. Основан на предположении о том, что энергия Е молекулы м. б. представлена суммой вкладов, к-рые м. б. отнесены к длинам связей г, валентным углам а и двугранным (торсионным) углам т (соответствующие компоненты энергии обозначаются и ,ор). Кроме того, в общем выражении для энергии всегда имеется член Е, , отражающий ван-дер-ваальсово взаимод. валентно не связанных атомов, и член учитывающий электростатич. взаимод. атомов и обусловливающий наличие эффективных атомных зарядов. Т. обр., полная энергия молекулы представляется суммой  [c.114]

    Понятие Н. в. используют прн расчетах нотенц. эиергии системы (молекулы, кристалла, жидкости) на основе простых аналит. моделей типа модели атом-атомных потенциалов. Предполагается, что изменение потенц. энергии пры изменении геом. конфигурации молекулы м. б. представляю в виде отдельных вкладов, сопоставляемых изменениям длин связей, валентных и торсионных углов, а также вкладов, соответствующих внутримолекулярным Н.в. атомов, разделенных по меньшей мере тремя (реже-двумя) хим. связями. В широком смысле-термин Н.в. относят и к межмол. взаимодействиям. [c.199]

    Межатомные невалентные взаимодействия подразделяются на ван-дер-ваальсовы, электростатические, торсионные и водородные связи. Каждый вид атом-атомных взаимодействий описывается полученной на основе полуклассических или классических предположений потенциальной функцией с системой параметров, подобранных эмпирически. Общая энергия невалентных взаимодействий [/общ (конформационная внутренняя энергия молекулы) предполагается в соответствии с принципом Борна-Оппен-геймера (1927 г.) независимой от энергии валентных связей и пред- [c.112]

    Бифуркационная термодинамическая теория и обобщение известных опытных данных о нативных конформациях белковых молекул послужили основой для разработки физической теории структурной организации белка. Физическая теория позволила представить громоздкую задачу структурной организации белка в виде менее сложных задач, поддающихся последовательному рассмотрению. Поэтапный подход к решению осуществлен путем разбиения всех внутримолекулярных невалентных взаимодействий на ближние, средние и дальние. Количественная оценка энергии всех видов взаимодействий производилась с помощью метода атом-атомных потенциалов ван-дер-ваальсовых, электростатических и торсионных взаимодействий и водородных связей (см разд 2.2). [c.586]

    Уже первые теоретические расчеты взаимодействий между азотистыми основаниями в ДНК показали, что ван-дер-ваальсовы (т. е. диполь-дипольные, индукционные и дисперсионные) взаимодействия в паре ГЦ значительно сильнее, чем в АТ. В дальнейшем электростатические взаимодействия были рассмотрены более строго, а также с полмощью атом-атомных потенциалов учтены силы отталкивания. Разработай метод расчета энергий горизонтальных и вертикальных взаимодействий, вычисляемых как суммы взаимодействий атомов. Определяется сумма энергий электростатических и поляризационных взаимодействий и энергии отталкивания. Заряды на атомах и связях находятся с помощью приближенных методов квантовой химии. Контролем эффективности методов расчета служат расчеты энергий ряда [c.232]

    По данным метода атом-атомных потенциалов, знергия пространственного затруднения в з-г ис-конформации метилвинилового зфира равна 1,5 ккал/моль. Тем не менее эта конформация более выгодна, чем вторая форма (на 1,2 ккал/моль [485]). Следовательно, величина г мс предпочтительности (F ) в метилвиниловом эфире равна 2,7 ккал/моль (для этой оценки безразлично, является ли вторая форма плоской траке или гош). Таким образом, величина энергии сопряжения неподеленной электронной пары атома кислорода с одной винильной группой в дивиниЛовом эфире несколько ниже, чем в метилвиниловом эфире (Fj —3,3 ккал/моль по сравнению с Fa= —5,7 ккал/моль [491]), в то время как разности энергий сопряжения (Fi) в плоских s-цис- и s-траис-конформа-циях фрагмента —С—О—С=С в дивиниловом и метилвиниловом эфире одинаковы. , [c.182]

    Числовые квантовомеханические расчеты энергии отталкивания м мен производились главным образом для взаимодействия простейших молекул Не.. . Нз [16, 17], На.. . Hj [20—22, 24]. Энергия Мобмен В этих случаях оказалась неаддитивпой по атомам молекулы Нг- Эти расчеты указывают на более слабую зависимость потенциала сил отталкивания от взаимной ориентации молекул, чем это следует из атом-атомного приближения. Однако если учесть небольшое (около 0,1 A) смещение центра сил отталкивания валентно связанного атома водорода от его ядра, то потенциалы отталкивания атома Не и молекулы Hj или двух молекул Hj в хорошем приближении [c.250]

    Форма атом-атомного потенциала межмолекулярного взаимодействия. Принимая для потенциала сил отталкивания экспоненциальную (VIII,10) или степенную (VIII,11) функцию и учитывая один, два или более членов степенного ряда (VIII,12) для энергии дисперсионного притяжения, можно получить ряд моделей потенциала межмолекулярного взаимодействия. Для описания межмолекулярного взаимодействия двух силовых центров при адсорбции были использованы главным образом следующие модели 1) потенциал Леннард-Джонса (6,12) [35-38, 40, 42-44, 52, 54-65, 67-74, 76, 78, 79, [c.258]

    Потенциалы ( 111,14)—( 111,16) дают зависимость энергии взаимодействия ф двух силовых центров только от расстояния между ними. Силовые центры молекул и твердых тел являются анизотропными. Энергия дисперсионного взаимодействия анизотропных силовых центров зависит не только от расстояния между ними, но и от взаимной ориентации их эллипсоидов поляризуемости [27, 284]. Решетка графита, например, обладает сильной анизотропией поляризуемости [285]. Поэтому потенциал дисперсионного взаимодействия силового центра молекулы с атомом углерода графита должен сильно зависеть от взаимной ориентации их эллипсоидов поляризуемости [286—288]. Эту зависимость потенциала взаимодействия двух силовых центров необходимо учесть при объяснении различия потенциала Ф взаимодействия молекулы адсорбата с базисной и призматической гранями решетки графита [286—288]. Были проведены расчеты энергии Ф взаимодействия атомов инертных газов и СО 2 с базисной и призматической гранью графита, учитывая эффект анизотропии атом-атомного потенциала [286, 287], Однако потенциал Фдисп дисперсионного взаимодействия силового центра молекулы с базисной гранью графита, полученный на основании потенциала дисперсионного взаимодействия силового центра молекулы с атомом углерода графита [c.259]

    В кристаллических решетках углеводородов расстояние наибольшего сблин<ения атомов водорода соседних молекул равно 2,4— 2,6 А [310]. Часто это значение принимается равным равновесному расстоянию / о,н....н межмолекулярного взаимодействия двух атомов Н. Однако расчеты кристаллических решеток углеводородов на основании атом-атомных потенциальных функций межмолекулярного взаимодействия С и Н показывают [172, 186, 228], что расстояние наибольшего сближения атомов Н соседних молекул в решетке приблизительно на 0,3 А меньше значения равновесного расстояния 0,Н...Н) принятого в расчетах потенциала межмолекулярного взаимодействия двух атомов Н. Это обусловлено главным образом тем, что расстояния между атомами сложных молекул в кристаллической решетке определяются минимумом потенциальной энергии межмолекулярного взаимодействия всех силовых центров рассматриваемой молекулы со всеми силовыми центрами остальных молекул, а не потенциальным минимумом межмолекулярного взаимодействия только наружных атомов Н. Таким образом, расстояние наибольшего сближения атомов Н в молекулярных кристаллах пе равно значению о,н...нДля потенциальной функции межмолекулярного взаимодействия этих двух изолированных атомов Н. Чтобы из атом-атомных потенциальных функций межмолекулярного взаимодействия получить расстояние наибольшего сближения атомов Н в кристаллической решетке к-гексана, равное экспериментально наблюдаемому, для равновесного расстояния Го,н...н взаимодействия двух атомов Н необходимо принять значение, равное 2,8—3,2 А [228, 229]. Необходимость введения более высокого, чем 2,4—2,6 А, значения для Го, н. .. н было отмечено и в других работах [173, 227]. [c.266]

    Как видно из выражения ( 111,44), для расчета потенциальной энергии Ф межмолекулярного взаимодействия молекулы с твердым телом на основании атом-атомных потенциалов межмолекулярного взаимодействия (рц необходимо определить значения сумм 2 7/ (п = 6,8) и 2 ехр (—дцГц) в зависимости от положения рассматриваемой точки над поверхностью твердого тела. [c.268]


Библиография для атоме и атомной энергии: [c.330]   
Смотреть страницы где упоминается термин атоме и атомной энергии: [c.60]    [c.104]    [c.104]    [c.17]    [c.240]    [c.57]    [c.181]    [c.292]    [c.292]    [c.6]    [c.236]    [c.119]    [c.236]    [c.84]    [c.166]    [c.255]   
Химическая литература Библиографический справочник (1953) -- [ c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Атомная энергия

Энергия атома



© 2025 chem21.info Реклама на сайте