Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фазовый переход молекулярной массы

    Соотношение между концентрацией сорбата в полимере и газовой фазе при установившемся динамическом равновесии определяется эффективностью сорбции данного сорбата конкретным полимером и зависит от природы этих компонентов, от (х хи.мического строения и физического состояния, молекулярной массы и др. Использование этих зависимостей позволяет определить при помощи газовой хроматографии многие характеристики полимеров температуры фазовых переходов, молекулярную массу, коэффициент диффузии низкомолекулярного вещества в полимер, термодинамические параметры взаимодействия полимера с растворителем и полимера с полимером. [c.290]


    Как правило, для расчета калорических характеристик н-алканов используют их свойства, линейно меняющиеся в гомологическом ряду, в частности плотность, показатель преломления, молекулярную массу и т.д. В подобных случаях не учитывается аномалия в точках фазовых переходов, что приводит, например, к превышению расчетного изменения энтальпии плавления для некоторых углеводородов над значениями теплот их испарения. Этот факт объясняется началом разложения углеводородов с молекулярной массой 284 и выше при температурах ниже температур их кипения либо присутствием примесей в исследуемых системах [153]. [c.141]

    К модификациям несовершенного типа относятся аморфизированные кристаллические структуры, основные типы модификаций с искажениями, смешанные кристаллические модификации. При увеличении разницы в длине цепей смешиваемых молекул образуются гетерофазные системы, свойства которых отличаются от твердых растворов. На характерную особенность н-парафинов при фазовых переходах, проявляющуюся в модификационных превращениях кристаллической структуры в твердой фазе указывали авторы работ [156, 157]. Исследованиями установлено, что на кинетику кристаллизации сложной смеси парафинов доминирующее влияние оказывают индивидуальные нормальные парафины строго определенной молекулярной массы. При изучении бинарной смеси нормальных парафинов [158] было показано, что образование той или иной кристаллической модификации сложным образом определяется молекулярной массой и концентрацией смешиваемых компонентов, причем в процессе смешения образуются также промежуточные модификации смешанного типа. Изучались модификационные переходы в парафиновых смесях в растворах [159], а также в присутствии поверхностно-активных веществ [160, 161]. [c.143]

    Согласно третьему закону термодинамики энтропия жидкой фазы, так же как и твердой, при абсолютном нуле температуры должна обращаться в нуль. В связи с этим приобретает большой интерес вопрос о распределении атомов в жидком гелии, особенно при наиболее низких температурах. Плотность жидкого гелия мала, под давлением насыщенных паров она составляет всего около 0,14 г/мл, что в значительной мере объясняется малой молекулярной массой гелия (заметим, что плотность жидкого водорода примерно в два раза меньше плотности жидкого гелия). Необычна зависимость плотности Не от температуры (рис. 61). Там же представлена температурная зависимость теплоемкости С вдоль линии равновесия жидкость — пар. При температуре 2,173 К и 49,80 10 Па плотность жидкого Не проходит через максимум, после чего функция р = /(Г) резко меняет свое направление, плотность быстро уменьшается. Теплоемкость тоже аномально зависит от температуры. Кривая теплоемкости похожа на греческую букву X. При 2,182 К теплоемкость является разрывной функцией. Здесь в жидком Не происходит фазовый переход второго рода. Температура этого фазового перехода ( Х-точки ) немного снижается при увеличении давления. Жидкую фазу при температурах, соответствующих Х-точкам и ниже, принято называть гелий II . Жидкая фаза при температурах, лежащих выше Х-точек, названа гелий 1 . [c.229]


    Благодаря этой аналогии, оказалось возможным применить для описания поведения полимерных клубков аппарат теории магнетиков, а поскольку к этому времени уже было выяснено, что поведение всех систем вблизи точки фазового перехода второго рода (критической точки) подчиняется гипотезе подобия (скейлинга), то, соответственно, и поведение полимерных клубков достаточно большой молекулярной массы стало естественным анализировать, используя скейлинговый подход. [c.118]

    Представляет интерес вопрос о характере перехода клубок-глобула. Еще в работе Эйзнера [77] был сделан вывод о том, что в гибких макромолекулах переход должен протекать непрерывно (без скачка размеров) и в пределе бесконечной молекулярной массы отвечать фазовому переходу второго рода, а скачок, отвечающий при М- оо фазовому переходу первого рода, появляется только у очень жестких полимеров. В дальнейшем к такому выводу приходили и другие авторы, причем в работе [75] было показано, что критерий существования скачка является примерно на порядок более жестким, чем считалось раньше. [c.124]

    Фосфор кристаллизуется по крайней мере в пяти полиморфных модификациях. Его белая метастабильная форма получается конденсацией пара. По-видимому, она существует в виде двух чрезвычайно близких модификаций с точкой фазового перехода при —77 °С. В растворе белый фосфор, как это следует из величин его молекулярной массы, определенных в различных растворителях, находится в виде молекул Р4. Геометрия их, вероятно, подобна конфигурации молекул в парообразном состоянии, исследованном еще в одной из первых работ по электронной дифракции [1]. Фактически установлено также, что обе модификации белого фосфора состоят из правильных тетраэдрических молекул Р4 с той же структурой, что и у молекул в па- [c.602]

    Термодинамике мицелл посвящены многочисленные работы [1—5]. Отметим, что в сравнении квазихимической и фазовой моделей мицелл предпочтение отдавалось чаще первой, основанной на законе действия масс, хотя мицелла не является химическим соединением. Основные возражения против фазовой модели формулировались следующим образом [6] существует не ККМ, а целая переходная область мицеллообразования и, следовательно, переход к мицеллообразованию не является точкой фазового превращения химический потенциал молекул ПАВ не является постоянным в области существования мицелл, как это должно быть при наличии фазового равновесия. Оба эти возражения неправильны. Из статистической механики известно, что резкий фазовый переход может наблюдаться лишь в макроскопическом пределе (когда число молекул стремится к бесконечности). Для малых систем, какими и являются мицеллы, существует не точка, а область фазового превращения (этот факт многократно демонстрировался машинными экспериментами). Что касается постоянства химического потенциала и молекулярной концентрации ПАВ, то оно проявляется также лишь для равновесия макроскопических фаз с плоской поверхностью раздела. Если речь идет о малой фазе с искривленной поверхностью, то ее равновесие с окружающей средой может сохраняться и при переменном химическом потенциале. Можно сказать, что представление о мицелле как о фазовой частице согласуется с современными представлениями о фазовых переходах. Что касается закона действия масс, который, как известно, дает неплохие результаты при применении к мицеллам, то, как показано ниже, он хорошо согласуется и с фазовым подходом, так что оба подхода по существу дают единый метод рассмотрения мицелл. [c.139]

    Для водоразбавляемых лакокрасочных материалов характерны некоторые свойства, отличающие их от других материалов. Проявление этих свойств зависит от химической природы полимера, его молекулярной массы, количества и вида полярных групп, разветвленности целей и характера используемых компонентов. Аномальное поведение водоразбавляемых лакокрасочных материалов наиболее наглядно проявляется в изменении вязкости системы при разбавлении ее водой. До начала фазового расслоения добавления воды к системе закономерно снижает вязкость. Выделение мелкодисперсной фазы при определенном ее содержании приводит к возникновению структуры геля и повышению вязкости. Это явление, накладываясь на снижение вязкости при разбавлении водой, выражается в наличии плато на кривой зависимости вязкости от содержания воды (рис. 28, кривые 1 а 2) [77]. Повышение содержания сорастворителя в исходном олигомере сдвигает фазовый переход в область большего содержания воды (кривые 2 н 3) н сглаживает аномальный характер зависимости вязкости (кривая 3). [c.102]

    В то же время широкий диапазон условий нахождения углеводородных флюидов в природе обеспечивает возможность полного или частичного перехода одной и той же группы низкокипящих УВ из одного фазового состояния в другое. Переход происходит в соответствии с коэффициентом фазового равновесия, специфического для каждого УВ и зависящего от его молекулярной массы и структуры. Именно поэтому фазовые превращения сопровождаются изменением соотношений между УВ в пределах гомологического ряда и внутри группы изомеров, причем эти из.мене-ния носят строго закономерный характер. [c.397]


    Аморфное фазовое состояние полимеров характеризуется отсутствием дальнего порядка, флуктуационным ближним порядком в расположении молекул, устойчивость которого зависит от агрегатного состояния вещества, изотропией формы и физических свойств (т. е. Ил независимостью от направления), а также отсутствием четко выраженной температуры точки плавления. Для низкомолекулярных тел аморфному фазовому состоянию отвечает только жидкое агрегатное состояние, поскольку в твердом агрегатном состоянии они характеризуются трехмерным дальним порядком, т. е. образуют правильную кристаллическую решетку. Исключение составляют природные и синтетические смолы (природные смолы — канифоль, янтарь синтетические—фенолформальдегидные смолы с молекулярной массой 700—1000 и др.), а такл<е обычное силикатное стекло. Для смол и стекла переход из твердого агрегатного состояния в жидкое и обратный переход из жидкого в твердое протекает плавно. При этом изменений в структуре не происходит, так как в твердых и жидких стеклах наблюдается только ближний порядок расположения молекул. Такой постепенный переход из одного агрегатного состояния в другое без изменений в структуре, специфичный для аморфного фазового состояния, называют стеклованием, а аморфные твердые тела стеклообразными, или стеклами. [c.73]

    В случае высокомолекулярных соединений ситуация несколько осложняется. Во-первых, как показывает анализ свойств монослоев ряда полимеров, исследователь практически никогда не имеет дела с истинно газообразным монослоем. Этот момент необходимо учитывать прежде всего при определении методом монослоев молекулярной массы полимеров, о чем подробнее будет сказано ниже. Вторая особенность монослоев полимеров — отсутствие для них твердо-конденсированного состояния. Наконец, высокая гибкость макромолекул и разнообразие их конформационных превращений приводят к размытости двухмерных фазовых переходов. [c.213]

    Описанные выше методы экстраполяции зависимости поверхностного натяжения от температуры и молекулярной массы или расчет поверхностного натяжения с помощью парахора, строго говоря, могут дать достоверные результаты лишь в том случае, если в интервале экстраполяции полимер не претерпевает фазовых переходов. [c.157]

    Методы релеевской спектроскопии позволяют определять строение, конформации и ряд других свойств молекул, строение жидких фаз, в том числе структуру ассоциатов в чистых жидкостях, ассоциатов и комплексов в растворах [36]. С помощью этих методов можно изучать кинетику и механизм реакций образования наименее устойчивых ассоциатов и комплексов, распадающихся за 10 —- 10 с, которые не обнаруживаются многими другими методами [37—40]. Можно получать сведения о процессах колебательного возбуждения молекул, находить коэффициенты активности, теплоты смешения, энтропии смещения растворов [41, 42], определять сжимаемость жидкостей [36], теплоемкость 36], теплопроводность [43], коэффициенты диффузии растворов [44], скорость распространения продольного и поперечного звуков и коэффициенты их поглощения [45]. Исследования релеевского рассеяния света позволяют выяснить особенности строения вещества в окрестности критической точки жидкость — пар и критической точки расслаивания, изучать природу фазовых переходов [46, 47]. С их помощью можно, наконец, получать сведения о молекулярных массах полимеров и олигомеров, конформационных превращениях полимерных молекул, потенциальных барьерах внутреннего вращения, сольватации макромолекул [48, 49]. [c.73]

    Физические свойства, приведенные в таблицах,— это относительная молекулярная масса вещества М, (в атомных единицах массы), температура фазовых переходов — плавления, кипения, возгонки или температура разложения, плотность для агрегатного состояния при комнатной температуре (в графе Вещество рядом с химической формулой указано жидкое или газообразное [c.102]

    С помощью газовой хроматографии возможно определение коэффициентов распределения газ — жидкость или газ — твердое тело при малых концентрациях и конечных концентрациях, термодинамических функций сорбата (свободная энергия, энтальпия и энтропия) и, кроме того, следующих физико-химических характеристик констант устойчивости комплексов, коэффициентов активности, растворимости в системах газ — жидкость и жидкость — жидкость, характеристик специфического взаимодействия (водородной связи, комплексов с переносом заряда), структуры летучих и нелетучих соединений, давления пара веществ и их температуры кипения, вириальных коэффициентов, коэффициентов сжимаемости газов, поверхности твердых тел, пористости, размера частиц, кислотности, коэффициентов диффузии в газовой и жидкой фазах, констант скорости гомогенных и гетерогенных реакций, констант равновесия, молекулярных масс веществ, температур фазовых переходов, диэлектрической проницаемости и дипольного момента [c.186]

    Исследованы [1128] фазовые переходы (стеклование) и определены молекулярные массы АБС-сополимеров. [c.280]

    Перенос массы внутри влажного тела может происходить в виде жидкости или пара, если фазовый переход осуществляется внутри капиллярного тела. Перенос газообразного вещества (пара и инертного газа) происходит различными способами молекулярным (т. е. в результате диффузии и эффузии) и молярным (в результате фильтрационного движения паро-газовой смеси внутри пористого тела под действием перепада общего давления). [c.57]

    В связи с различным характером кривых фазового равновесия для разных фракций полимера принципиально возможна такая ситуация, когда при переводе раствора из области однофазного в область двухфазного состояния часть фракций полимера с низкой молекулярной массой остается растворенной. На рис. 1.3 это положение иллюстрировано переходом по липни аЬ, причем фракции с М, М2 и входят в состав образующейся [c.22]

    Начальный процесс деструкции, не сопровождающийся еще заметным изменением химического состава макромолекул, сводится к двум основным разрыву полимерных цепей и их сшиванию. Они в той или иной степени реализуются до начала потери массы практически для всех синтетических и природных высокомолекулярных соединений. При этом происходят изменения молекулярно-массовых и эксплуатационных (механических свойств, температур фазовых переходов и т. п.) характеристик полимера, которые отражают интенсивность процессов и могут свидетельствовать о вкладе каждого из них в превращения полимера. [c.26]

    Следствием нормального распределения компонентно-фракционного состава по свободным энергиям образования является аналогичное распределение состава по стандартным температурам кипения, теплотам фазовых переходов, молекулярным массам, геометрическим характеристикам компонентов и фракций и т.д., рис 2.1. Уравнение (2.2) означает, что различные компоненты МСС связаны в единую энергетическую систему, и выступают, как единый статистический объект. Индивидуальность компонентов отходит на второй план. В э той ситуации различные по химическому составу системы в различных процессах, при условии совпадения средних значений энергии Г иббса, проявляют близкие химические и физические свойства. Такие системы будем рассматривать как изоэнергетические или изореакционные. Например, нами установлено, что совершенно различные нефтяные фракции и индивидуальные углеводороды с точки зрения кинетики процесса пиролиза ведут себя одинаково в условиях высоких температур, независимо от химичекой природы сырья и от того, каталитический этот процесс или термический. Так, были изучены различные системы от индивидуальных углеводородов до высокомолекулярных нефтяных фракций и наГще-на универсальная зависимость фактора жесткости процесса пиролиза, которая характеризует отношение суммарной массы пиролиза до Сз включительно, к массе пропилена (глава 3). На рисунке 2.2 [Ш, 11] представлена зависимость фактора [c.50]

    На основе данных об изменениях энтальпии в процессе фазовых переходов, температурах плавления и кипения, мольных объемах, молекулярных массах [47] [i атомном составе индивидуальных н-алканов были рассчитаны указанные выше параметры. Показано, что с ростом п значения молярных энергий межмолекулярного взаимодействия н-алканов в точках плавления (КплМ) и испарения КнспМ) увеличиваются, причем значения КллМ для четных п возрастают в большей степени, чем для нечетных  [c.26]

    Температура помутнения и начала кристаллизации соответствует такой температуре, при которой из нефтяной фракции выделяются растворенная вода, парафины, бензол, видимые невооруженным глазом. Температура помутнения и начала кристаллизации определяется для некоторых видов топлив и реже —для дистиллятных масел. Выделение из нефтей и их фракций парафинов связано с явлениями ассоциации и структурообразования за счет сил межмолекулярного взаимодействия. Таким образом, на низкотемпературные свойства нефтей и нефтяных фракций влияют условия, управляющие структурообразованием в них. Так, механическая и термическая обработка, добавка ПАВ понижают температуру застывания нефтей [86]. Основной компонент, повышающий температуру застывания нефтей и нефтяных фракций — алканы. Недавно была установлена зависимость энергии ассоциации алканов в точках фазовых переходов от их молекулярной массы [87], что позволило, в частности, найти углеводород, в котором энергия межмолекулярного взаимодействия выше энергии химической связи между атомами в молекуле, вследствие чего алкан деструкти-рует при плавлении. Температура плавления алканов повышается с увеличением молекулярной массы. [c.24]

    Существует скэйлинговая связь между параметрами порядка фазовых переходов и приведенными молекулярными массами высокомолекулярных многокомпонентных систем с хаосом компонентного состава. [c.38]

    Синтетические депрессоры представляют собой соединения, включающие один или несколько алифатических радикалов и полярные группы. При синтезе депрессорных присадок обычно получается смесь, содержащая молекулы одного класса, различающиеся прежде всего по молекулярной массе [175, 176]. Показано [177], что депрессорная активность поверхностно-активных веществ одного гомологического ряда по отношению к высокопарафинистым нефтяным фракциям изменяется по-раз-ному в зависимости от длины алкильной цепи. При этом, как правило, невозможно установление корреляции между параметрами фазовых переходов в НДС и депрес-сорной активностью поверхностно-активного вещества. Несмотря на это представляется возможным детализировать в некоторой степени механизм взаимодействия поверхностно-активных веществ с компонентами нефтяных систем, в частности рассмотреть изменение при этом структурообразования в них. [c.157]

    Анализ термограмм чистой углеводородной матрицы, представленной на рис. 6.12, показал, что при нагреве и охлаждении смеси наряду с фазовым переходом проявляется лишь один модификационный переход, при отсутствии признаков размывания пиков, в отличие от термограмм для бинарных смесей твердых нормальных парафинов, что свидетельствует о высокой степени кристалличности вещества матрицы. Термограммы исследуемых смесей в присутствии ДЦА представлены на рис. 6-13. Как видно, введение в систему ДЦА по-разному отражается на структурообразовании в системе в зависимости от их молекулярной массы. В одних случаях, в присутствии присадки с большей молекулярной массой, кристаллический характер структуры испытуемой матрицы практически не видоизменялся, в других, с присадкой с меньшей молекулярной массой, напротив, наблюдались сильные деформации и размывание пиков фазовых и полиморфных переходов. При этом на термограммах появлялись дополнительные пики, что, по всей вероятности, относится к струтстурным превращениям собственно вещества присадки. Последние характеризовались также худшим депрессорным действием в реальном образце дизельного топлива. [c.160]

    Сложность определения молекулярной массы таким способом состоит в том, что значение ДГ, т. е. изменение температуры прн фазовом переходе в растворителе, чрезвычайно малс Используемый в настоящей работе способ оценки значения АТ основан на применении высокочувствительных термисторов, включенных в измерительную схему по принципу моста Уинсто- [c.130]

    Влияние примесей на температуру фазовых переходов соединения (на практике это связано с точкой тшавления или тройной точкой, см, гл. 1) позволяет оценить их полную молярную концентрацию, хотя, как будет показано ниже, этот метод не дает требуемого в наших целях критерия чистоты. Действительно, для химика-органика совпадение точек плавления с точностью +0,1 К является вполне удовлетворительным . Предположим, однако, что мы имеем примесь с молекулярной массой 100, причем эта примесь понижает точку нлавления основного компонента на ДГ = 100 К при KOHiieHipaHHH 1 моль В 100 мл. Тогда значение лг = ОД К соответствует концентрации примеси 10 моль/л. Такая точность явно недостаточна при проведении каталитических исследований, а для обеспечения уровня точности лг ОД К требуется дополнительно сложная и дорогая аппаратура очистки. [c.171]

    Прн десорбции углеводородов другого ь ласса, нанример ароматических углеводородов гя зерна активного угля, кинетические кривые десорбции каждого члена ароматического гомологического ряда практически совмещаются с кинетическим кривыми нормального иарафнна с бл1гзкой молекулярной массой бензола с к-гексаном, толуола с к-гептаном и т. д. Этот факт наход тся в соответствии с близостью теплот фазового перехода у этих адсорбтивов на активных углях. [c.197]

    Для объяснения механизма действия н-алканов как модификаторов структуры кристаллов твердых углеводородов, образующихся в процессе обезмасливания, впервые использовано различие кристаллической структуры, температур фазовых переходов и физико-химических свойств членов гомологического ряда к-алканов с разным числом атомов углерода в цепи [32, 47, 50]. При введении н-алканов с числом атомов углерода в молекуле 21 и 23 в раствор петролатума происходит их совместная кристаллизация с высокомолекулярными твердыми углеводородами петролатума. Образуются твердые растворы, поскольку и те и другие кристаллизуются в орторомбической форме. Твердые углеводороды петролатумов содержат значительное количество нафтеновых, ароматических и нафтено-ароматических углеводородов с длинными боковыми цепями разного строения. Они из-за более высокой молекулярной массы при образовании твердых растворов с н-алканами С21Н44 и С23Н48 выполняют роль растворителя. При такой кристаллизации сохраняется структура кристаллов растворителя, т.е. образуются мелкие кристаллы, характерные для твердых углеводородов, содержащих в молекулах циклические группировки. Этим объясняется ухудшение филь- [c.132]

    Особыми свойствами обладают высокомолекулярные соединения с молекулярной массой, выражающейся десятками и сотнями тысяч, а иногда и миллионами единиц. Растворы таких веществ представляют собой однофазные, термодинамически устойчивые, обратимые системы. Однако, несмотря на то, что в данном случае высокомолекулярные соединения находятся в истиннорастворенном состоянии, их растворы обладают некоторыми свойствами коллоидных систем. Это объясняется тем, что макромолекулы по своим размерам приближаются к коллоидным частицам, и граница их контакта с дисперсионной средой подобна межфазной поверхности в гетерогенных системах. В подобных случаях, когда частицы находятся как бы на грани перехода в самостоятельную фазу, возможно расхождение структурных и термодинамических критериев фазового состояния, проявление гомогенности по одним свойствам и гетерогенности по другим. [c.53]

    Ко второй группе относятся полимерные системы, образующиеся при фазовых переходах и искусственной диспергации полимеров (выделение полимера из р-ра, регулируемая деструкция и механич. дробление частично закристаллизованных и ориентированных полимеров и т. п.). В этих процессах образуются системы с такой степенью дисперсности, к-рая лежит ниже молекулярной и выше микроскопической, т. е. находится в пределах дисперсности коллоидных систем. Подобные дисперсии характеризуются не только большой массой частиц и следующими отсюда кинетич. особенностями коллоидов, но и высокоразвитой поверхностью раздела фаз, на к-рой могут происходить адсорбционные процессы. Такие системы полностью отвечают критериям, определяющим коллоиды как термодинамически неравновесные гетерогенные системы. в л Каргин, с. п Ппптв. [c.535]

    В книге изложены основы фнзикохимии полимеров — современные представления о фазовых и физических состояниях полимеров и фазо-, вых переходах, о надмолекулярной структуре полимеров и методах ее исследования, о механических, реологических и электрических свойствах полимеров. Большое внимание уделено теории растворов полимеров. Отдельные главы посвящены пластификации, смесям полимеров, проницаемости, методам опред ения молекулярных масс, размеров и гибкости макромолекул. Учебное пособие переработано в соответствии с новой программой курса (2-е издание вышло в 1968 г.). [c.2]

    В главе 3 описаны методы измерения основных физических констант жидкокристаллических соединений (температур фазовых переходов и электрических характеристик). В главе 4 рассматривается применение молекулярной масс-спектрометрии для анализа жидкокри- [c.7]

    По внешнему виду большинство высокополимерных веществ представляет собою твердые порошки или вещества, подобные каучуку. Созданная в начале 30-х годов нашего столетия Марком и Мейером мицеллярная теория, по которой все полимеры построены из мицелл-кристаллитов, как уже отмечалось, совершенно отвергнута. В настоящее время методами рентгенографического и электронографического структурного анализа установлено, что при комнатной температуре лишь очень немногие, с сравнительно небольшим молекулярным весом, полимеры (такие, как полиэтены и полиамиды) действительно обладают кристаллической решеткой подавляюшая же масса высокополимеров при комнатной температуре обладает не кристаллической, а жидкостной (аморфной) структурой. Это положение экспериментально и теоретически обосновано в работах В. А. Каргина с сотрудниками, которые также показали, что аморфно-жидкие линейные полимеры могут находиться в трех физических состояниях—стеклообразном, высокоэластическом и вязкотекучем—и ввели понятие о температурах фазовых переходов для этих состояний. [c.169]

    Термодинамически нестабильная модификация II со временем необратимо переходит в модификацию I. Этот переход в большой степени зависит от температуры. При температурах выше 20 °С и ниже 80 °С модификационные изменения протекают медленно, максимальная скорость достигается при комнатной температуре [52]. Скорость превращения зависит также от молекулярной массы, тактичности, приложенных внешних нагрузок, добавок и компонентов сополимеризации. Высокомолекулярный ПБ с повышенным содержанием атактической или стереоб-лочной фазы превращается медленнее, чем полимер с высокой степенью стереорегулярности, и низкой молекулярной массой [53]. Скорость перехода для экструдированного образца полимера с молекулярной массой 4000 в 100 раз выше скорости перехода в исходном образце [54]. Давление и приложенная нагрузка, а также остатки катализаторов ускоряют фазовый переход [55]. Добавка изоиропаиола или эфира уксусной кислоты приводит к увеличению скорости перехода [56]. Сополимеры бутена-1 с короткоцепными олефинами имеют небольшие изотактические блоки в полимере, что также ускоряет фазовый переход в термодинамически стабильную модификацию I. [c.53]

    Вязкость в максимуме, по-видимому, является вполне определенной физической характеристикой материала. Такое утверждение объясняется тем обстоятельством, что значение rimax закономерно снижается с уменьшением молекулярной массы (в отличие от экспериментальных данных Германса [89]), причем аналитически функция rimaxf(M) удовлвтворительно описывается выражением т]тах= 1,82-Обращает на себя внимание близость показателя степени в этой зависимости к универсальному значению 3,4. Вероятно, это может быть связано с тем, что растворы ПБА разной молекулярной массы в точке фазового перехода (или равноудаленные от нее) находятся в соответственных (или эквивалентных) состояниях. Это и приводит к тому, что их вязкость изменяется в зависимости от молекулярной массы так же, как вязкость эквиконцентрированных растворов гибкоцепных полимеров, которые рассматриваются как существующие в соответственных состояниях. [c.166]


Смотреть страницы где упоминается термин Фазовый переход молекулярной массы: [c.11]    [c.193]    [c.120]    [c.26]    [c.209]    [c.161]    [c.20]    [c.326]    [c.74]    [c.73]    [c.5]    [c.166]   
Жидкокристаллические полимеры с боковыми мезогенными группами (1992) -- [ c.81 , c.133 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярная масса

Молекулярный вес (молекулярная масса))

Переходы фазовые



© 2024 chem21.info Реклама на сайте