Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стирол водно-эмульсионная

    По непрерывному методу водно-эмульсионная полимеризация стирола осуществляется в каскаде аппаратов идеального смешения . [c.18]

    Для полимеризации по водно-эмульсионному методу получают с помощью эмульгаторов эмульсию стирола в воде (на [c.117]

    Водно-эмульсионную полимеризацию стирола проводят в обычном реакторе, снабженном мешалкой, обратным холодильником и паровой рубашкой. После введения всех компонентов реакционную среду нагревают до 60—70° С. Далее температура сама поднимается за счет тепла реакции до 85—90° С. При этой температуре осуществляется полимеризация 2—3 ч. В результате [c.117]


    Совместная полимеризация дивинила и акрилонитрила осуществляется водно-эмульсионным методом, аналогично полимеризации дивинила и стирола. Эмульгаторы, как и в случае получения дивинил-стирольных каучуков,—мыла и некаль. В качестве инициаторов полимеризации применяют органические или неорганические перекиси (персульфат калия). [c.195]

    Процесс предварительно отрабатывается на опытном (или лабораторном) аппарате периодического действия, с подбором рецептуры и режимов, заведомо учитывающих наиболее благоприятные условия работы аппаратов непрерывного действия (интенсивный теплообмен, возможность расчленения во времени подачи регуляторов реакции и т. п.). По данным работы этого аппарата строится кривая х — х (рис. П1.4), например для случая водно-эмульсионной полимеризации стирола. [c.79]

    Приготовленная по такому рецепту эмульсия состоит из двух фаз углеводородной (бутадиен и стирол) и водной (эмульсионной). Соотношение количеств углеводородной и водной фаз в данной эмульсии равно 1 1,05.  [c.359]

    Эмульсионный метод полимеризации стирола. Наряду с получением полистирола непрерывным блочным методом широко распространен промышленный способ водно-эмульсионной полимеризации стирола, который позволяет вести процесс с большой скоростью при умеренной температуре и получать высокомолекулярный полимер. [c.100]

    Полимеризация в водных эмульсиях — конкурирующий технологический процесс, который развивается параллельно с полимеризацией в массе. Он основан на малой растворимости виниловых и диеновых мономеров в воде и на нейтральности последней в реакциях радикальной полимеризации. В ряде случаев (особенно при синтезе каучуков) эмульсионные системы оказались намного эффективнее, чем способы полимеризации в массе и растворителях. В других случаях, как например, при полимеризации стирола, водные эмульсии используются для получения продукта специальных марок главным образом пенополистирола. [c.61]

    Аппарат для водно-эмульсионной полимеризации стирола (рис. 14) состоит из корпуса с рубашкой 3, крышкой 6 и двух турбинных мешалок 7 с турбинками 9. Горячая вода подается в штуцеры 1, 2, 5 и выходит через штуцер 15. Рассол входит через штуцеры 10, 11, 12 и выходит через штуцер 13. [c.29]

    При эмульсионной полимеризации в реактор заливается вода и эмульгатор (например, натриевые соли синтетических кислот do—GIS), стирол и инициатор (водный раствор персульфата калия). После полимеризации от полученного латекса острым паром отгоняется непрореагировавший мономер и производится коагуляция латекса с помощью квасцов или других коагулянтов. Далее полученный полимер отделяется от маточного раствора и промывается водой. Водно-эмульсионная полимеризация может осуществляться и непрерывным методом. [c.422]


    Водно-эмульсионный метод полимеризации стирола широко распространен, поскольку он позволяет вести процесс при умеренных температурах с большой скоростью и приготовить полимер высокого молекулярного веса. Диаметр частиц полимера, получаемого таким методом, колеблется от 500 до 5000 А. Эмульсию приготовляют, перемешивая си стемы, содержащие стирол или смеси стирола с другими мономерами, воду, эмульгатор, инициатор и регуляторы поверхностного натяжения. [c.89]

    Поместим начало координат в центр полимер-мономерной частицы. Тогда двухслойная сферическая краевая задача (для водной фазы и частицы) в случае квазистационарного приближения процесса эмульсионной полимеризации малорастворимого в воде мономера (например, стирола) в изотермических условиях принимает вид  [c.151]

    Эмульсионная полимеризация стирола проводится в водных растворах эмульгатора при умеренных температурах и в условиях, обеспечивающих хороший теплообмен, [c.16]

Рис. XII.26. Технологическая схема производства полистирола эмульсионным способом. 2 — эмульгатор 2 — сборник для эмульсии 3 — насос дозировочный 4 — подогреватель эмульсии 5 — полимеризатор 6 — баллон со сжатым азотом 7 — сборник для гидроперекиси 8 — сборник для стирола 9, 11 — весовые мерники ю — аппарат для варки эмульгатора 12 — емкость для растворения щелочей 13 — весы для щелочи И — коагулятор 15 — сборник для латекса 16 — фильтр масляный п — вентилятор 18 — конденсационный горшок 19 — калорифер 20 — весы для сульфита натрия 21 — емкость для растворения сульфита 23 — весовой мерник для раствора сульфита 23 — сборник для эмульгатора 24 — сборник водной фазы 25 — сборник обессоленной воды 26 — центрифуга 27 — норий 28 —сушилка полистирола 29, 30 — фильтры 31 — циклон 32 — шнек 33 — бункер для полистирола 34 — автоматические весы. Рис. XII.26. <a href="/info/66466">Технологическая схема производства</a> <a href="/info/311590">полистирола эмульсионным</a> способом. 2 — эмульгатор 2 — сборник для эмульсии 3 — <a href="/info/13896">насос дозировочный</a> 4 — подогреватель эмульсии 5 — полимеризатор 6 — баллон со <a href="/info/390414">сжатым азотом</a> 7 — сборник для гидроперекиси 8 — сборник для стирола 9, 11 — весовые мерники ю — аппарат для варки эмульгатора 12 — емкость для <a href="/info/153497">растворения щелочей</a> 13 — весы для щелочи И — коагулятор 15 — сборник для латекса 16 — <a href="/info/135780">фильтр масляный</a> п — вентилятор 18 — <a href="/info/94255">конденсационный горшок</a> 19 — калорифер 20 — весы для сульфита натрия 21 — емкость для растворения сульфита 23 — весовой мерник для раствора сульфита 23 — сборник для эмульгатора 24 — сборник <a href="/info/1899027">водной фазы</a> 25 — сборник обессоленной воды 26 — центрифуга 27 — норий 28 —сушилка полистирола 29, 30 — фильтры 31 — циклон 32 — шнек 33 — бункер для полистирола 34 — автоматические весы.
    ЭМУЛЬСИОННЫЕ КРАСКИ (воднодисперсионные краски, латексные краски), суспензии пигментов и наполнителей в водных дисперсиях (латексах) гомо- и сополимеров винилацетата, акрилатов, сополимеров стирола с бутадиеном, а также в водных эмульсиях алкидных или эпоксидных смол, битумов и др. Содержат эмульгаторы, диспергаторы пигментов, загустители, антифризы, ингибиторы коррозии и др. Получ. диспергирование пигментов и наполнителей в водном р-ре диспергатора и других ингредиентов смешение пигментной пасты с латексом или эмульсией смолы. Нетоксичны, пожаро- и взрывобезопасны, м. б. нанесены на влажные пов-сти, относительно дешевы недостаток — склонность к коагуляции при пониж. т ах. Наносят распылением, наливом, валиком, кистью. Сушат прн т-рах от комнатной до 150 °С. Покрытия характеризуются сравнительно невысокими твердостью, мех. прочностью и водостойкостью (исключение — акрилатные Э. к., образующие покрытия, долговечность к-рых достигает 7 лет). Э. к. естеств. сушки примен. для окраски фасадов и интерьеров зданий, деревянных и металлич. строит, конструкций, средств транспорта, мебели и др. Э. к. горячей сушки — в кач-ве антикорроз. грунтовок по металлу. ЭМУЛЬСОЛЫ, смазочно-охлаждающие жидкости, применяемые в виде 3—10%-ных водных эмульсий. Готовят на [c.709]

    По современным представлениям эмульсионная или латексная полимеризация нерастворимых в воде мономеров (стирол, винилацетат, винилхлорид, бутадиен, изопрен и др.) под действием персульфатов, перекиси водорода и аналогичных им водорастворимых соединений начинается в мицеллах мыла), содержащих растворенный мономер. Это подтверждается практически полным отсутствием полимера в капельках мономера (по результатам анализа в них находится меньше 0,1 7о полимера), выделенных на промежуточных этапах реакции. Хотя не исключена возможность полимеризации в водном растворе, вклад ее должен быть очень небольшим вследствие незначительной концентрации мономера кроме того, при этом можно было бы ожидать образования сравнительно низкомолекулярных полимеров, что противоречит экспериментальным данным. [c.252]

    В результате большого числа кинетических исследований эмульсионной полимеризации стирола, дивинила, изопрена в зависимости от концентрации и природы эмульгаторов были получены кривые зависимости скорости полимеризации, числа растущих частиц и молекулярной массы полимера от копцентрации эмульгатора. Обнаруженные изломы на кривых в области ККМ не дают основания сомневаться в правильности изложенной выше мицеллярной теории зарождения частиц. Однако при этом не следует полностью исключать возможность возникновения частиц в водной фазе, особенно при низких концентрациях эмульгатора или при использовании эмульгаторов со слабо выраженной способностью к мицеллообразованию. [c.25]


    Первый случай описывает процесс, при котором находящиеся в частицах радикалы обладают большой вероятностью выхода наружу и подавляющее большинство латексных частиц совсем не будет содержать радикалов. По сравнению с такими мертвыми частицами число живых , т. е. содержащих радикалы частиц, будет крайне незначительным. Очевидно также, что живые частицы не содержат более одного радикала, так как за короткое время пребывания его в частице вероятность попадания ту а второго радикала крайне мала. Следует отметить, что случай пС1, по-видимому, не является типичным для эмульсионной полимеризации мономеров типа стирола или бутадиена, проводимой в отсутствие специальных передатчиков цепи. В таких процессах из-за малых значений констант реакции передачи кинетической цепи на мономер вероятность образования низкомолекулярных радикалов будет весьма незначительной. Так как вследствие полной нерастворимости в водной фазе высокомолекулярные радикалы не могут покидать частицы, имеются достаточные основания исключить возможность выхода радикалов наружу. Это явление, однако, может быть существенным при эмульсионной полимеризации винилацетата или винилхлорида, отличающихся сравнительно высокими значениями [c.56]

    Изучена [213] эмульсионная сополимеризация распределенных по фазам мономеров на примере различающихся полярностью стирола и алкилакрилатов с небольшими добавками МАК и АК. Ниже приведен коэффициент распределения этих кислот между водной и мономерной фазами (К ), зависящий от природы кислоты и полярности мономера  [c.134]

    Метод эмульсионной полимеризации диенов и некоторых других непредельных соединений интересен тем, что в качестве первичного продукта образуется стойкая водная суспензия, содержащая каучук в виде мельчайших частичек, т. е. синтетический латекс, удобный для многих областей технического применения каучука. Кроме того, этот способ позволяет получать совместные полимеры — сополимеры — различных диенов и соединений, содержащих винильную группу. Например, исследования эмульсионной полимеризации привели к разработке (1930) методов совместной полимеризации дивинила со стиролом, нитрилом акриловой кислоты и т. д. [c.202]

    Тонко измельченные твердые вещества, такие как фосфат кальция, часто используют в качестве диспергирующих агентов в процессе суспензионной полимеризации стирола. Эти вещества, модифицированные методом контролируемой адсорбции амфифильных соединений, использовали в качестве эмульгаторов при полимеризации стирола в водно-жировой эмульсии [8]. Все попытки применить такие эмульгаторы в процессе водно-жировой эмульсионной полимеризации растворов каучука оказались безуспешными. [c.254]

    Производство ударопрочного полистирола с оптимальным содержанием гель-фракции и требуемыми размерами частиц каучука приводит к необходимости тщательного уравновешивания ряда факторов, влияющих на ход процесса водно-жировой эмульсионной полимеризации объемного соотношения фаз вода — жир, типа и количества эмульгатора, скоростей полимеризации и перемешивания, степени конверсии стирола в процессе водно-жировой эмульсионной полимеризации. Соотношения объема фаз вода — жир, используемые для форполимеризации и последующей суспензионной полимеризации, составляет обычно от 0,8 1 до 1 1. [c.257]

    Смешанные каучуки получают, проводя эмульсионную полимеризацию, для чего непрерывно перемешивают при 5°С водную эмульсию сжиженного под давлением бутадиена со стиролом или акрилонитрилом, содержащую другие необходимые компоненты — эмульгатор, инициатор, катализатор, буферное вещество. Образуется синтетический латекс ( каучуковое молоко ), из которого каучук выделяют коагуляцией с помощью уксусной кислоты или раствора соли. [c.585]

    Как показали Юхновский и Попенкер [1783], при сополимеризации стирола в водно-эмульсионной среде с растительными маслами, имеющими сопряженные двойные связи, образуются прозрачные пленки, быстро желатинизирующиеся при сушке. При применении растительных масел, не имеющих сопряженных двойных связей, сополимеризация протекут медленнее полимеризации и получается чистый полистирол. Изучено влияние природы растительных масел, концентрации раствора и соотношения компонентов на свойства получаемых пленок, а также исследовано влияние инициатора. [c.290]

    Тале [684] показал, что прививка 12% стирола к водно-эмульсионному поливинил ацетату улучшает термостабильность и прочность. Термореактивные, неплавкие и нерастворимые продукты получаются при нагревании полимеров, полученных из стирола, акриловой кислоты и винилацетата с глицидным эфиром дифенилпропана при 150° в присутствии катализатора — амина или четвертичных аммониевых солей [685]. [c.459]

    Водно-эмульсионный метод полимеризации стирола получил весьма широкое применение. На 1 часть стирола обычно берут 2—3 части воды. В качестве эмульгатора применяют соли жирных кислот (мыла), сульфированные высшие спирты жирного ряда, соли сульфокислот (например соль изопро-пилнафталннсульфокислоты), а также соли сульфокислот высококипящих парафиновых углеводородов С13—С18, получаемых при производстве синтетического бензина. В качестве инициаторов применяют главным образом водорастворимые перекиси (перекись водорода, персульфат аммония или калия). Над-сернокислые соли служат не только хорошими инициаторами, но могут в значительной мере заменять эмульгаторы. [c.207]

    Для приготовления полимеризационной смеси свежий бутадиен смешивают со свежим стиролом и возвратными бутадиеном и стиролом, углеводородную фазу насосом подают в аппарат для полимеризации в эмульсии. Водную (эмульсионную) фазу готовят в аппарате, облицованном керамическими плитками. Сначала вводят эмульгатор — некаль (натриевая соль дибутилнафталинмоносульфокислоты), затем жирную кислоту и едкий натр, необходимый для ее омыления. Некаль предварительно растворяют в очищенной от минеральных солей воде (умягченная вода) или в паровом конденсате. Приготовленную водную фазу также подают в аппарат для полимеризации. Раствор инициатора (возбудителя) полимеризации — персульфата калия (4%-ный) готовят отдельно и по трубопроводу из нержавеющей стали подают в полимеризатор. [c.359]

    Сополимеры бутадиена со стиролом (СКС). Совместная полимеризация бутадиена и стирола осуществляется эмульсионным способом в водной среде. Различные типы бутадиен-стирольных полимеров отличаются по содержанию стирола в сополимере (20—40%), а также по пластичности и теплостойкости, которые зависят от применяемых регуляторов полимеризации, уменьшающих молекулярный вес и препятствующих возникновению в сополимере пространственных структур. По данным рентгенографических исследований, сополимер имеет аморфную структуру. Различное сочетание совместно полимеризующихся веществ в цепях бутадиен-стирольных сополимеров приводит к получению продуктов сополимеризации с различными свойствами. [c.265]

    Рнс. 14. Аппарат для водно-эмульсионной полные-рнзацни стирола. [c.30]

    Непрерывные методы. Непрерывная водно.эмульсионная полимеризация стирола может быть осуществлена в агрегате, представляющем собо блок аппаратов идеального смешения . Арбитманом и Левиным 323] предложена схема опытной убтановки непрерывной полимеризации и сополпмернзациц стирола, инициированной окислительно-восстановительной системой (рис. 33). [c.107]

    В процессе эмульсионной полимеризации дивинила и стирола применяется эмульгатор некаль, который представляет собой водный раствор натриевой соли дибутилнафталинсульфокислоты. К некалю предъявляются жесткие требования по содержанию соединений железа, которые являются ядом для каталитического процесса полимеризации. По этим соображениям необ.-ходимо устранять контакт некаля с углеродистой сталью. [c.100]

    В настоящее время широкое применение имеют синтетические латексы, получаемые в результате эмульсионной полимеризации различных мономеров, например хлоропрена или бутадиена. Очень часто синтетические латексы являются продуктом сополимеризации двух или даже трех мономеров, например бутадиена и стирола (бутадиенстирольпый латекс) или бутадиена и нитрила акриловой кислоты (бутадиенакрилонитрильный латекс). Синтетические латексы состоят из полимерных частиц обычно ультрамикроскопических размеров, взвешенных в серуме — водном растворе стабилизатора. В качестве стабилизаторов примейяются различные поверхностноактивные вещества. Наиболее часто используются анионоактивйые [c.26]

    Бутадиен-стирольные каучуки (СКС) получают эмульсионной сополимеризацией бутадиена-1,3 (стр. 81) и стирола (стр. 342) при соотношении водной и углеводородной фаз 1 1. Для эмульгирования применяют стеарат натрия, омыленную канифоль, или некаль (натриевая соль дибутилнафталинмоносульфокислоты). Инициаторами полимеризации служат, например, органические перекиси. [c.466]

    Упомянутые каучуки являются каучуками общего назначения. К этой же группе относится и дивинилсгироль-пый каучук. Он получается эмульсионной сополимеризацией дивинила и стирола, взятых в определенных соотношениях. Например, для получения СКС-30 это отношение 70 30. Дисперсионная среда — вода. Чтобы эмульсия не расслаивалась, в нее вводят стабилизирующие добавки — эмульгаторы (мыла). Инициатор — персульфат калия КгЗгОв. Реакция гфотекает в микрокаплях мономера — мицеллах. Конечный продукт реакции представляет собой так называемый латекс — коллоидную суспензию полимера в водной среде. Непрореагировавшие остатки мономера удаляют из латекса, обрабатывая его паром под вакуумом. Это способствует улучшению свойств каучука, так как задерживает его старение. Латекс коагулируют прибавлением электролитов, Частпцы укрупняются, и полимер выпадает в виде крошки. Его отмывают от следов электролита и эмульгатора, ухудшающих электроизоляционные свойства каучука, одновременно формуют и сушат. [c.480]

    Разработана методика определения дибутилфталата в полиметил- и полибутилметакрилате в присутствии остаточных мономеров, а также в маточных растворах после осаждения эмульсионного полиметилметакрилата или полистирола [255]. При определении дибутилфталата в присутствии метилметакрилата на полярограмме образуются две волны первая соответствует восстановлению дибутилфталата (первой его волне), а вторая представляет собой общую, состоящую из волны метилметакрилата и второй волны дибутилфталата (см. рис. 3.5). Таким образом, концентрацию дибутилфталата определяют по первой волне. В полистироле, мономер которого восстанавливается при более отрицательном потенциале, чем метилметакрилат (от —2,4 до —2,5 В), появляется в присутствии дибутилфталата 3-я волна, соответствующая восстановлению стирола [фон — Ы(С4Нд)41]. Описано определение диок-тилфталата во взрывчатом веществе (Оно). Дибутилфталат экстрагируют азеотропной смесью пентана с метиленгликолем. Для устранения возникающих при полярографировании помех, вызываемых присутствием 2-нитродифенила, экстракт подвергают каталитическому гидрированию, после чего диоктилфталат определяют полярографически на фоне 0,1 М водного раствора (С4Нд)40Н. Из трех опробованных методов (весового, спектрофотометрического и полярографического) последний наиболее прост и удобен, так как не требует специального предварительного выделения диоктилфталата. [c.158]

    Порядок выполнения работы. Эмульсионную полимеризацию стирола проводят в трехгорлой колбе (желательно со шлифами емкостью 500 мл), снабженной мешалкой, термометром и вводом для инертного газа (рис. 41). Колбу помещают на водяную баню, снабженную терморегулятором. Перед началом полимеризации колбу продувают инертным газом 15—20 мин, а затем, продолжая продувку, загружают в нее последовательно воду 200 мае, долей, эмульгатор — 5%-ный раствор олеата натрия или калия — 2 мае. доли, сернистокислый натрий (в расчете на безводный) — 0,6 мае. доли, полученную водную фазу энергично [c.142]

    Наиболее важным промышленным применением таких окислительно-восстановительных реакций является низкотемпературная эмульсионная полимеризация смеси стирол — бутадиен при получении каучука в присутствии гидроперекиси кумола и ионов железа в качестве катализатора. Органические мономеры полимеризуются, превращаясь в маслообразные капли в водной эмульсии, которая стабилизируется добавлением мыла и щелочей. Типовой промышленный рецепт приведен в табл. 11.1. Как видно, смесь эта сложная, и в деталях неизвестно назначение каждого ее ингредиента. Из них представляют интерес гидроперекись, ион железа, пирофосфат Na4P207-IOH2O (который необходим для растворения железа), и тиол (его добавляют в качестве переносчика цепи для уменьшения выхода продуктов с низким молекулярным весом и чтобы обеспечить получение полимера, легко поддающегося обработке). [c.133]

    Эмульсионную полимеризацию стирола осуществляют в водном растворе эмульгатора в присутствии водорастворимых инициаторов (перекись водорода, Яерсульфаты калия и аммония, гидроперекись кумола и др.). В качестве эму.тьгаторов применяют соли жирных кислот (мыла), сульфированные высшие спирты жирного ряда, соли сульфокислот и др. Получаемый- полимер имеет размер частиц от I до 10 мкм. [c.83]

    В настоящей монографии по возможности полно освещается радикальная латексная полимеризация в водной фазе классических мономеров типа стирола и приобретающая все больший практический и научный интерес полимеризация и сополимеризация полярных мономеров. Если первая до сих пор является основой многотоннажного производства каучуков и изучена наиболее полно, то эмульсионную полимеризацию полярных мономеров начали систематически исследовать лишь в последние годы полимеры и особенно сополимеры на их основе широко используются в строитёльстве, промышленности пленочных материалов, лакокрасочной, кожевенной, текстильной, бумажной и др. Появилась перспектива использования латексов такого типа и для медицинских целей. В монографии впервые дается систематизированный обзор новейших исследований в этой области. Представлена также математическая теория эмульсионной полимеризации стирола, знакомство с которой необходимо при построении математических моделей и оптимизации промышленных процессов. Кроме того, эта теория указывает подход к количественнохму описанию полимеризации других мономеров в сложных коллоидных системах. [c.7]

    Авторам представлялось целесообразным разделить описание эмульсионной полимеризации неполярных мономеров типа стирола и полярных мономеров типа винилацетата, акрилатов, винилхло-рида, а также сополимеризацию виниловых мономеров с функционально-замещенными мономерами. Целесообразность такого разделения вытекает из выдвинутого представления о том, что полимер в форме латекса (коллоидной дисперсии) приобретает новое, не присущее полимеру в -блоке или в растворе качество, обусловленное наличием сильно развитой поверхности раздела его с водной фазой. Свойства этой поверхности специфически изменяются с природой полимера и управляются такими важными для синтеза и свойств образующихся продуктов процессами, как адсорбция ПАВ, флокуляция частиц, взаимодействие между ними, конформацион- [c.7]

    Вследствие чувствительности вииилацетатного радикала к агентам передачи цепи или замедлителям была исследована полимеризация винилкаприната, характеризующегося близкими к винил-ацетату значениями констз нт передачи цепи, но незначительной растворимостью в воде. При этом было показано, что скорость процесса подчиняется той же зависимости от концентрации эмульгатора, что и для стирола. С другой стороны, после того как растворимость стирола в водной фазе была приближена к растворимости в ней винилацетата добавлением метанола, оказалось, что скорость полимеризации меньше зависит от концентрации эмульгатора. Отсюда делается вывод, что отклонения кинетики эмульсионной полимеризации винилацетата от кинетики полимеризации стирола обусловлены только повышенной растворимостью первого-в воде. [c.87]

    Отмечено [115], что при эмульсионной сополимеризации стирола с мономерными эмульгаторами— моноалкил (нонил-доде-цил)-малеатами натрия, содержание которых составляло 3—35% от массы стирола, в системе остается некоторое количество поверхностно-активного вещества, что объясняется затруднением его адсорбции на полимерно-мономерных частицах при высокой конверсии. Поскольку в конечном (полимере оказалось лишь 10% от исходного количества мономерного эмульгатора, сделан вывод о юм, что в полученных латексах большая часть иопользованного эмульгатора присутствует в водной фазе в виде поверхностно-активных олигомеров. [c.118]

    Из описанных выше эмульгаторов (не считая их смесей) высоко- вязкая ОЭЦ, видимо, обусловливает оптимальное сочетание перечисленных факторов, требуемых для водно-жировой эмульсионной полимеризации, дезэмульгирования и суспензионной полимеризации. Необходимое количество этого эмульгатора находится в пределах 0,2—0,5% (по отношению к водной фазе) и зависит от соотношения объема фаз вода — жир, скоростей перемешивания и полимеризации и желаемой степени конверсии стирола в процессе водножировой эмульсионной полимеризации. [c.257]

    Метод эмульсионной полимеризации. Этот метод [20] определения констант скоростей основан на теории эмульсионной полимеризации, предложенной Смитом и Эвертом [21]. Эти авторы предположили, что при эмульсионной полимеризации стирола, инициированной водорастворимыми соединениями, устанавливается псевдостационарное состояние , при котором радикалы, образовавщиеся в водной фазе, диффундируют в частицы полимера, набухшие в мономере, и растут там до тех пор, пока второй радикал не проникнет в ту же самую частицу. Далее, было принято, что скорость обрыва при взаимодействии двух радикалов значительно выше, чем скорость диффузии следующего радикала в ту же самую частицу, следовательно, каждая частица будет содержать в среднем один радикал в течение половины общего времени, т. е. число растущих радикалов, присутствующих в системе в любой момент вре.мени, равно половине общего числа частиц. Эта последняя величина была рассчитана из данных о концентрации латекса и среднем размере частиц (измерено электрономикроскопическим методом). Скорость реакция равна р[М][Н-], поэтому если известно [М], то можно рассчитать кр, для измерения величины [М] были проведены специальные опыты по поглощению мономера полимером. Зная кр, можно рассчитать другие константы скорости из значений сложных констант, найденных путем измерения скорости и ОР при полимеризации в массе. [c.65]

    Влияние pH. Благодаря низкой растворимости большинства виниловых мономеров в воде окислительно-восстановительное инициирование применялось главным образом в эмульсионной полимеризации. Неожиданно оказалось, что в этих водных системах оптимальная величина pH зависит от природы полимеризующегося мономера. В случае персуль-фат-сульфитных систем, например, установлено, что акрилонитрил требует кислой среды, винилхлорид лучше всего реагирует при pH = 8, а скорость полимеризации стирола не зависит от pH, кроме случая низких концентраций ионов водорода [55]. [c.255]


Смотреть страницы где упоминается термин Стирол водно-эмульсионная: [c.80]    [c.810]    [c.256]    [c.191]   
Технология синтетических пластических масс (1954) -- [ c.207 ]




ПОИСК







© 2024 chem21.info Реклама на сайте