Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы и энергетический барьер

    При комнатной температуре, а тем более при повышенных температурах, инверсия шестичленного кольца протекает весьма быстро и не требует воздействия каких-либо катализаторов. Энергетический барьер этой реакции невелик. Быстрота инверсии доказывается наличием лишь одного сигнала в спектре ПМР циклогексана. Однако нри охлаждении до —66° С в спектре ПМР циклогексана появляется две группы сигналов, соответствующих аксиальным и экваториальным протонам. [c.28]


    Итак, между катализатором и реагирующим веществом существует энергетическое соответствие. Принцип энергетического соответствия состоит в том, что при подборе активного катализатора для эндотермической реакции нужно, чтобы адсорбционный потенциал катализатора q по возможности приближался к половине суммы энергий, образующихся и разрывающихся связей 5/2. Для самого активного катализатора энергетический барьер равен половине теплового эффекта катализируемой реакции. Принцип энергетического соответствия заключается в том, что с максимальной скоростью катализируемая реакция будет осуществляться при некоторых, строго оптимальных для заданной реакции энергиях связи реагирующих атомов с катализатором. Условия (IV.II) и (IV.13) зависят только от природы реакции, но не от природы катализатора, поэтому С/ и 5 согласно (1У.5) и (1У.6) зависят только от природы реагирующих молекул. [c.85]

    Итак, между катализатором и реакцией существует энергетическое соответствие наподобие структурного соответствия [51]. Принцип энергетического соответствия состоит в том, что лри подборе активного катализатора для эндотермической реакции нужно, чтобы адсорбционный потенциал катализатора <7 по возможности ближе подходил к половине энергии реагирующих связей 5/2 — среднему из энергий разрываемых и вновь возникающих связей. Для самого активного катализатора энергетический барьер равен половине теплового эффекта катализируемой реакции. Условие (3.3) вытекает из того, что для наиболее активного катализатора [c.54]

    Присоединение фермента к субстрату обычно протекает наиболее быстро. Данная стадия имеет очень небольшую энергию активации и это показывает, что первичный комплекс ЕЗ образуется за счет слабых связей — гидрофобных, водородных и электростатических. Второй этап требует сравнительно много энергии — он связан с разрывом и затем образованием новых ковалентных связей. Суммарная скорость ферментной реакции определяется прохождением через ту стадию второго этапа, которая имеет наибольшую свободную энергию, иными словами, наиболее высокий энергетический барьер. Чем этот барьер выше (и выше энергия активации этой стадии), тем труднее протекает каталитический процесс. Сказанное иллюстрируется рис. 13, где видны энергетический барьер реакции, идущей без катализатора энергетические барьеры отдельных стадий при последовательны.х превращениях промежуточного комплекса фермент—субстрат и наиболее высокий из этих барьеров, лимитирующий скорость всего процесса. [c.78]


    В присутствии катализатора потенциальный барьер реакции (т. е. уровень, отвечающий энергетическому состоянию активного комплекса) снижается на величину теплоты адсорбции активного комплекса. Из этого следует, что энергия активации fu в присутствии катализатора, рассчитанная по уравнению Аррениуса на основании экспериментальных данных, соответствует разности энергии активации Е, в гомогенной системе и теплоты адсорбции активного комплекса. Величина Е п называется кажущейся энергией активации. [c.281]

    Уменьшение кинетических сопротивлений химической реакции. Для максимального использования аппаратуры, в которой процесс проходит в кинетической области, нужно стараться снизить сопротивление химической реакции. Проявлением этих сопротивлений является энергетический барьер (см. раздел УП1), определяющий энергию активации. Понижение энергетического барьера, а следовательно, и уменьшение энергии активации позволяет ускорить реакцию. Этого можно достичь изменением пути перехода от исходных веществ к продуктам, т. е. изменением механизма реакции. Наиболее часто в этих целях используются катализаторы. [c.416]

    Принцип энергетического соответствия. Согласно принципу энергетического соответствия Баландина [35] для разрыва связи А—В в молекуле, адсорбированной на поверхности катализатора, требуется меньшая энергия, чем в объеме, потому что части молекулы А и В связываются с атомами катализатора с выделением энергии. Энергетические барьеры при реакции [c.30]

Рис. 1.7. Зависимость энергетического барьера реакции от адсорбционного потенциала катализатора для случая, когда одна из стадий эндотермична. Рис. 1.7. Зависимость <a href="/info/363570">энергетического барьера реакции</a> от <a href="/info/3866">адсорбционного потенциала</a> катализатора для случая, когда одна из стадий эндотермична.
    Химическая реакция рассматривается как совокупность актов разрыва и образования химических связей (гомолитические реакции, гетероциклические реакции и т. п.), связанных с преодолением потенциальных энергетических барьеров и вызываемых внутренними и внешними причинами, к которым можно отнести химическое инициирование влияние окружающей среды воздействие света, тепла, ультразвука, проникающих ионизирующих и лазерных излучений эффекты плазмы химическую индукцию влияние различного вида катализаторов и т. п. Быстрота химического превращения определяется вероятностью взаимодействия частиц, которые обладают энергией, достаточной для преодоления потенциального барьера (фактор частоты их колебаний и [c.24]

    Поверхность адсорбента (катализатора) может быть неоднородной, на ней могут быть трещины, дефекты кристаллической решетки. Неоднородность структуры поверхности может обусловить энергетическую неоднородность катализатора. Поэтому различают адсорбенты и катализаторы с энергетически однородной и энергетически неоднородной поверхностью. На энергетически неоднородной поверхности переход физически адсорбированной молекулы с одного участка поверхности на другой может быть связан с преодолением некоторого энергетического барьера (локализованная адсорбция). Физическая адсорбция на энергетически однородной поверхности является нелокализованной адсорбцией. [c.638]

    В соответствии с теорией переходного состояния катализатор открывает новый путь реакции и снижает потенциальный энергетический барьер, который реагенты должны преодолеть, чтобы образовался целевой продукт. В главе И отмечалось, что этому уменьшению энергии соответствует такое же снижение энергии активации реакции, что, в свою очередь, приводит к увеличению ее скорости. Например, из табл. 3 (см. стр. 47) следует, что, если энергия активации реакции, протекающей при 0° С, уменьшается с 70 до 40 шл, то скорость процесса повышается примерно в 10 раз. Указанное снижение энергетического барьера показано на рис. XIV- . [c.410]

    На рис. 38 представлена энергетика реакции без катализатора (кривая 1) и на катализаторе (кривая 2). Любое химическое превращение связано с преодолением потенциальных энергетических барьеров. Каждой определенной конфигурации атомов реагирующих молекул соответствует некоторое значение потенциальной энергии системы. Устойчивым соединениям отвечают минимумы энергии. Наиболее легкий путь перехода от одного устойчивого [c.62]

    Руководствуясь принципом энергетического соответствия, были найдены (табл. 2.9) высоты энергетических барьеров реакции Е, тепловые эффекты реакции и, сумма энергий реагирующих связей 5 и адсорбционные потенциалы катализатора д. [c.48]

    Однако, как показано Баландиным, легкость гидрогенолиза связей нужно оценивать с учетом энерги образования новых связей осколков молекул с поверхностными атомами катализатора. Это изменяет энергетический барьер реакции. Для никелевого катализатора оп составляет (в кДж/моль)  [c.299]


    Рассмотрим строение поверхности адсорбционного катализатора, когда на поверхность носителя нанесено небольшое количество металла (например, платина на силикагеле) (рис. 111, а). Согласно современным взглядам твердое кристаллическое тело (носитель) состоит из большого числа микроскопических участков — блоков или областей миграции, разделенных геометрическими и энергетическими барьерами. При нанесении на носитель небольшого числа атомов металла на каждую такую область миграции попадет несколько атомов металла. Под влиянием теплового движения атомы металла могут перемещаться внутри этих областей миграции, но переход из одной области миграции в другую затруднен наличием между ними геометрических (рис. 111,6) и энергетических (рис. 111, ) барьеров. Несколько атомов металла-катализатора внутри области миграции называются ансамблем. В разных областях миграции может находиться разное число атомов металла. Но каталитическое действие проявляют только ансамбли с определенным числом атомов металла внутри области миграции. Такие ансамбли получили название [c.449]

    Энергия активации хлорметилирования —11,1 кДж/моль для хлорида железа(III) и 27,2 кДж/моль —для хлорида цинка показывают, что реакции относятся к чрезвычайно быстрым с низким энергетическим барьером. Хлорметилированные продукты (ХМП) можно использовать самостоятельно или в качестве промежуточных для дальнейших синтезов. Например, фосфорилированием можно получать производные, содержащие фосфорнокислые группы [307, 308]. Реакция может быть осуществлена в оптимальных условиях при отношении ХМП к хлориду металла 1 2, и десятикратном избытке хлорида фосфора(III). На первой стадии реакции вр течение 15 мин степень фосфорилирования составляет 70—85 %. По активности в этой реакции катализаторы Фриделя — Крафтса располагаются в следующий ряд  [c.291]

    Энергетический барьер активации, который отделяет реагенты от продуктов, можно понизить при помощи катализатора. Катализатор-это вещество, которое повышает скорость реакции, но в результате само не подвергается окончательному химическому превращению. Различают гомогенные катализаторы, находящиеся в том же фазовом состоянии, что и реагенты, и гетерогенные катализаторы, которые по фазовому состоянию отличаются от реагентов. Гетерогенные катализаторы играют чрезвычайно важную роль в крупнотоннажных промышленных химических процессах, а также в таких устройствах, как каталитические преобразователи выхлопных газов для автомобилей. [c.32]

    Ход реакции на поверхности катализатора с учетом стадий адсорбции и десорбции схематически изображен на рис. 21.1. Энергия исходных реагентов Е при их адсорбции становится равной 2. Затем происходит химическое превращение, преодолевается энергетический барьер и образуются продукты с энергией Ез, тоже находящиеся в адсорбированном состоянии. При десорбции продуктов энергия меняется и равна 4. Рис. 21.1 показывает, что стадии адсорбции и десорбции имеют свои энергетические барьеры. Пунктирная линия соответствует реакции без катализатора. [c.349]

    Все гипотезы о природе превращения углеродного вещества в алмаз при высоких давлениях и температурах в присутствии активирующих веществ можно условно подразделить на несколько видов. Согласно первой гипотезе активирующее вещество следует рассматривать как растворитель углерода без какого-либо каталитического эффекта (все перечисленные, как катализаторы, вещества являются в расплавленном состоянии хорошими растворителями углерода). Поскольку условия синтеза (р и Т) задаются такими, чтобы термодинамически устойчивой фазой был алмаз, химический потенциал его окажется меньше, чем графита Хал< Д,гр. Отсюда следует, что растворимость алмаза в расплавленном металле меньше растворимости графита. Поэтому раствор станет недосыщенным по отношению к графиту и пересыщенным по отношению к алмазу, и тогда последний станет выкристаллизовываться. Преодоление энергетического барьера перехода графита в алмаз связывается с атомизацией углерода при образовании его раствора в металле без учета специфики межатомного взаимодействия. Достоинством этой гипотезы является то, что она основывается лишь на термодинамических закономерностях без привлечения данных о катализе, которые обычно не могут быть ясно сформулированы. Однако против нее имеется несколько серьезных возражений. Не все металлы, хорошо растворяющие углерод, являются ак- [c.135]

    Промежуточное взаимодействие одного из субстратов с катализатором может существенно понизить энергетический барьер реакции, устраняя запрет по орбитальной симметрии. Например, прямое взаимодействие молекул органических соединений с молекулярным водородом (гидрирование) запрещено по орбитальной симметрии точно так же, как реакция На с СЦ (см, с, 286), Однако На может взаимодействовать с переходными металлами, например с палладием, поскольку запрет не распространяется на взаимодействие с -орбиталями. Образующийся гидрид палладия без труда взаимодействует с органичен скими молекулами с освобождением металлического палладия. На этом основано широкое использование палладия как катализатора гидрирования, [c.309]

    Ход реакции на поверхности катализатора с учетом стадий адсорбции и десорбции схематически показан на рис. 90. Энергия исходных реагентов 1 после их адсорбции становится равной Е . Затем происходит химическое превращение, преодолевается энергетический барьер и образуются продукты с энергией Е , тоже находящиеся в адсорбированном состоянии. После десорбции продуктов энергия меняется и принимает значение 4. На рис. 90 видно, что энергия активации даже наиболее затрудненной стадии меньше энергии активации Е реакции, протекающей без катализатора, что при прочих равных условиях должно приводить к повышению скорости реакции. Величина соответствует химической реакции, протекающей на поверхности катализатора, и может быть названа истинной энергией активации. [c.273]

    К сказанному следует добавить, что катализ не сводится всецело лишь к образованию переходных состояний АВ... К, как способу обхода высоких энергетических барьеров. Как было сказано в гл. IV, наряду с этим он обеспечивает селективность реакции за счет специфики химической природы катализаторов и реагентов (химическая ориентация реакций), за счет матричных эффектов (увеличение предэкспоненты в уравнении Аррениуса, геометрическое соответствие, по Баландину, стереоспецифическая ориентация в синтезе геометрических и оптических изомеров). Большие возможности многократного увеличения скоростей реакций с помощью катализа таятся в природе, структуре и даже величине носителей активных центров катализаторов. [c.232]

    По теории промежуточных соединений каталитическая активность оксидов железа и ванадия объясняется тем, что на их поверхности могут образовываться и распадаться нестойкие промежуточные соединения. Благодаря этому для реакции диоксида серы с кислородом, которая не может протекать непосредственно в газе, становится возможным обходной путь, что ведет к снижению энергетического барьера и резкому ускорению окисления 502 в 50з на поверхности катализатора. [c.117]

    Действие положительных катализаторов сводится к уменьшению энергии активации реакции, другими словами, к снижению высоты энергетического барьера (см. рнс. 1.24, пунктирная кривая). [c.67]

    Промежуточные соединения при гетерогенном катализе образуются на поверхности катализатора. В образовавшемся катали-затор-субстратном комплексе частицы субстрата подвергаются некоторой структурной деформации, которая сопровождается изменением прочности отдельных химических связей и в результате этого снижением энергетического барьера, что и обусловливает возникновение более быстро протекающей химической реакции. [c.125]

    Os > Pd > iRu > Pt. В условиях, когда глубина превращения толуола не превыщает 50%, селективность деалкилирования в первую очередь определяется природой металла и для перечисленных катализаторов составляет 99 (Pd/AbOa)—80 (Ru/AbOa) 7о (мол.). Определены [256] кажущиеся энергии активации гидродеалкилиро-вания толуола (см. табл. 6) и найдена антибатная зависимость между энергиями активации и теплотами сублимации металлов [257] (рис. 36). С увеличением теплоты сублимации закономерно снижается кажущаяся энергия активации. Это объясняется [256] тем, что энергии связи металлов с реагирующими атомами изменяются, как правило, симбатно с теплотами их сублимации [153, т. 2 258], в то время как энергетический барьер, который необходимо преодолеть для разрыва Сар—Сал-связи, должен быть тем меньще, чем больще энергия связи М—С [259]. [c.174]

    В ферментативном катализе не происходит ничего такого, чего не могло бы произойти без помощи катализатора. Молекула воды вполне способна приб.тазиться к цепи белка, как показано в уравнении (21-1), и расщепить ее на части, отдав группу —ОН левой половине цепи и группу —Н правой половине цепи. Однако энергетический барьер активации этой прямой реакции чрезвычайно высок, и поэтому такая реакция должна быть крайне медленной. Двухстадийная реакция, осуществляемая при помощи [c.319]

    Вагнер и Меервейн высказали мнение, что одной из стадий изомеризации алкильной группы должна быть стадия образования карбониевого иона, который может образоваться при взаимодействии алкилирующего агента с катализатором. Совершенно ясно, что как внутримолекулярные гидридные переносы, так и скелетные перегруппировки зависят от величины энергетических барьеров, определяющих тенденцию к изомеризации до получения стабильных промежуточных карбокатионов. Например, алкилирование бензола трет-бутилхлоридом или изобутилхлоридом при контакте с А1С1з дает лишь грет-бутил-бензол (что объясняется большим различием в стабильности первичного и третичного карбокатионов), тогда как алкилирование трет-пентилхлоридом дает смесь продуктов, что можно [c.100]

    Расчетное значение энергетического барьера гидрирования карбонильной связи над рутением (31 кДж/моль) указывает на ее легкую гидрируемость по сравнению с катализом другими металлами—никель, палладий, платина [38]. Палладий и платина имеют более высокие энергетические барьеры (92 и 130 кДж/моль) следовательно, гидрирование над этими катализаторами будет протекать труднее, т. е. при более высокой температуре. Поэтому для гидрирования монноз палладий и платина не представляют интереса, так как моносахариды очень неустойчивы при повышенной температуре. [c.43]

    Большинство катализаторов гидрокрекинга—полупроводники. В отличие от металлов (проводники), для которых переход электронов из валентной зоны в зону проводимости осуществляется легко, без преодоления энергетического барьера, в полупроводниках этот переход требует преодоления энергетического барьера, так называемой энергии акт1шации электропроводности Это объясняется те.м, что в металле атомы — нейтральг ые частицы, и электроны обобществлены. В окислах или сульфидах находятся ионы металлов, и для отрыва электронов требуется затрата энергии. По-этo iy окислы металлов (кроме окислов-изоляторов) начинают проводить ток только после нагревания. В любом окисле или сульфиде всегда сл ществуют пpи [e и пли нарушение стехнометрического состава (избыток. металла или избыток металлоида). [c.145]

    Тзкая модель механизма реакции позволяет сфг рмулировать достаточно общие правила, согласно которым можно установить наличие запрета по симметрии для термических или фотохимических процессов. Если, например, термический процесс запрещен по симметрии, то, очевидно, можно так подобрать катализатор, чтобы он поставлял дополннтетьные электроны на п ресекающиеся уровни. Заполнение таких уровней приведет к снижению энергетического барьера, обусловленного симметрией реагентов. [c.68]

    Таким образом, знание энергетических уровней и их симметрии для H XojiHbix и конечных частиц реакции позволяет не только сравнительно просто анализировать энергетику и механизм термических и фотохимических превращений, но и подбирать такие реагенты и катализаторы, химическая реакция между которыми не имеет энергетического барьера. [c.68]

    С повыщением теплоты сублимации металла энергетический барьер, а следовательно, и энергия активации должны снижаться, что и наблюдается в действительности. Л. Г. Рабинович и В. Н. Можайко показали [196], что деалкилирование толуола в присутствии водяного пара катализируется металлами платиновой группы, причем наиболее активен алюмородиевый катализатор. Опыты проводили с катализаторами, содержацдами по 6 моль-атом металла на 1000 моль -АЬОз (размер частиц 1 мм) при мольном отношении Н20 С7Н8 = 6 и объемной скорости подачи сырья 1— 8 ч . Результаты опытов приведены ниже  [c.293]

    Авторы считают, что катализаторы способны относительно длительное время сохранять полученную ими энергию возбуждения (теплового, светового и т. д.), причем вероятность такого возбуждения растет с усложнением системы, с увеличением молекулярного веса. Катализатор воспринимает такл<е часть энергии реакции, что позволяет в результате возбуждения снизить энергию активации процесса. Катализатор является как бы энергетической ловушкой , в которой энергия химического процесса некоторое время задерживается от рассеяния, чем облегчается переход через энергетический барьер. Таким путем делается попытка объяснения сверхактивности ферментов, состоящих из комбинации активной группы с носителем, Эффект агравации—проявление особых свойств вещества в термодинамически неравновесном состоянии (ср. теорию пересыщения, стр. 144)—является, по Н. И. Кобозеву и О, М. Пол-торак, катализом энергетически возбужденными структурами. Теория агравации требует для своего признания дальнейших эспери-ментальных подтверждений. [c.149]

    Другой основной принцип мультиплетной теории — энергетическое соответствие, согласно которому для успешного протекания ...эндотермической реакции нужно, чтобы адсорбционный потенциал катализатора по возможности ближе подходил к половине энергии реагирующих связей — среднему из энергий разрываемых и вновь возникающих связей . В оптимальном случае ...энергетический барьер равен половине теплового эффекта катализируемой реакции . Увеличение адсорбционного потенциала улучшает условия образования мультиплетного комплекса, но затрудняет его распад в таком случае может произойти отравление катализатора продуктами реакции. Уменьшение адсорбционного потенциала улучшает условия распада мультиплетного комплекса, но ухудшает условия его образования — катализатор голодает из-за недостаточной адсорбции исходных веществ. Наибольшая активность твердого катализатора достигается при определенной энергии мультиплетного комплекса, соответствующей равенству поверхностных активностей исходных веществ и продуктов реакции по отношению к данному катализатору. [c.174]

    Еще М. Фарадей высказал предположение, что каталитическое ускорение реакции достигается благодаря адсорбционному сгущению — повышению концентрации реагирующих веществ в зоне реакции — адсорбционном слое и увеличению благодаря этому числа столкновений. Однако такая трактовка недостаточ1 а, так как она может объяснить ускорение реакции не более чем в 10 10 раз, в то время как, например, реакция На Ь О.. ускоряется даже на фарфоре — сравнительно инертном катализаторе — в 10 -ь 10 раз. Поляни предложил схему адсорбционного механизма каталитического ускорения в результате понижения энергетических барьеров, снижения энергии активации в адсорбционном состоянии, объяснявшую ускорение реакции в 10 10 раз. Длительность взаимного контакта адсорбированных молекул реагирующих веществ, ориентирующее участие катализатора в активном комплексе, разрыхление межатомных связей в адсорбированных молекулах приводят к значительному повышению вероятности переходного состояния и понижению энергии активации реакции, что и псроя дает столь значительное ускорение реакции. Дополняемая современными представлениями об электронных механизмах катализа схема Поляни не утрачивает своего значения и в настоящее время. Сохраняет определенное значение также и упоминавшаяся теория промежуточных соединений, отчетливо сформулированная в конце XIX — начале XX в. П. Са- [c.294]

    Несмотря на некоторое своеобразие ответов каждой из теорий, все они сходятся в том, что снижение энергетического барьера каталитических реакций происходит за счет предварительного химического взаимодействия молекулы реагента с катализатором. Это приводит к снижению энергетического барьера всего комплекса катализатор — реагент (рис. 7) и одновременно к расслаблению (снижению энергии) исходных химических связей. Ясно, что такое расслабление связей возможно при неполновалентном или слабом химическом взаимодействии реагента с катализатором, т. е. при образовании менее чем одноэлектронных и, во всяком случае, менее чем двухэлектронных связей. Ясно также и то, что такого рода вариация электронных зарядов исключена при взаимодействии двух молекул она становится возможной лишь, по крайней мере, цри взаимодействии реагирующей молекулы (дальтонида), с одной стороны, и катализирующей системы (бертоллида) — сдругой. [c.132]


Смотреть страницы где упоминается термин Катализаторы и энергетический барьер: [c.410]    [c.352]    [c.320]    [c.11]    [c.31]    [c.32]    [c.299]    [c.310]    [c.395]    [c.130]    [c.773]   
Электронные представления в органической химии (1950) -- [ c.289 ]




ПОИСК





Смотрите так же термины и статьи:

Барьер

Барьер энергетический



© 2025 chem21.info Реклама на сайте