Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Расщепления реакции механизм

    Широкое применение в технике получило воспламенение горючей смеси электрической искрой. Энергия искрового заряда проявляется в образовании (в искровом канале диаметром около 0,1 мм) плазмы с температурой, превышающей 10 000 К, и в излучении, охватывающем широкий диапазон спектра — от УФ- и видимого до колебаний с частотой Ю. —10 Гц. Таким образом, в искровом разряде в минимальном объеме реализуется весьма интенсивный по мощности начальный очаг реакций, полностью воспроизводящий механизм распространения пламени. Образовавшийся в искровом промежутке начальный очаг пламени оказывает на окружающую его свежую смесь воздействие многочастотным излучением, вызывающим расщепление молекул горючего в предпламенной зоне и создающим таким образом условия, необходимые для распространения пламени. [c.126]


    Эта реакция включает гомогенное расщепление молекулы водорода. В реакциях гетерогенной каталитической гидрогенизации большая затрата энергии (103 ккал), необходимая для расщепления 1 моля водорода, пополняется за счет энергии, выделяющейся при образовании связей водород—металл. При установлении соответствующего контакта между основным компонентом реакции и поверхностью катализатора в принятых условиях процесса атомы водорода переходят к акцептору по механизму, пока еще мало изученному. Примеры гомогенной гидрогенизации исключительно редки. Кэлвин [3J описал подобную систему, в которой проводится восстановление водородом хинона в растворе хинолина с использованием в качестве катализатора ацетата одновалентной меди. При детальном кинетическом изучении этой реакции Велер и Миле [24] обратили внимание на поразительное сходство между активацией водорода ацетатом одновалентной меди и активацией водорода в условиях оксосинтеза. Эти исследователи выступили в поддержку механизма активации, предложенного Кэлвиным, который они записали следующим образом  [c.300]

    Многообразие органических соединений объясняется. особенностями строения углеродного атома. Изучение строения и свойств органических молекул становится возможным благодаря стройной системе классификации. Наиболее простыми представителями соединений алифатического, алициклического и ароматического рядов являются углеводороды. Замещая атомы водорода в углеводородах на другие атомы или группы атомов (функциональные группы), можно перейти к различным классам органических соединений данного ряда. Соединения, содержащие одну и ту же функциональную группу, образуют гомологический ряд, представляющий собой ряд веществ, отличающихся друг 01 друга на любое число —СН2-групп. Детальное описание химической реакции называют механизмом реакции. Механизм протекания данной реакции зависит от многих факторов, важнейшими из которых являются природа реагирующих частиц, а также тип разрыва ковалентной связи. Различают гомолитическое и гетеролитическое расщепление связи. [c.316]

    Основными радикальными реакциями являются (помимо специфических реакций рекомбинации и расщепления) реакции замещения, присоединения и перегруппировки, имеющие некоторые аналогии с соответствующими ионными реакциями. Радикальный механизм наблюдается также в некоторых реакциях восстановления (гл. 18) и окисления (гл. 19). [c.418]


    В качестве типичных процессов расщепления, которые могут изучаться путем измерений поглощения в ультрафиолетовой области спектра, укажем на процессы, связанные с образованием новых хромофорных систем или разрушением ранее существовавших хромофоров. Примером процессов первого рода является, например, реакция расщепления по механизму Р-элиминирования соединения I ( аю 80 ммк, = 15) до продукта [c.148]

    Известно, что процесс платформинга является одним из наиболее прогрессивных методов переработки нефтяных фракций с целью получения ароматических углеводородов [1]. Цикланы, важное сырье для процесса платформинга, подвергаются в нем сложному комплексу взаимосвязанных реакций дегидрированию гексаметиленовых нафтенов, дегидроизомеризации 5-членных цикланов, обратимой изомеризации пента- и гексаметиленовых нафтенов, реакциям расщепления. Так как процесс дегидроизомеризации проходит намного труднее, чем дегидрирование, и осложняется идущими со значительной скоростью реакциями расщепления, выяснение механизма процесса и взаимосвязи с остальными реакциями приобретает важное теоретическое и практическое значение. [c.31]

    Согласно цепному радикальному механизму, предложенному Райсом, первичный разрыв связи С—С происходит с образованием свободных радикалов. Последние участвуют в таких реакциях, как отщепление атома водорода от углеводорода с образованием другого радикала, термическое разложение радикалов с длинной цепью и рекомбинация радикалов с обрывом цепи. Каждое первичное расщепление связи С—С приводит к разложению нескольких углеводородных молекул, и масштаб такого [c.8]

    Поскольку считается, что разложение углеводородов, по крайней мере частично обусловлено свободными радикалами, представляется целесообразным более подробно разобрать механизмы реакций, предложенные Райсом. Первое допущение Райса [35] основано на том, что реакция инициируется расщеплением связи С—С. Это весьма убедительно, так как известно, что связь С—С в углеводородах значительно слабее [c.10]

    На второй ступени характер превращений дизельной фракции несколько меняется. Гидрирование ароматических соединений протекает практически с такой же глубиной и составляет 26%. Наибольшую конверсию претерпевают линейные парафиновые углеводороды - глубина ее составляет 76%. Реакция изомеризации является преобладающей. В продуктах расщепления большая доля принадлежит изопарафиновым угле водородам, что указывает на протекание реакции гидрокрекинга. Отсутствие в продуктах распада углеводородов С1—Сг и преобладание С3—С4 предполагает протекание реакций на катализаторе ГИ-13 по карбкатион-ному механизму. [c.127]

    В качестве примера, иллюстрирующего удобство использования химических меток для установления механизма реакции, рассмотрим расщепление молекулы аденозинтрифосфата с образованием аденозиндифосфата и ортофосфорной кислоты  [c.427]

    На ранних стадиях оставалось также невыясненным место разрыва кольца метилциклопентана , так как точное соотношение между изомерными гексанами установить не удавалось . Между тем точные данные о составе и количественном соотношении продуктов изомеризации и расщепления в ходе гидрогенизации бензола позволили бы раскрыть особенность этих реакций и сопоставить их течение с механизмом мягкого гидрогенолиза. [c.226]

    В заключение можно отметить, что жидкофазпое гидрирование представляет сложный процесс, в котором протекают чередующиеся и часто взаимосвязанные реакции гидрирования и расщепления, алкилирования и деалкилироваиия, изомеризации положения заместителей, функциональных групп, водорода. Закономерности насыщения ароматических карбо- и гетероциклических систем часто объясняются большей или меньшей электронной плотностью ароматических связей за счет конденсации или введения гетероатома, а закономерности изомеризации и расщепления — радикальным механизмом этих реакций. [c.220]

    Б фотоинициируемых операциях отверждения почти всегда используется полимеризация, не сопровождающаяся выделением низкомолекулярных побочных продуктов. Большинство приложений фотоинициируемой полимеризации основано на механизме генерации свободных радикалов при этом в качестве мономеров обычно выступают эфиры акриловой кислоты (СН2 = СНС00К). Акриловые группы имеются в смолах, обычно применяемых для нанесения покрытий (эпоксиды, уретаны и полиэфиры). Полифункциональные растворители, получающиеся в результате реакции полиолов с акриловой кислотой, ускоряют отверждение и увеличивают число сшивок в покрытии. Коммерчески оправданными фотоинициаторами обычно служат ароматические карбонильные соединения, спектр поглощения которых хорошо согласуется со спектром испускаемого света доступных источников УФ-излучения. Замещенные ацето-феноны подвергаются а-расщеплению (реакция Норриша типа I см. разд. 3.6) с выделением инициирующих радикалов. [c.259]

    Можно ожидать, что образующаяся при этом гептадецин-4-карбоновая кислота затем будет изомеризоваться в 2,4-диен-карбоновую кислоту (поскольку протекание таких превращений в более слабощелочных средах было установлено для других Л -кислот ацетиленового ряда [106]) и в конечном счете подвергнется расщеплению по механизму, аналогичному механизму расщепления линолевой кислоты. Кроме того, наблюдали протекание побочной реакции, приводящей к образованию насыщенной кислоты с потерей двух атомов углерода, что и следовало ожидать в случае образования обычного промежуточного соединения [1]. [c.241]


    Термическое разложение окисей N,N-димeтилaлкилaминoв исследовано Копом . Полученные при этом соединения он сравнивал с конечными продуктами гофмановского расщепления. Реакция термического разложения протекает с отщеплением цис- -во-дородного атома и аминоокисной группировки, приводя к образованию олефина и М,М-диметилгидроксиламина по внутримолекулярному циклическому механизму  [c.97]

    Альдольная конденсация и обратная реакция расщепления, катализируемые альдолазой, протекают с образованием щиффова основания. Механизм реакции расщепления аналогичен механизму действия ацетоацетатдекарбоксилазы — в обоих случаях [c.71]

    Для выяснения механизма окисления дикумилметана получаемую гидроперекись подвергали расщеплению при нагревании в растворе эфира или бензола в присутствии серной кислоты и анализировали состав продуктов расщепления. Реакция проводилась до полного разложения гидроперекиси, после чего из смеси отгоняли легколетучие вещества (кипящие до 70° С), остаток обрабатывали последовательно содовым раствором и щелочью, нейтральные продукты высушивали и фракционировали. В колбе всегда оставалось значительное количество смолообразпых продуктов. [c.379]

    Изучение стереохимии. В зависимости от экспериментальных условий стереохимический результат реакции галогендемеркури-рования оптических или геометрических изомеров ртутьорганических соединений может изменяться от полной потери конфигурации до полного сохранения конфигурации. Показано, что в результате свободнорадикального расщепления связи С—Hg га логелами происходит потеря стереохимической конфигурации, в то время как электрофильное расщепление по механизму Se2 обычно протекает с сохранением конфигурации [107—109]. [c.37]

    Сущность самого старого способа производства спирта — спиртового брожения сахаристых веществ заключается в том, что углеводы (из которых важнейшим является глюкоза СвН120б) в присутствии особых микроорганизмов — дрожжей, подвергаются расщеплению (брожению). Механизм реакции брожения сложен, суммарно процесс брожения можно выразить следующим уравнением  [c.166]

    Наличие этого механизма было установлено в случае р-лактоновой системы на примере лактона яблочной кислоты 34]. В щелочных или в сравнительно концентрированных кислых растворах этот внутренний сложный эфир гидролизуется по основному и кислотному механизму с расщеплением связи ацил — кислород и сохрапением конфигурации. Однако нри некотором промежуточном значении pH среды этот сложный эфир медленно гидролизуется с обращением конфигурации, и, следовательно, реакция идет в соответствии с бимолекулярным механизмом Вль2 с расщеплением связи алкил — кислород. На приведенной ниже схеме (В = СООН) показаны разные места расщепления реакция в кислой среде будет рассмотрена позднее. [c.947]

    Благодаря работам Караша и сотрудников [82] в последнее время стало известно, что хотя схема расщепления вторичных гидроперекисей, выдвинутая Рихе, может представлять вполне универсальный механизм реакций органических гидроперекисей, однако такие реакции протекают только в присутствии очень сильных кислот, например хлорной для успешного протекания этих реакций недостаточны даже концентрации ионов водорода, существующие в смесях хлористого водорода и уксусной кислоты. Следовательно, в условиях, при которых проводят окисление парафинов, т. е. в отсутствие сильных кислот, образование полуацеталей не происходит. [c.466]

    Основы расщепления парафинов на олефины описаны в многих работах [61—64]. Герхольд [65] подробно изложил механизм реакции расщепления газорбразных и жидких углеводородов. На рис. 3 представлена зависимость состава продуктов пиролиза пропана от [c.17]

    Реакция гидрогенолиза циклопропана в присутствии порошка Re подчиняется уравнению псевдопервого порядка, кажущаяся энергия активации равна 52,3 кДж/ /моль [101]. Полагают [101], что лимитирующей стадией процесса является расщепление трехчленного цикла с последующим быстрым присоединением водорода. Сходный механизм с промежуточным образованием 1,3-диадсорбированных частиц постулируется [102] при исследовании кинетики и механизма гидрогенолиза циклопропана на ряде нанесенных Ni-катализаторов. Этот механизм согласуется с результатами по дейтерообмену. [c.106]

    В работе [274] подробно исследованы механизм и кинетика деалкилирования толуола с водяным паром на алюмородиевом катализаторе. Авторы пришли к выводу, что толуол и вода адсорбируются на разных центрах углеводород, вероятно, адсорбируется на ЯЬ-центрах, а вода — на А12О3. Второй важный вывод заключается в том, что при выборе кинетической модели деалкилирования толуола с водяным паром необходимо учитывать роль продуктов реакции, в частности СО. Полагают, что образование СО сильнее тормозит реакцию расщепления ароматического ядра, чем процесс деалкилирования. Квантовохимическое рассмотрение механизма деметилирования толуола на нанесенных металлах УП1 группы проведено в работе [275]. [c.178]

    Имеется достаточно данных для предноложсния, что реакция оксосинтеза является гомогенно-каталитической реакцией. Условия успешного проведения процесса приблизительно соответствуют условиям, при которых карбонилы кобальта являются устойчивыми, хотя имеется очень мало количественных данных о равновесных состояниях, которые позволили бы точно определить эти последиие условия. Стехиометрия реакций требует суммарного присоединения 1 моля окиси углерода и 1 моля водорода на 1 моль олефина. Однако один атом водорода присоединяется к одному атому углерода, а окись углерода и второй атом водорода присоединяются к другому углеродному атому двойной связи. Весьма желательно поэтому изучение последовательности этих ирисоединений, если только они не происходят одновременно. Так как атомы водорода присоединяются к различным углеродным атомам, то обоснованный механизм реакции должен дать объяснение энергетических трудностей, сопряженных с расщеплением водорода в гомогенной среде. [c.298]

    При изучении роли кристаллов платины с различной структурой в механизме процесса дегидроциклизации н-геисана на алюмоплатиновых катализаторах был сделан вывод [179], что в реальных условиях дегидроциклизации, когда процесс сопровождается крекингом и энергичным коксообразованием, скорость и направление циклизации н-гексана зависят от размера кристаллов Pt на носителе. Наиболее благоприятными для осуществления реакции на изученном образце -АЬОз являются кристаллы Pt размером 1,1 —1,4 нм и степенью дисперсности H/Pt 0,6—0,8. При сравнении результатов ароматизации н-гексана и гексена-1 на изученных алюмоплатиновых катализаторах предположили, что электронодефицитные частицы Pt прежде всего могут играть роль центров закоксовывания алюмоплатиновых катализаторов, на которых происходит крекинг ненасыщенных углеводородов, склонных к реакциям присоединения и расщепления. Вместе с тем полагают, что ароматизация н-гексана осуществляется путем непосредственного замыкания шестичленного цикла с одновремен- [c.253]

    Третья возможность неправдоподобна и ее обычно не рассматривают. Стици и Фолкинс рассматривают идентичность продуктов нормальных и ингибированных реакций как признак того, что ингибированная реакция представляет собой процесс с участием радикалов, имеющих укороченную цепь, так как невероятно, чтобы реакции, протекающие по двум различным механизмам, давали бы те же самые продукты. Стэббс и Гиншельвуд считают возможной в присутствии N0 и молекулярную реакцию, так как в случае расщепления связи С—С реакция по радикальному типу даст 10 же продукты, что и прямая молекулярная перегруппировка. [c.18]

    Концепция механизмов реакций на основе ионов карбония была выдвинута Уитмором [43] и поддерживалась многими британскими химиками. В связи с неионпым характером большинства углеводородов и свойственной им относительной инертностью к электрохимическому воздействию вызывала некоторое сомнение возможность расщепления углеводородов в ходе химической реакции па два осколка, один из которых несет нолонсительный заряд. [c.137]

    В заключение можно сказать, что проведение омыления в условиях МФК синтетически выгодно в случае стерически затрудненных эфиров. При этом следует использовать систему твердый гидроксид калия/толуол и краун-эфиры или криптанды в качестве катализаторов. Кроме того, скорость гидролиза простых эфиров карбоновых кислот концентрированным водным раствором гидроксида натрия значительно выше для гидрофильных карбоксилатов. Хорошими катализаторами являются четвертичные аммониевые соли, особенно BU4NHSO4 и некоторые анионные и неионные ПАВ. Это указывает на то, что может осуществляться любой из трех возможных механизмов реакции на поверхности, мицеллярный катализ или истинная МФК-реакция. В зависимости от условий может реализоваться каждый из этих механизмов. Как было показано раньше, при МФК возможна экстракция кислот в форме ионной пары R4N+X----HY [57]. Ранние работы, в которых рассматривалось кислотное МФК-омыление, оказались ошибочными [1202, 1348]. Однако недавно было описано мягкое и селективное расщепление трет-бутиловых эфиров, которое происходит при перемешивании с [c.250]

    Крекинг парафиновых и циклопарафиновых углеводородов можно рассматривать как реакцию деалкилирования и механизм его — как механизм,обратный механизму реакции алкилирования. Основной реакцией каталитического крекинга является разложение иона карбония на меньший ион карбония и олофин (правило 2), тогда как для термического крекинга основной реакцией является разложение свободного радикала на меньший радикал и олефин (правило 2 ). В обоих случаях имеет место расщепление связи С—С в бета-положении с образованием трехвалентного атома углерода. Вследствие существенных различий в поведении ионов карбония и свободных радикалов продукты каталитического и термического крекингов заметно отличаются друг от друга. Например [17], при jtpeKHHre гексадеканов в присутствии алюмосиликатных катализаторов [c.235]

    С учетом высокой энергии активации (190 кДж/моль) и порядка реакции по водороду (-1) авторы [135] считают, что реакция изомеризации протекает на кислотных центрах. Отсутствие метана и этана в продуктах крекинга исключает механизм гидрокрекинга на благородном металле. Отсутствие этильных изомеров свидетельствует о том, что как изомеризация, так и гидрокрекинг протекают в каналах цеолита 28М-5, т. е. каталитический вклад внешней поверхности цеолита незначителен. Следовательно, изомеризация и гидрокрекинг протекают по карбкатион-ному механизму, видоизмененному эффектом, который обусловлен геометрией пор цеолита 75М-5. Фактор геометрии цеолита в катализаторе - Н25М-5 влияет как на конечные, так и на промежуточные соединения. В отличие от широкопористых цеолитов, в 28М-5 механизм расщепления в значительной степени определяется 3-расщеплением моноразветвленных карбкатионов. [c.121]

    При переработке нефтяных фракций протекают не только реакции собственно гидрирования, но и различные реакции изомеризации и расщепления. Большею частью они связаны между собой общностью механизма или общими промежуточными продуктами. Между тем в технологических целях важно обеспечить высокую селективность катализаторов в одних случаях они должны интенсивно гидрировать полициклические ароматические углеводороды и сохранять моноциклические (производство бензинов), в других — обеспечивать глубокую изомеризацию (производство низкозастывающих дизельных и реактивных топлив), в третьих — сохранять углеродаый скелет сырья без изомеризации и т. д. Очевидно, что для обеспечения селективности процесса нужно создавать катализаторы с различными сочетаниями гидрирующей, изомеризующей и расщепляющей активностей. Первым шагом на пути разработки таких катализаторов должно было явиться изучение химии превращений различных классов углеводородов в присутствии промышленных катализаторов. [c.225]

    Межцепной обмен в полисульфидных полимерах протекает по. механизму ионного гетеролитического расщепления дисульфидной связи [28]. Скорость реакций межцепного обмена зависит от степени полисульфидности полимера. Исследование кинетики межцепного обмена в массе полисульфидных полимеров позволило определить мольную энергию активации некатализируемого обмена, которая оказалась равной 52,8 кДж/моль. Это значение соответствует энергии активации анионного тиол-дисульфидного обмена низкомолекулярных соединений, осуществленного в полярной среде [29]. [c.561]

    Из данных, приведенных в табл. 5, видно, что при расщеплении большинства углеводородов в присутствии алюмокобальтмолибдено-вого катализатора углеводородов С и Са образуется больше, чем углеводородов С3 и С4 (отношение С3 -[- С4 к С Сз меньше единицы). В случае никелевого и платинового катализаторов на кислых носителях это отношение больше единицы, т. е. среди газообразных продуктов преобладают углеводороды Сд и С4. Исключение составляет лишь бутилбензол, расщепление боковой цепи которого протекает как по ионному, так и по радикальному механизмам (см. выше реакции на стр. 117 сл, и 122). Следовательно, отношение (Сз - -С4)/(С1 С2) может быть надежным индикатором протекания реакций по ионному или радикальному механизму, а его большая величина будет указывать на кислотную функцию катализатора или носителя. [c.124]

    При гидрировании полициклических углеводородов на промышленных катализаторах жидкофазного процесса расщ епление протекает настолько интенсивно, что в молекуле углеводорода, как правило, образуется не более одного гидрированного кольца. Типичной реакцией расщепления является разрыв гидрированного кольца в системе частично гидрированного ароматического углеводорода типа жАШ, где х = 1, 2, 3 и т. д. Простейшим углеводородом такого типэ является тетралин, на примере которого и уточнялся механизм реакции расщепления в условиях жидкофазного процесса. [c.181]


Смотреть страницы где упоминается термин Расщепления реакции механизм: [c.331]    [c.46]    [c.107]    [c.19]    [c.137]    [c.463]    [c.275]    [c.173]    [c.40]   
Основы химии карбанионов (1967) -- [ c.169 , c.170 ]




ПОИСК





Смотрите так же термины и статьи:

Карбониевый механизм реакций расщепления эфиров

Каталитические реакции расщепления углеводородов Кинетика и механизм реакций каталитического крекинга над активными алюмосиликатами.— А. В. Фрост и А. В. Очкин

РАСЩЕПЛЕНИЕ НЕЕНОЛИЗИРУЮЩИХСЯ КЕТОНОВ АМИДОМ НАТРИЯ РЕАКЦИЯ ХАЛЛЕРА — БАУЭРА Механизм реакции

Реакции, протекающие по механизму образования-расщепления электронных пар

Электронная плотность и реакции протекающие по механизму образования расщепления электронных



© 2024 chem21.info Реклама на сайте