Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография теория подвижности

    В отношении скорости потока следует пойти на компромисс, так как увеличение скорости хотя и уменьшает влияние диффузии (происходящей по длине разделительного слоя сорбента), но затрудняет установление равновесия между фазами. Уменьшение размеров частиц сорбента, обусловленное членом А, должно также иметь границы, так как в противном случае слишком большим станет сопротивление потоку в колонне, т. е. скорость движения потока недопустимо уменьшится. Величина члена С зависит от значения коэффициента распределения. Его определяют как отношение количества вещества в стационарной фазе к количеству вещества, находящегося а подвижной фазе. Он связан с соотношением стационарной и подвижной фазы на участке разделения. Более подробное рассмотрение вопросов теории хроматографии можно найти в специальной литературе [19, 28]. [c.348]


    Распределительная хроматография на бумаге. Теория колоночной хроматографии была перенесена и в бумажную распределительную хроматографию. Бумага удерживает в порах воду (22%)—неподвижный растворитель, сорбируя ее из воздуха. Нанесенные на бумагу хроматографируемые вещества переходят в подвижную фазу и, перемещаясь с различными скоростями по капиллярам бумаги, разделяются. Однако определить значение Кр так, как это определялось в колоночном варианте, здесь невозможно, поэтому для количественной оценки способности разделения веществ на бумаге введен коэффициент представляющий собой отношение величины смещения зоны вещества (х) к смещению фронта растворителя (х ) (рис. 22), т. е. [c.79]

    Зависимость величин удерживания от количественного состава подвижной фазы следует уже из основополагающих работ по теории обращенно-фазовой хроматографии [202, 203]. Так, для оценки влияния концентрации органического растворителя в принципе могло бы быть использовано уравнение (4.5). Однако это математическое описание достаточно сложно и требует знания физико-химических параметров системы, которые нелегко найти в литературе либо определить экспериментально. Поэтому чаще всего пользуются упрощенными моделями, приводящими к вполне удовлетворительным результатам. [c.91]

    Интерпретация зависимости величин удерживания от концентрации органического растворителя в подвижной фазе, приведенная в 4.1.2.4, позволяет, используя основные представления сольвофобной теории обращенно-фазовой хроматографии, получить единую модель, описывающую влияние строения сорбатов и состава подвижной фазы на коэффициенты емкости. [c.122]

    Адсорбционная хроматография используется главным образом для разделения веществ липофильного характера. Хроматографическое разделение гидрофильных соединений, прежде всего аминокислот, стало возможным после открытия Мартином и Синджем [15] в 1941 г. распределительной хроматографии. Эти авторы использовали в своей работе столбик силикагеля, насыщенного водой. На верхний конец столбика наносили смесь веществ, предназначенную для разделения, и промывали соответствующими органическими растворителями. Подвижной фазой, таким образом, служил органический растворитель, а неподвижной — вода, удерживаемая силикагелем. Разделение аминокислот в этих условиях было возможно лишь после их ацетилирования.. Кроме того, получить силикагель со стандартными свойствами было очень трудно. В связи с этим в качестве материала, способного удерживать на своей поверхности воду, авторы предложили использовать целлюлозу [16]. Целлюлоза оказалась пригодной для разделения свободных аминокислот. От использования целлюлозы как носителя неподвижной фазы оставался всего один шаг к замене порошкообразного носителя полосками бумаги. Так была открыта хроматография на бумаге. В 1944 г. английские авторы опубликовали сообщение [3] об использовании в качестве носителя водной фазы целлюлозы в виде фильтровальной бумаги, в качестве подвижной фазы был испробован ряд растворителей. В 1952 г. Мартин и Синдж были удостоены Нобелевской премии за открытие распределительной хроматографии типа жидкость — жидкость. В том же году Джеймс и Мартин [10], исходя из теоретических положений адсорбционной хроматографии [6], разработали теорию распределительной хроматографии типа жидкость — газ. [c.12]


    Как известно из теории хроматографии на бумаге, подвижность отдельных веществ характеризуется так называемой величиной Rf, представляющей собой отношение расстояния между центром пятна вещества и стартом (а) к расстоянию между фронтом растворителя и стартом (б) (рис. 16). Величина Rp, таким образом, изменяется в пределах от О до 1. Вещества па старте имеют Rp=Qfi вещества в середине хроматограммы имеют Rp = 0,b, а вещества на фронте растворителя — / р=1,00. Нужно помнить, что величина Rf не является физической константой, если эксперимент не проводится в строго стандартных условиях. В большинстве случаев величина Rp характеризует только подвижность вещества и является величиной эффективности разделения данной хроматографической системы. Именно с этой точки зрения следует [c.73]

    Таким образом, не вызывает сомнений, что роль неподвижной фазы в обращенно-фазовой хроматографии не всегда столь пассивна, как предполагает сольвофобная теория. Тем не менее варьирование неподвижных фаз с целью оптимизации селективности разделения в обращенно-фазовом режиме применяется редко. Обычно этой цели добиваются варьированием состава подвижной фазы. [c.62]

    Хроматографию можно определить как теорию и практику такого метода разделения, который осуществляется при взаимодействии подвижной фазы (например, растворителя в колоночной хроматографии), протекающей через слой неподвижной фазы (например, оксид алюминия в колоночной хроматографии). С помощью этого метода можно разделять различные компоненты смесей органических соединений, что основано на селективной и предпочтительной сорбции неподвижной фазой этих компонентов, находящихся в подвижной фазе. [c.431]

    Теория хроматографии показывает, что время удерживания -связано с объемной скоростью потока подвижной фазы через колонку. В жидкостной хроматографии произведение этих двух величин является постоянным. В газовой хроматографии вследствие очень большой сжимаемости газов это простое соотношение не выполняется, но тем не менее мы можем определить объем (его называют также объемом удерживания) следующим образом  [c.23]

    Теория. Джемс и Мартин показали, что теория, разработанная Мартином и Синджем для жидкостной распределительной хроматографии, может быть легко распространена на область газожидкостной хроматографии. Необходимо лишь иметь в виду сжимаемость подвижной фазы, которая приводит к появлению градиента скорости газа по колонке. [c.543]

    Теоретические аспекты ионообменной хроматографии никоим образом не противоречат общей теории, рассмотренной в гл. 16. Концентрационные коэффициенты распределения, выведенные выше, могут быть использованы для определения удерживаемого объема, как уже отмечалось. Поскольку подвижной фазой является жидкость, ее оптимальные скорости движения очень низки. Диффузионные процессы, определяющие кинетику ионного обмена, происходят на расстоянии, равном приблизительно диаметру одного зерна смолы, а переменная р в выражении приведенной высоты тарелки здесь представляет диаметр зерна смолы. В колонке с наиболее высокой разрешающей способностью высота тарелки соответствует приблизительно пяти диаметрам зерен. [c.593]

    Химическая природа носителей обсуждается в гл. 5 для устранения собственной адсорбционной активности частичек носителей их подвергают предварительной обработке, методика которой рассматривается в связи с методами обработки носителей экстрагентами (разд. 2.1). В данном разделе обсуждается только проблема стандартизации размера частиц (зерен) носителя. Из теории хроматографии следует, что зернистость носителя влияет на высоту эквивалентной теоретической тарелки (ВЭТТ), поскольку размер частичек определяет вихревую диффузию и массонеренос в подвижной фазе [3]. Вихревая диффузия определяется характером движения подвижной фазы в колонке, которая в свою очередь зависит только от структуры упаковки носителя и профиля потока между частичками носителя. Согласно Гиддингсу [3], особенности движения подвижной фазы гораздо больше влияют на уширение зоны по сравнению с другими факторами (за исключением, может быть, диффузии). [c.67]

    Согласно теории в упрощенном варианте [11], диаметр колонки не влияет ни на разрешающую способность колонки, ни на высоту тарелки. Такое приближение удовлетворительно, если отношение диаметров колонки и размеров частиц носителя колеблется между 5 и 50, а скорость потока близка к оптимальной. Оптимальная скорость подвижной фазы, не зависящая от диаметра колонки, может быть определена только в газовой хроматографии. Однако поскольку в жидкости коэффициенты диффузии в 10 —10 раз меньше, чем в газовой фазе, то в экстракционной хроматографии разрешающая способность колонки всегда слегка зависит от диаметра набивки. Разрешающая способность колонок существенно ухудшается при использовании колонок большого диаметра и высоких скоростей потока. [c.75]


    Введение образца пробы в колонку. Из теории колоночной хроматографии следует, что для лучшего разделения необходимо ввести минимальное количество образца в минимальном объеме растворителя. Если это возможно, состав раствора должен быть идентичен составу первой подвижной фазы, используемой для последующего разделения. В идеальном случае количество образца не должно превышать емкости первой тарелки колонки. [c.86]

    Суммируя, можно сказать, что отсутствие зависимости объема выхода от изменения скорости потока и температуры свидетельствует в пользу теории эксклюзии. В обычном варианте гель-хроматография и с точки зрения механизма процесса представляет собой совершенно новый и самостоятельный хроматографический метод. Он отличается от всех видов адсорбционной и распределительной хроматографии тем, что концентрация вещества в стационарной фазе всегда ниже, чем в подвижной. Стационарная фаза имеет тот же состав, что и подвижная единственное ее отличие от этой последней заключается именно в неподвижности [41]. Эта неподвижность стационарной фазы [c.124]

    Теория проявительной хроматографии должна решить вопрос о распределении концентрации анализируемого вещества в подвижной и неподвижной фазах хроматографической колонки, в зависимости от времени I и координаты положения х под действием потока проявителя, поступающего в колонку с постоянной скоростью щ. [c.88]

    Перейдем теперь к рассмотрению процесса распределительной хроматографии, исходя из теории тарелок, и воспользуемся для этого моделью машины Крэга, описанной Кейлемансом [8]. Возьмем делительную воронку и заполним ее равными объемами несмешивающихся жидкостей Л и Б, первая из которых соответствует подвижной фазе, а вторая — неподвижной. Затем поместим в воронку немного третьего вещества В, растворимость которого в обеих жидкостях одинакова. При перемешивании произойдет распределение вещества В между двумя фазами Г = Г= ). Перенесем жидкость А в другую воронку, заполненную таким же количеством чистой жидкости Б. Тогда половина растворенного в жидкости А вещества В перейдет в жидкость Б. Одновременно в первую воронку поместим новую порцию жидкости А, при этом в нее перейдет половина из оставшегося в воронке вещества В. Если продолжить этот процесс, используя семь воронок, то распределение, например, 64 частиц вещества В по воронкам можно представить в виде таблицы  [c.45]

    Описанные варианты предусматривают повышение плотности подвижной фазы от плотности газа до плотности жидкости и являются промежуточными между газовой и жидкостной хроматографией. Это служит основой как для разработки теории процесса, так и для соответствующих аппаратурных решений. [c.76]

    Перейдем теперь к рассмотрению процесса распределительной хроматографии, исходя из теории тарелок, и воспользуемся для этого моделью машины Крэга, описанной Кейлемансом [3]. Возьмем делительную воронку и заполним ее равными объемами несмешивающихся жидкостей А и Б, первая из которых соответствует подвижной фазе, а вторая — неподвижной. Затем поместим в воронку немного третьего вещества В, растворимость которого в обеих жидкостях одинакова. При перемешивании произойдет распределение вещества В между двумя фазами (Г — Г = 1). Перенесем жидкость А в другую воронку, заполненную таким же количеством чистой жидкости Б. Тогда половина растворенного в жидкости А вещества В перейдет в жидкость Б. Одновременно в первую воронку поместим [c.44]

    Классификационная теория Киселева дает теоретическое истолкование практическому опыту, накопленному в тонкослойной хроматографии по подбору селективных разделительных систем, и на этой основе позволяет оптимизировать их состав. Ограничимся одним примером, связанным с раздвоением ДНФ-аминокислот, представляющих сложные органические соединения с группировками I, II и III типов. Для их разделения используется система, состоящая из водного аммиака на силикагеле (неподвижная фаза) и смеси пиридина, толуола и этиленхлоргидрина (подвижная фаза). Неподвижную фазу можно отнести к ослабленному II типу (силанольный протонизированный водород, инактивированный водородными связями с водой и аммиаком). Также ясна роль компонентов в подвижной фазе толуол играет роль растворителя пиридин, обладающий неподеленной парой электронов на азоте, конкурирует на силикагеле с ДНФ-аминокислотами, а молекулы этиленхлоргидрина выполняют как бы буферные функции, образуя специфические связи с ДНФ-аминокислотами при переносе их в подвижную фазу и вступая в межмолекулярное взаимодействие друг с другом при переносе ДНФ-аминокислот в неподвижную фазу. Все это создает весьма тонкие эффекты, позволяющие разделять очень близкие вещества. Подобные представления дают возможность сделать два предсказания коэффициент распределения Кр ДНФ-аминокислот будет расти, и, следовательно, Rf уменьшится при повышении содержания аммиака в неподвижной фазе и увеличении концентрации пиридина в подвижной фазе. Эти предсказания соответствуют экспериментальным фактам (см. рис. 6). [c.208]

    При отсутствии заметной адсорбции или ионного обмена движение вещества в основном зависит от его растворимости в подвижной фазе (проявляющем растворителе). Величину можно так же рассматривать как отношение скорости движения зоны выделяемого вещества к скорости движения фронта растворителя, т. е. подвижной фазы. По теории распределительной хроматографии величина R закономерно связана с коэффициентом распределения, что подтверждают и опыты. Коэффициент распределения является логарифмической функцией химического потенциала данного вещества, разделенного на величину RT. [c.199]

    Теория, разработанная для колоночной распределительной хроматографии [117], может полностью быть применена к хроматографии на бумаге. В конечном итоге продвижение зоны каждого вещества при их разделении методом колоночной, бумажной и тонкослойной [118 раслределительной хроматографии определяется индивидуальными значениями относительных подвижностей — величинами Rf (формула (111.8) на стр. 168) или R (формула (III.10) на стр. 169). [c.174]

    В 1903 г. русский ботаник М. С. Цвет предложил новый метод разделения сложных смесей веществ, названный им хроматографией (от греческого слова хроматос — цвет). Этот метод в соответствии с современной терминологией представлял собой жидкостную адсорбционную хроматографию на колонке, заполненной карбонатом кальция,разделяли пигменты растений. Подвижной фазой служил петролейный эфир. М. С. Цвет создал проявительный нариант хроматографии и заложил основы многоступенчатого сорбционного разделения сложных смесей, развил фронтальный вариант, связал все виды хроматографии единой теорией, впервые четко показал слоисный характер взаимодействия в системе сорбат — сорбент— растворитель и предложил способы смещения сорбционных равновесий. Однако предложенный метод практически не развивался до 30—40-х годов. [c.582]

    Жидкость неподвижной фазы, как и прп гель-фильтрации, может быть просто иммобилизована внутри пористых гранул, илп, например, быть прочно связана с волокнами набухшей целлюлозы, илп же покрывать тонкой пленкой гранулы из сплошного материала и поверхность пор внутри них. Покрытие может осуществляться за счет смачивания, сорбции пли химическим путем. В последнем случае нередко пленка жидкости сводится к мономолекулярному слою вещества, способного удерживать близ своей поверхности молекулы колшонентов фракционируелюй смеси в соответствии со степенью их сродства к нему. В этом случае о соотношении растворимостей говорить трудно, так что лучше оперировать только понятиями сродства того или иного компонента к неподвижной и подвижной фазам, что, впрочем, с позиций теории хроматографии сведется к точно такой же, как при истинном растворении, количественной характеристике равновесного распределения фракционируемого материала между двумя фазами. Если в процессе распределительной хроматографии участвуют две истинные жидкости, то для осуществления равновесного распределения вещества они сами тоже должны быть в равновесии между собой, т. е. в случае частичной их растворимости друг в друге должны быть взаилшо насыщенными. [c.8]

    Важнейшую роль в понимании механизма удерживания з обращенно-фазовой хроматографии сыграли работы Хорвата и его школы [201—203]. Суть теории Хорвата заключается в следующем. Существует принципиальное различие между процессами сорбции на полярных поверхностях из относительно неполярных растворителей ( нормально-фазовый режим ) и сорбции из воды либо сильнополярных растворителей на поверхностях неполярных (обращенно-фазовый режим). В первом случае между молекулами сорбатов и неподвижных фаз образуются ассоциаты за счет кулоновских взаимодействий или водородных связей. Во втором случае причиной ассоциации на поверхности являются так называемые сольвофобные- взаимодействия в подвижной фазе. Для полярных подвижных фаз, в особенности содержащих воду, характерно сильное кулоновское взаимодействие и образование водородных связей между молекулами растворителей. Все молекулы в таких растворителях связаны довольно прочно межмолекулярными силами. Для того чтобы поместить в эту среду молекулу сорбата, необходимо образование полости м.ежду молекулами растворителя. Энергетические затраты на образованиё такой полости лишь частично покрываются за счет взаимодействия полярных групп в молекуле сорбата с полярными молекулами растворителя. В аналогичном положении по отношению к растворителю находятся и неполярные молекулы неподвижной фазы. С энергетической точки зрения более выгодно такое положение, когда поверхность раздела между полярной средой (растворителем) и неполярными фрагментами неподвижной фазы и молекул сорбата минимальна. Уменьшение этой поверхности и достигается при сорбции (рис. 4.1). [c.52]

    Жидкостная хроматография как наука сравнительно далеко продвинулась в изучении кинетико-динамических аспектов процесса. Это позволило создать современные высокоэффективные сорбенты и колонки. Однако резервы дальнейшего совершенствования за счет повышения эффективности уже почти исчерпаны. Намного скромнее успехи теории удерживания, которой пока не удается выйти из рамок полуэмпирического моделирования. Страницы этой книги, посвяшенные данному вопросу, свидетельствуют о том, что, несмотря на определенные успехи, возможно лишь очень грубое априорное предсказание величин удерживания, пригодное для предварительной оценки требуемой элюирующей силы подвижной фазы. Хотя сведения такого рода весьма полезны на первоначальном этапе разработки методики разделения, их недостаточно для корректного прогноза относительных величин удерживания конкретных пар соединений. Исследователи по-прежнему не в состоянии предвидеть в общем случае, исходя из химико-структурных соображений, как изменится селективность хроматографической системы по отношению к данной паре веществ при тех или иных изменениях состава подвижной фазы. В связи с этим изучение природы селективности, по существу проблемы межмолекулярных взаихмо-действий в жидкостной хроматографии, продолжает оставаться актуальной задачей. [c.351]

    За двадцать пять лет. прошедшие с тех пор, варианты тонкослойной хроматографии усовершенствовались, приобрели еще большую популярность, а подходы к теории метода оказались более осмысленными. В частности, такое совершенствование сказалось в возникновении понятия "высокоэффективная жидкостная хроматография" (ВЭЖХ), подразумевающего улучшение возможностей количественного анализа, ускорение разделения и повышение воспроизводимости. Повысился интерес к этому методу как к заменяющему (или дополняющему) метод высокоэффективной жидкостной хроматографии. Важными представляются и успехи в теории тонкослойной хроматографии. Начав с простого пользования тонкослойными пластинками, мы так усовершенствовали этот способ разделения, что вправе называть этот подход количественным и научным. Своими практическими работами сам доктор Гейсс сделал достаточно большой вклад в совершенствование методов и в более полное понимание теории. Давно проводившиеся им исследования предварительного насыщения тонкослойных пластинок привели к появлению важнейших новых приемов и к улучшению результатов, достигаемых традиционными методами ТСХ (поскольку удается избежать влияния расслоения подвижной фазы и [c.15]

    В тонкослойной хроматографии движение фронта жидкости (механизм и теория движения фронта подвижной фазы подробно рассмотрены в работе V.G.Gimpelson. V.G.Berezkin // J.Liq. hromatogT. 1988. V.U. P.2199.- Прим.ред.) определяется квадратичной зависимостью. Значком здесь и далее отмечены ключевые уравнения. [c.39]

    Перемещение зон н размывание пятен в тонкослойной хроматографии характеризуются двухмерным процессом (в то время как аналогичное перемещение зон в газовой или жидкостной колоночной хроматографии представляет собой одномерный процесс). Кроме того, если рассматривать взаимодействие с молекулами растворителя, ситуация оказывается еще даже более сложной, поскольку приходится учитывать взаимодействия газовой фазы со слоем в обычной камере. До 1975 г. объем информации о механизмах размывания зоны и зависимости размывания от эффективности слоя был весьма незначительным, но позднее в целом ряде научных статей (в частности, статей Гиошона с соавт. [20-25]) этот сложный вопрос был прояснен и было выявлено несколько основных взаимосвязей. Однако по каждому из вопросов еще не сделано окончательных выводов и еше достаточно скудно количество опубликованных экспериментальных данных, подтверждающих высказанные теоретические предпосылки. Несмотря на то, что тонкослойная хроматография представляет собой "простейший из хроматографических методов, теория размывания зоны оказывается наиболее сложной и меньше всего разработана. Осложнение обусловливается, главным образом, тем фактом, что в ТСХ (в отличие суг случаев ГХ или КЖХ) скорость подвижной фазы (растворителя) не постоянна во время хроматографического разделения и на нее нельзя повлиять (если не считать варианта разделений, выполняемых под давлением). Тем не менее большинство теоретических предпосылок в ТСХ [c.74]

    Большую часть основной работы по выводу соотношения между удерживаемыми объемами и константой равновесия между подвижной и неподвижной фазами выполнили Консден, Мартин и Джеймс [3—5]. Литтлвуд и др. [6], Кейлеманс и др. [7], Портер и др. [8], Пьеротти и др. [9] и Квантес и Риджн-дерс [10] развили далее эту теорию для газовой хроматографии и сопоставили ее предсказания с экспериментальными результатами. [c.74]

    Мартир и Боэм [82] недавно разработали единую теорию удерживания, которая предсказывает изменение кажущейся константы равновесия между подвижной и неподвижной фазами во флюид-жидкостной хроматографии. Основная особенность этой теории заключается в том, чтобы считать подвижнук> фазу смесью слабого и сильного растворителей, как в жидкостной хроматографии. При низкой плотности подвижной фазы слабым растворителем является пустое пространство. Эта модель приводит к обычным уравнениям (11) и (26), когда плотность газовой фазы низка. Она дает возможность предсказания изменения кажущегося коэффициента распределения с повышением среднего давления газа-носителя вплоть до критического состояния газовой фазы и за его пределами. Это обеспечивает переход к известному выражению удерживания в сверл ри-тической флюидной хроматографии [82]. [c.88]

    Жидкостная распределительная хроматография была предложена в 1942 г. биохимиками А.Дж. П. Мартином и Р. Л. Синджем. Эти ученые разработали первую общую теорию хроматографии и предположили, что сочетание газовой подвижной фазы с жидкостной стационарной фазой имело бы важные преимущества. За этим в хроматографии последовал еще один пробел, и хотя некоторые из ее разновидностей стали уже популярными, однако ни одна из работ по использованию сочетания газа с жидкостью не была опубликована вплоть до 1952 г., когда Мартин совместно с А. Т. Джеймсом описали такой метод. Эта работа словно взрывная волна дала толчок развитию хроматографии, которое продолжается до настоящего времени. Метод имел настолько большое значение, что уже к 1956 г. лаборатории органической химии во всем мире использовали газо-жидкостную хроматографию. В настоящее время каждый год литература по хроматографии насчитывает тысячи работ и еще больше по применению этого метода. Ретроспективно, ранние работы Мартина и Синджа явились решающими в развитии распределительной хроматографии, и в 1954 г. они были удостоины Нобелевской премии по химии. [c.530]

    Теория, которая избегает допущения установления мгновенного равновесия и других недостатков концепции теоретических тарелок, должна основываться на скорости, с которой может в действительности установиться равновесие в обычных условиях хроматографии. К тому же должны быть рассмотрены скорости диффузии в подвижной и стационарной фазах. Хроматографические теории, основное внимание в которых акцентировано на кинетике, называют кинетическими теориями , хотя было бы более точно использовать термин линейная неидеальная теория . Первое подробное изложение такой теории было дано датскими химиками ван Деемтером, Клинкенбергом и Зюйдервегом в 1956 г. общее уравнение для расчета величины тарелки как функции скорости движения подвижной фазы иногда называют уравнением ван Деемте-ра. Дальнейшее развитие эта теория получила главным образом благодаря работам американского химика Дж. Калвина Гиддингса. Интересующиеся читатели найдут обширное и доступное изложение основ современной хроматографической теории в его книге, ссылка на которую приведена в списке литературы, помещенном в конце главы. [c.535]

    Скорость движения газа-носителя и эффективность колонки. Кинетическая теория хроматографии удовлетворительно объясняет зависимость высоты тарелки Я от скорости передвижения у подвижной фазы, и потому для газо-жидкостных хроматографических колонок можно наблюдать зависимости, подобные изображенным на рис. 16-8. При оптимальной скорости газа-носителя для аналитических колонок с внутренним диаметром 2,5 мм Я обычно составляет около 0,4 мм. Определение оптимальной скорости движения газа-носителя чрезвычайно просто, поэтому начинающие заниматься хроматографией обычно охотно вьгполняют это измерение, однако после этого всегда необходимо убедиться, что полученные результаты соответствуют наиболее оптимальному режиму. Если скорость будет больше, чем требуется, то такая небрежность может привести к лишней затрате времени. В любом эксперименте скорость потока газа-носителя должна быть по возможности наибольшей. Этим самым зачастую можно значительно сократить время анализа без каких-либо серьезных потерь в разрешении. [c.573]

    Принцип распределения вещества между двумя фазами, находящимися в равновесии, лежит в основе всех важнейших процессов разделения, осуществляемых в области экстракции, дистилляции, противоточного распределения и в различных методах хроматографии. В колоночной хроматографии одна фаза находится в неподвижном состоянии внутри колонки, а другая совершает поступательное движение. При этом происходит перенос вещества вдоль колонки со скоростью, кото]в ая лищйеделяете равнов есие распределения вещества между-двумя фазами. В газожидкостной хроматографии стационарной фазой является жидкость, нанесенная в виде пленки на тонкоизмельченном, инертном, твердом носителе, а подвижной фазой — газовый поток, протекающий над неподвижной жидкой пленкой. Поведение вещества, проходящего через такую колонку, описывается теорией теоретических тарелок, первоначально разработанной для жидкостной хроматографии Мартином и Синджем [7 ]. Эта теория была позднее применена к газо-жидкостной хроматографии Джеймсом и Мартином [5 ]. Многие расчеты, произведенные на основе теории, хорошо согласуются с экспериментально найденным распределением вещества в статических системах. Кроме того, расчет эффективности колонки на основе теории распределения позволяет вычислять различные экспериментальные параметры колонки и сравнивать их влияние на разделение. Рассматриваемая теория имеет еще и то преимущество, что она делает возможным сопоставление газо-жидкостной хроматографии с другими методами разделения, которые могут быть описаны на основе концепции теоретических тарелок. [c.75]

    Распределительная хроматография, которая для этой цели и с таким эффектом использовалась Мартином и Сйнджем, принципиально может рассматриваться как своеобразный вариант противоточной экстракции, при проведении которой экстрагируемое соединение распределяется между двумя жидкими фазами, одна из которых закреплена на твердом носителе (этой фазой в методике с обращенными фазами является менее полярная жидкость), в то время как другая движется в заданном направлении. Имеется ряд теоретических подходов к исследованию процессов, происходящих в колонке при распределительной хроматографии [1—4а] они основаны на концепциях дистилляционного процесса. Хроматографическая колонка условно разбивается на ряд секций, сравнимых с гипотетическими дистилляционными тарелками, и предполагается, что каждая тарелка эквивалентна одному экстракционному сосуду одноступенчатого процесса. По мере проведения процесса вещество распределяется между двумя фазами и подвижная фаза, содержащая это вещество, переносит его с одной тарелки на другую. Теория хроматографического процесса, основанная на этой концепции, очевидно, очень близка к теории противоточного распределения Крейга. Однако, если в прерывном процессе, осуществляемом на аппарате Крейга, может достигаться истинное равновесие, то в колоночной распределительной хроматографии достичь равновесия на каждой тарелке практически невозможно. Для того чтобы обойти это осложнение, Мартин дал другое определение тарелки в хроматографии. Следуя Мартину, можно определить хроматографическую тарелку как слой, в котором отношение усредненных концентраций распределяющегося вещества в неподвижной фазе и в элюате, вытекающем из этого слоя, соответствует отношению, достигаемому при равновесии в системе. Высота тарелки обозначается как высота, эквивалентная теоретической тарелке (ВЭТТ). [c.32]

    Наиболее ясное представление о влиянии сорбции на скорость перемещения хроматографической зоны может быть получено в результате рассмотрения теории равновесной хроматографии. Для вывода соотношения между скоростью полосы и сорбцией воспользуемся простым методом, предложенным Жу-ховицким [7]. Пусть в колонке единичного сечения в любой момент времени существует равновесие между концентрацией данного вещества в подвижной и неподвижной фазах и пусть отсутствует эффект расширения полосы вследствие продольной диффузии. В момент 1 распределение концентраций вдоль трубки описывается кривой 1 (рис. 1.7). За время М полоса передвинется так, что точка с концентрацией а о займет положение а"о на кривой 2 (а о — количество вещества в единице объема колонки). [c.38]


Смотреть страницы где упоминается термин Хроматография теория подвижности: [c.170]    [c.62]    [c.26]    [c.531]    [c.27]   
Инструментальные методы химического анализа (1989) -- [ c.390 ]




ПОИСК







© 2024 chem21.info Реклама на сайте