Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ассоциация макромолекул в растворах и растворители

    Здесь надо отметить, что длина сегмента макромолекулы в растворе определяется не только гибкостью цепи, но и ассоциацией макромолекул или их участков. Как мы видели, ассоциация зависит как от природы растворителя, так и от природы макромолекул, т. е. от содержания в них полярных или ионогенных групп, по которым может устанавливаться связь. Таким образом, кажущийся молекулярный вес является величиной весьма условной, о чем никогда не следует забывать. [c.453]


    В известных условиях глобулы могут развертываться с образованием фибриллярных структур, состоящих из выпрямленных цепей. Например, при нейтрализации полиакриловой кислоты сильным основанием в водном растворе происходит выпрямление свернутой макромолекулы вследствие электростатического отталкивания одноименных зарядов групп С00 , периодически повторяю щихся вдоль цепи. Появление зарядов обусловлено диссоциацией образовавшейся соли, которая в отличие от свободной кислоты является сильным электролитом. Фибриллярные структуры также возникают при переходе от разбавленных растворов к концентрированным и в тех случаях, когда свертывание макромолекулы й глобуле затруднено (недостаточная гибкость цепей, взаимодействие их с некоторыми растворителями и т. д.). В таких условиях стремление одиночной вытянутой цепи к уменьшению своей поверхности и максимальному насыщению сил, действующих между ее функциональными группами, приводит не к образованию глобул, а к ассоциации макромолекул в пачки . Иногда получаются одновременно глобулы и пачки, между которыми устанавливается равновесие, соотношение их зависит от гибкости цепи, концен трации раствора и природы растворителя. Никогда не образуются промежуточные формы, которые, по-вндимому, неустойчивы. [c.434]

    Теория растворов высокополимеров рассматривает случаи, когда один или несколько компонентов раствора состоит из макромолекул. Классическим примером могут служить растворы каучука и полистирола в органических растворителях. Выводы теории растворов высокополимеров оказались полезными и в тех случаях, когда молекулярные объемы низкомолекулярных компонентов значительно отличаются друг от друга, а также при анализе явления ассоциации в растворах. Поэтому теория растворов высокополимеров оказала влияние на всю современную теорию растворов. В сущности, растворы высокополимеров, как правило, являются растворами неэлектролитов и могут рассматриваться как частный случай этих последних ). [c.312]

    Очень важную проблему при изучении реакций полимеров представляет выбор растворителя. Для проведения реакции в гомогенной среде необходимо подобрать такой растворитель, в котором были бы растворимы и исходный полимер, и катализатор, и продукты реакции, что представляется довольно сложным. От природы растворителя зависит также степень ассоциации макромолекул в растворе, их форма поэтому в различных растворителях при изучении одной и той же реакции могут наблюдаться существенные отличия как в скорости реакции, так и в строении и свойствах продуктов модификации полимеров. [c.44]


    Изучение процессов ассоциации макромолекул в растворах (В. А. Каргин и сотр.) показало, что, в зависимости от концентрации раствора, строения цепей и природы растворителя, наблюдается два основных типа ассоциации а) соединение вытянутых цепей в пачки длинных макромолекул и б) взаимодействие звеньев внутри отдельных цепей, приводящее к свертыванию макромолекул и образованию глобул, которые затем могут агрегировать, образуя цепочку бусинок. Оба типа агрегации макромолекул наблюдались в электронном микроскопе. [c.153]

    При рассмотрении процесса растворения полярных макромолекул пригодны почти те же рассуждения, что и для неполярного полистирола. Следует принять во внимание, что между макромолекулами полимера и молекулами полярного растворителя возникают связи Каб дипольного типа, что не наблюдается для полистирола. Эти связи Каб конкурируют с дипольными связями Кбб между молекулами растворителя, поэтому равновесие ассоциации для последних сдвигается. При введении макромолекул устанавливается новое равновесие взаимодействия макромолекул с растворителем, что приводит к нарушению ассоциации молекул растворителя. Так, например, поливинилацетат или изомерный полиметилакрилат благодаря образованию стабильной сольватной оболочки растворим в метилацетате или ацетоне, в то время как полистирол в них не растворяется. [c.8]

    Полиаминоамидокислоты растворяются в апротонных растворителях, таких, как диметилформамид, диметилацетамид, диметилсульфоксид, N-метилпирролидон, гексаметилфосфотриамид и пиридин. Характеристическая вязкость, равная 0,4—1,5 дл/г (диметилформамид, 25°С), соответствует молекулярной массе 7 000— 20 000, определенной осмометрическим методом [5]. В диметилацетамиде полиаминоамидокислоты образуют прочные ассоциаты. Для определения молекулярной массы методами светорассеяния или седиментации пригодны смеси растворителей, например диметилацетамид— N-метилацетамид (25 75), в которых ассоциация макромолекул таких полимеров значительно ослаблена [10]. [c.1021]

    Итак, сведения о свойствах растворов производных целлюлозы в тэта-растворителях отчасти противоречивы и нуждаются в дополнительной проверке. Необходим учет возможности ассоциации макромолекул. Тем не менее имеющийся фактический материал в основном указывает на то, что макромолекулы производных цел- [c.252]

    Термодинамическое сродство полимера и растворителя определяет степень ассоциации макромолекул и, следовательно, плотность и размеры надмолекулярных образований. При сближении параметров растворимости полимера и растворителя парциальная плотность полимера в растворе минимальна, [c.81]

    Между этими крайними случаями имеется множество промежуточных. Соприкосновение раствора полимера с поверхностью даже непористого тела может привести к сильной или слабой адсорбции в зависимости от химии поверхности твердого тела, определяющей межмолекулярное взаимодействие с адсорбентом как звеньев макромолекул, так и молекул растворителя. Здесь сказываются те же факторы, влияние которых на адсорбцию из растворов и хроматографию обычных молекул было рассмотрено в лекциях 14, 16 и 17 для адсорбции и хроматографии молекул обычных размеров. Однако степень конформационной подвижности макромолекул зависит от разветвленности цепей, возможности и характера их сшивки, а также взаимной ассоциации, значение которых быстро возрастает с увеличением молекулярной массы полимера. Большое значение имеет распределение и природа функциональных групп в макромолекулах. [c.333]

    В растворах у полимеров существуют два вида межмолекулярных взаимодействий сольватация и ассоциация. Сольватация - это взаимодействие полимер-растворитель с образованием сольватов. У макромолекул, как и у низкомолекулярных соединений, чаще всего образуются моно-сольватные оболочки. Ассоциация - это взаимодействие полимер-полимер с образованием ассоциатов, которые, в отличие от коллоидных частиц (агрегатов), не имеют постоянного состава, не являются постоянно существующими образованиями и не рассматриваются как отдельная фаза. В растворах полимеров в отличие от растворов низкомолекулярных соединений явление ассоциации играет значительно большую роль. Ассоциаты образуются и разрушаются при тепловом движении макромолекул, и процесс ассоциации имеет релаксационный характер. В растворах полимеров всегда существует определенная степень ассоциации, зависящая от концентрации растворов (возрастает с увеличением концентрации) и температуры (возрастает с понижением температуры). Существование только изолированных макромолекул, те. полное отсутствие ассоциации, возможно лишь при бесконечном разбавлении. При исследовании макро- [c.166]

    Это особенно важно для растворов целлюлозы и других линейных полимеров, где опасность ассоциации сильно вытянутых макромолекул велика. Рекомендуется применять предельно плохой растворитель и температуры, близкие к критической температуре смешения, когда полимер находится на грани выпадения из раствора, а макромолекулы наиболее свернуты. [c.544]


    Объяснение обнаруженных явлений основывается на сравнении относительной эффективности взаимодействия между макромолекулами, причем предполагается, что в растворах в плохом растворителе оказывается возможной ассоциация полимерных цепей. Существующие теории, предлагаемые для описания [c.242]

    В разбавленных однофазных растворах ВМС макромолекулы разобщены растворителем настолько, что их взаимным влиянием можно пренебречь. Однако с ростом концентрации ВМС до некоторого критического значения Са сферы действия молекул с учетом их диффузной, размытой границы перекрываются и начинается переход от раствора с изолированными макромолекулами к системе, в которой начинается ассоциация макромолекул (Еасс > Етд). Поскольку ВМС нефтяных растворов - многокомпонентная смесь, то начало ассоциации может соответствовать достижению критической концентрации одним компонентом или многими наиболее высокомолекулярными компонентами смеси, относящимися к одному или нескольким гомологическим рядам. Это согласуется с закономерностями ассоциации полимеров в растворе, в частности,с тем, что концентрация на.чала ассоциации увеличивается с уменьшением Мп полимера [168]. [c.74]

    Благодаря тому, что макромолекулы имеют значительную длину и гибкость, а также могут входить в состав различных ассоциатов, явление ассоциации в растворах в итоге может привести и к образованию в системе пространственной сетки, что проявляется в застудневании раствора. Наличие таких сеток, обеспечивающих эластические свойства даже у сравнительно разбавленных растворов полимеров, было доказано Фрейндлихом и Зейфрицем уже в начале XX столетия. В результате наблюдений под микроскопом эти исследователи установили, что если на мельчайшую крупинку никеля в даже очень вязкой жидкости действует магнитное поле, то эта крупинка может перемещаться в жидкости на сколь угодно большое расстояние. В растворах же высокомолекулярных веществ крупинка передвигается в магнитном поле на очень небольшое расстояние и затем останавливается, а после прекращения действия поля возвращается в первоначальное положение под влиянием эластических сил, обусловленных существованием в растворе сетки из макромолекул. Застудневший раствор обычно со временем претерпевает синерезис, разделяясь на две фазы, — раствор высокомолекулярного вещества в растворителе и раствор растворителя в высокомолекулярном компоненте. Из сказанного следует, что ассоциаты — это не что иное, как зародыши новой фазы. [c.437]

    Как известно, ВМС способны к образованию термодинамически равновесных молекулярных растворов с особыми термодинамическими свойствами, обусловленными гибкостью цепей макромолекул, обладающих больщим числом конформаций. Вместе с тем исследования последних лет показали, что для этих систем характерно развитие процессов ассоциации макромолекул в растворах в зависимости от характера взаимодействия макромолекул друг с другом и с молекулами растворителя и от концентрации раствора макромолекулы могут существовать либо в виде гибких цепей (статистических клубков), либо как плотные глобулы свернутых цепей, либо в виде ассоциатов друг с другом. При развитой мозаичности — различии полярности участков цепей макромолекул — они, как указывалось, могут обладать значительной поверхностной активностью для подобных веществ характерна также резко выраженная склонность к агрегированию молекул и их глобулизации наряду со способностью к солюбилизации нерастворимых в данной среде веществ. [c.236]

    В работах нашей лаборатории по растворам смесей полимеров впервые показано, что в смеси полимербв в растворе также возрастает ближний порядок в расположении макромолекул, что выражается в иовышенной степени ассоциации каждого компонента [26, 52—55]. Прямые доказательства повышенной ассоциации макромолекул в смеси полимеров в растворе были получены при измерении интенсивности светорассеяния в системе полимер — полимер — растворитель, когда показатели преломления одного из полимеров и растворителя практически совпадали [26, 53, 55]. Так, ПС (и = = 1,59) с молекулярным весом 5-10 имеет избыточное рассеяние в растворе в толуоле ( д = 1,50) более 80-10 см ири концентрации раствора 0,5%, а нолиизобутилен с молекулярным весом 10  [c.17]

    Изложенному методу присущи два недостатка. Во-первых, теория не вполне правильно предсказывает характер влияния молекулярного веса на вязкость, как это показано 151 расчетами для исследованных высокомолекулярных образцов. Во-вторых (и это является наиболее важным), существует разительное расхождение между значениями рассчитываемыми по формуле (20а) и определяемыми экспериментально для растворов в плохих растворителях. Формально это может объясняться неверной оценкой величины А в формуле (22), которая для плохих растворителей становится очень малой. Физическая причина этого — в существовании ассоциации макромолекул и образовании структуры в плохом растворителе. Наличие надмолекулярных ассоциатов должно приводить к повышению вязкости, причем образующиеся асссциаты должны быть большими по размеру и более устойчивыми для растворов полярных полимеров. Эти соображения согласуются с экспериментальными результатами, представленными на рис. 12. Для систем такого рода рассматриваемая модель, конечно, не может быть применена. [c.239]

    Даже в области полуразбавленных растворов смесей полимеров, представляющих собой однофазный раствор, образование областей, состоящих из проникающих друг в друга макромолекул разнородных полимеров, способно внести свой, зачастую определяющий, вклад в активацию процесса деструкции полимеров. Прежде всего это реализуется при достаточно высоком термодинамическом качестве растворителя по отношению хотя бы к одному полимеру. Следует учитывать и общую тенденцию к повышению степени ассоциации макромолекул в присутствии второго полимера, а также и чисто концентрационные причины, когда по мере [c.255]

    Таким образом, при проведении хроматографических экспериментов с макромолекулами на набухающих гелях следует учитывать весь комплекс сопутствующих явлений. Сюда входят степень совместимости полимера с гелем, возможность адсорбционного воздействия между ними, набухаемость как геля, так и макромолекул в условиях проведения опыта (характеризуемая константами д и 5(1,2) и РЯД менее общих, но существенных явлений, например таких, как гидратация геля в водных растворах или ассоциация макромолекул друг с другом и с молекулами растворителя. Поэтому интерпретацию данных хроматографического эксперимента следует проводить только при тщательном учете всех перечисленных факторов, влияющих на его результат. В частности, только при соблюдении условий истинной ГПХ можно пользоваться универсальной калибровкой хроматографа. В противном случае она будет разной для различных полимеров, растворителей и условий опыта. В качестве примера можно привести результаты, полученные [68] на полиакриломорфолиновых гелях (энзакрил К1 и К2) (рис. П1.30, 111.31). 1 ак видно, олигосахариды более активно проникают в гель, чем ПЭГ с той же молекулярной массой, а различная набухаемость геля в воде и хлороформе является одной из причин нарушения универсальной калибровки (см. также [87]). [c.129]

    Если учитывать, что скорость деструкции ПВХ определяется не только параметром относительной основности растворителя В, но и его концентрацией в растворе (С, основомоль ПВХ/л), а также степенью взаимодействия полимер-полимер (степенью структурирования макромолекул в растворе АС j - g , где Сц — концентрация начала ассоциации макромолекул ПВХ в растворе), то уравнение (5.5) принимает вид  [c.143]

    Важным является также взаимодействие полимер — полимер внутримолекулярные взаимодействия дальнего порядка удаленных друг от друга групп одной и той же макромолекулы и функциональных групп различных макромолекул (межмолекулярпые взаимодействия). Кроме взаимного влияния на реакционную способность функциональные группы способны вступать в реакции, которые в случае протекания их по внутримолекулярному механизму приводят к сжатию клубка и ограничению гибкости макромолекул, в то время как протекание реакций по межмолекулярному механизму ведет в большей или меньшей мере к сшиванию. Подобные реакции могут протекать также и с участием бифункциональных низкомолекулярных веществ. Соотношение между внутри- и меж-молекулярными направлениями полимераналогичной реакции зависит от концентрации бифункционального низкомолекулярного вещества [31]. Внутримолекулярные реакции, сопровождающиеся циклизацией, идут преимущественно в разбавленных растворах при этом могут образовываться стабильные 5—12-членные циклы. Конформация и расстояние между концами цепей влияют на ход внутримолекулярных реакций, которые способны идти и в 0-усло-вйях, т. е. при максимальном образовании клубков [52, 53]. При этом часто наблюдается заметное снижение вязкости [54]. Переход от хорошего к плохому растворителю способствует обычно протеканию реакции по межмолекулярному механизму. Этого же можно ожидать, если во время реакции ухудшается растворимость и если какие-либо факторы влияют на доступность функциональных групп. Скорость внутримолекулярной реакции не должна меняться с изменением степени ассоциации макромолекул в растворе [14, 50]. Образующиеся при внутримолекулярных реакциях связи являются стабильными. При оценке вероятности виутримо- [c.21]

    Н. Ф. Бакеева и др. показано, что даже в разбавленных растворах полимеров происходит ассоциация макромолекул. Более того, явления ассоциации наблюдаются в растворах неполярных полимеров в неполярных растворителях, в которых могут иметь место только слабые ван-дер-ваальсовы взаимодействия. Можно предположить, что высокая склонность к образованию надмолекулярных структур является общим свойством полимеров, обусловленным длинноцепным строением макромолекул, способных кооперативно взаимодействовать друг с другом. Тенденция к ассоциации макромолекул особенно отчетливо обнаруживается в растворах регулярных полимеров. Так, например, хорошо известны-стереокомплексы полиметилметакрилата, образующиеся при взаимодействии макромолекул изо- и синдиотактического строения в органических растворителях Известно также образование комплексов в растворах в малополярных растворителях Ь- и Д-поли-у-метилглутаматов. В этих растворах полипептидные цепочки находятся в конформации правой и левой а-спирали В таких растворах также имеют место ван-дер-ваальсовы взаимодействия между звеньями макромолекул, входящих в комплекс, которые благодаря кооперативному характеру взаимодействия цепочек обусловливают устойчивость этих образований. [c.3]

    Большая часть исследований свойств разбавленных растворов высших полиолефинов посвящена изучению соотношений между характеристической вязкостью и молекулярным весом, вторым ви-риальным коэффициентом и молекулярными размерами главным образом для сравнения поведения стереорегулярных и атактических полимеров. Измерения характеристик стереорегулярных изомеров в плохих растворителях чревато появлением ошибок, обусловленных ассоциацией макромолекул, по-видимому, вследствие начинающейся кристаллизации. Поэтому большая часть исследований проводилась в термодинамически хороших растворителях. Особое внимание было уделено полипропилену, полистиролу и по-либутену-1. Возможность деструкции полимера в растворе также осложняет исследования, особенно в случае высокой температуры плавления образца. [c.40]

    В равновесных растворах полимеров наряду с изолированными макромолекулами (молекулярный уровень дисперсности), существуют структуры определенных типов, возникающие вследствие агрегации или ассоциации макромолекул. Эти процессы протекают в области концентраций как ниже, так и выше С, что связано с зависимостью параметра взаимодействия полимер - растворитель Хп от концентрации. Взаимодействие клубков в растворах приводит к возникновению агрегатов молекул, представляющих собой роевое образование взаимодействующих друг с другом клубков с определенной продолжительностью жизни. Тип агрегатов и число молекул, входящих в него, определяются природой сил межмолекулярного взаимодействия между макромолекулами, природой растворителя и концентрацией раствора. Термодинамической причиной образования агрегатов может быть неполная термодинамическая совместимость фракций различной молекулярной массы даже одной химической природы. Следовательно, при образовании агрегатов может осуществляться их отбор по молекулярным массам, что подтверждает выдвинутую еще в 30-х гг. С. М. Липатовым [102] концепцию о зависимости степени агрегиро-ванности фракций от их молекулярной массы, обусловленной большей растворимостью низкомолекулярных фракций и менее ярко выраженной способностью к суммированию сил притяжения [102]. [c.35]

    Изучение вязкости, светорассеяния и других свойств разбавленных растворов полимеров позволяет сделать заключения о величине и форме макромолекул, полидисперсности, наличии ассоциации в растворах [102]. Аналогичные сведения может дать также и исследование электропроводности растворов полимеров, особенно полиэлектролитов [18]. С данной точки зрения интересны растворы полимерных диэлектриков. Действительно, электропроводность органических жидкостей (гл. 1), к которым относятся и многие мономеры, определяется движением ионов примесей. Поэтому вязкость растворов полимеров в органических растворителях должна существенно влиять на подвижность переносящих заряды ионов. Удельное же электрическое сопротивление низкомолекулярных жидкостей изменяется с температурой прямо пропорционально изменению вязкости [1]. Аналогичные результаты быди получены и при полимеризации высыхающих масел [103]. Ниже будут приведены некоторые экспериментальные данные, показывающие, что и для растворов полимеров имеется корреляция между вязкостью и электропроводностью. Поэтому исследования электропроводности растворов полимерных диэлектриков могут быть использованы и для изучения таких характеристик полимеров, как молекулярный вес, взаимодействие с растворителем и т. д.  [c.74]

    Макромолекулы, находящиеся в растворе, часто образуют ассоциаты с иизкомолекулярными веществами или с другими макромолекулами. Типичным примером ассоциации первого рода является связывание катионов с полимерными кислотами, иода с амилозой и ферментов с субстратами, ингибиторами, коферментами и активирующими ионами. Ассоциация макромолекул друг с другом охватывает больший круг явлений, например агрегацию молекул поливинилхлорида в среде некоторых растворителей, неспецифическую ассоциацию полимеров, полученных в процессах катионной и анионной полимеризаций, образование гемоглобина и ряда других биологически важных веществ из отдельных белковых субъединиц, взаимодействие антигена с антителом и спонтанное образование частиц вируса табачной мозаики из его нуклеиновой кислоты и белка. К этой категории ассоциации относится также образование ДНК из двух цепей полидезоксирибонуклеотида (обсужденное в гл. III, раздел В-2). [c.310]

    Ассоциация макромолекул возможна и в растворах сравнительно низкой концентрации, особенно если полярный полимер растворен в слабополярном растворителе, и в любой системе при повышении концентрации полимера склойность к ассоциации возрастает. Экспериментальные данные свидетельствуют, что по мере увеличения концентрации (примерно до 1—5%) макромолекулы-клубки разворачиваются и ассоциаты образуются йз более или менее вытянутых полимерных цепей. При понижении температуры прочность и продолжительность существования межмолекулярных контактов возрастают и при достаточной концентрации (которая [c.70]

    Уравнение Хаггинса применимо для растворов макромолекул, принимающих форму плотных, непротекаемых для растворителя соери-ческих частиц, и достаточно хорошо соблюдается только для растворов с относительно небольшой концентрацией. При увеличении содерн<аиия полимера в растворе взаимодействие между макромолекулами приводит к их ассоциации. При определенных для данного раствора ко1щен-трациях ассоциация завершается образованием пространственной структуры. В результате приведенная вязкость раствора резко возрастает. В этом случае уравнение Хаггинса не соблюдается и раствор характеризуется так называемой структурной вязкостью Т1стр- [c.196]

    Молекулы воды образуют водородные связи не только друг с другом, но н с полярными группами растворенных соединений. В го же время любая группа, способная образовывать водородные связи с другой группой, может образовать водородные связи примерно такой же прочности и с молекулами воды. Именно поэтому водородные свяэи далеко не всегда способствуют ассоциации малых молекул в водных растворах. Если в неполярном растворителе какие-либо полярные молекулы прочно связываются друг с другом за счет водородных связей, это отнюдь не означает, что они будут ассоциировать и в воде. Что же в таком случае позволяет биохимикам утверждать, что водородные связи играют огромную роль в формировании структуры макромолекул и при взаимодействии биологически важных соединений Дело в том, что равновесие между состояниями, при которых пары взаимодействующих молекул в воде связаны друг с другом водородными связями или диссоциированы, легко смеш,ается в ту или другую сторону. Так, например, белки и нуклеиновые кислоты могут образовывать компактные структуры за счет внутримолекулярных водородных связей между определенными группами или же денатурировать вследствие образования водородных связей между данными группами и молекулами воды, причем разница в свободных энергиях этих двух состояний сравнительно невелика. [c.247]

    Как и в любом истиниом растворе, в растворах полимеров наблюдается сольватация н ассоциация. Сольватация обусловлена взаимодействием макромолекул полимера с молекулами растворителя, приводящим к относительно прочному их соединению. [c.338]

    При возрастании концентрации раствора полимера вязкость изменяется на много порядков и в случае сравнительно небольшого содерлония растворителя начинает приближаться к вязкости самого полимера ( 10 П). Большую роль играет природа растворителя, которая проявляется тем сильнее, чем жестче цепь макромолекулы и чем ближе температура опыта к 7 от раствора. С увеличением доли полимера в системе быстро сокращается среднее расстояние между макромолекулами, в связи с чем увеличивается вероятность взаимного столкновения их при хаотическом движении, образования при ассоциации простейших надмолекулярных структур и возникновения молекулярных сеток. Так появляются структурированные, упруговязкие системы, в которых молекулы связаны мел<ду собой в отличие от бесструктурных, у ко- [c.500]

    В настоящее время представления о растворах полимеров как о беспорядочно перепутанных макромолекулах устарели. По современным данным, структура растворов "полимеров зависит от наличия ассоциатов или агрегатов с той или иной степенью упорядоченности. Характер структуры может быть флуктуацион-ным и нефлуктуационным. Реализация той или иной структуры определяется термодинамическими параметрами температурой, концентрацией раствора и качеством растворителя. При низких концентрациях и повышенной температуре образовавшиеся ассоциаты находятся в равновесии с макромолекулами в растворе. При повышении концентрации, понижении температуры равновесие сдвигается в сторону ассоциации. В результате образуются необратимые агрегаты, которые являются зародышами новой фазы дальнейшее ухудшение термодинамического сродства растворителя к полимеру (или повышение концентрации, или снижение температуры) приводит к фазовому расслоению. [c.151]

    В плохих растворителях сродство макромолекул к молеку лам растворителя невелико и полимерные цепи стремятся контактировать с сегментами соседних цепей. В хороших раство-оителях предпочтительными оказываются контакты сегментов цепи с молекулами растворителя, что ограничивает непосредст--венные контакты полимер — полимер. Таким образом, поли- мерная молекула в хорошем растворителе обладает большей свободой перемещения среди других макромолекул, чем в плохом растворителе, где эта свобода ограничивается ассоциацией цепей. Такое образование кластеров в плохих растворителях зависит только от локальных взаимодействий, т. е. от концентрации полимера в растворе, но не от его молекулярного веса Подтверл<дением этого суждения является факт независимости концентрации с от молекулярного веса. Поэтому быстрое уве--личение вязкости т]о при повышении концентрации полимера в плохом растворителе может быть частично обусловлено образо--ванием структуры, возникающей как следствие сильного локального межсегментального трения. Предположение об образовании ассоциатов в растворах высказывалось также в работе [19а], хотя при этом обсуждался качественно иной механизм этого явления. [c.227]


Смотреть страницы где упоминается термин Ассоциация макромолекул в растворах и растворители: [c.40]    [c.339]    [c.128]    [c.54]    [c.103]    [c.178]    [c.98]    [c.21]    [c.264]   
Получение и свойства поливинилхлорида (1968) -- [ c.244 , c.248 , c.249 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Ассоциация в растворах

Ассоциация макромолекул

Ассоциация макромолекул в растворах

Ассоциация с растворителем

Макромолекула в растворе



© 2025 chem21.info Реклама на сайте