Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез полимеров ионная полимеризация

    Существенному обновлению подвергся раздел, посвященный синтезу полимеров ионной полимеризацией и поликонденсацией. Способы получения новых полимеров химическим превращением уже готовых полимеров стали настолько распространенными, что их рассмотрению посвящается самостоятельная глава. Ее содержание пополнилось описанием процессов получения высокомолекулярных полимеров с заданной формой макромолекул химическим превращением полимеров с малым (олигомеров) и средним (плейномеров) числом звеньев. Такой двух-, а в ряде случаев и трехстадийный синтез полимеров становится ведущим процессом в производстве полимерных материалов. [c.8]


    Синтез гетероцепных полимеров ионной полимеризацией [c.249]

    Катализаторы Циглера - Натта образуют с молекулой мономера координационный комплекс. Поэтому синтез полимеров в присутствии этих катализаторов называется ионно-координационной полимеризацией. [c.254]

    Процессы ионной полимеризации также протекают по механизму цепных реакций, и в этом у них много общего с полимеризацией по свободнорадикальному механизму. Растущая цепь, рост которой завершается образованием макромолекулы полимера, имеет природу иона углерода — положительного (карбкатион) или отрицательного (карбанион). Такие ионы образуются под влиянием катализаторов ионной полимеризации, которые, реагируя с молекулой мономера, переводят ее в состояние иона с последующим развитием цепного процесса как в кинетическом, так и в материальном его аспектах. Как правило, катализатор восстанавливает свою исходную структуру, т. е. имеет место чисто каталитический процесс синтеза полимера. [c.35]

    Полимеризация в растворе мономеров в различных растворителях получила широкое распространение при синтезе полимеров по ионному механизму. Каталитические системы могут быть растворимы в растворителе или присутствовать в виде суспензии, что существенно влияет на структуру получающегося полимера. Растворитель не должен химически взаимодействовать с катализаторами. Если получаемый полимер нерастворим в растворителе, то он выпадает в осадок и его выделение в этом случае значительно упрощается. Если же полимер растворим в растворителе, то раствор полимера может быть использован непосредственно для нанесения, например, полимерных покрытий на различные подложки с удалением растворителя. Если же в этом нет необходимости, то полимер выделяют из раствора различными приемами его осаждения (добавление осадителя, упаривание растворителя и др.). В этом случае существенное значение имеет глубина полимеризации, так как при неполной конверсии мономер может остаться в полимере. [c.81]

    Итак, технически синтез полимера как по цепному, так и по ступенчатому механизму осуществляется несколькими способами, которые существенно влияют на структуру и свойства конечных продуктов. Свободнорадикальный механизм синтеза позволяет наиболее широко варьировать технические способы его проведения, в том числе использовать водные среды для упрощения аппаратурного оформления процессов (эмульсионная, суспензионная полимеризация). В связи с экзотермичностью реакций синтеза полимеров существенным является регулирование температуры и теплоотвода, так как эти параметры влияют на кинетические закономерности реакций и структуру полимеров. Ионные реакции проводят в растворах или в массе мономеров, и синтез идет сравнительно быстро и при низких температурах, что способствует большей регулярности построения макромолекул и большей величине молекулярной массы полимера. Ступенчатые процессы синтеза часто проводятся в расплавах мономеров. [c.85]


    Десять лет, прошедших с момента выхода в свет второго издания книги, отмечены дальнейшим развитием химии высокомолекулярных соединений. Изучены механизмы некоторых реакций синтеза полимеров, выявлены новые свойства и возможности уже известных полимеров, синтезирован ряд новых полимеров. Интенсивно развивалась химия карбоцепных полимеров, получаемых путем термического разложения органических полимеров. Замечательны успехи химии биологически активных полимеров — биополимеров. Все это нашло отражение в новом издании книги. Пересмотрены и дополнены новыми данными все разделы, посвященные методам синтеза полимеров особенно это коснулось ионной полимеризации, полимеризации, инициированной ион-радикалами и переносом электрона, и циклополимеризации. В главе Превращение циклов в линейные полимеры заново написан раздел Ионная полимеризация циклов . Новыми данными пополнен раздел Химические превращения полимеров . Значительно расширена последняя часть книги Краткие сведения об отдельных представителях высокомолекулярных соединений . Здесь особое внимание уделено термостойким полимерам, которые приобрели чрезвычайно важное техническое значение и химия которых особенно успешно развивалась и совершенствовалась. В этом издании значительно большее внимание по сравнению с предыдущим уделено успехам в синтезе биологически активных полимеров белков и нуклеиновых кислот. Из нового издания книги исключен раздел Основы физикохимии высокомолекулярных соединений , так как в настоящее время имеется ряд книг, специально посвященных этим вопросам. [c.10]

    Способы синтеза блок-сополимеров основаны на использовании концевых функциональных групп олигомеров или живых олигомеров, полученных ионной полимеризацией, а также на инициировании полимеризации мономера В олигомерными радикалами, построенными из звеньев А. Олигомеры, содержащие определенные функциональные группы, можно синтезировать методами поликонденсации при избытке одного из компонентов или в присутствии монофункционального соединения, ограничивающего молекулярную массу полимера (см. с. 150), а также методом цепной полимеризации в присутствии некоторых инициаторов и регуляторов. [c.201]

    Для синтеза блок-сополимера можно исходить из готовых блоков, содержащих на концах реакционноспособные группы, которые могут инициировать радикальную или ионную полимеризацию второго мономера, в результате чего образуется блок звеньев второго типа. Наиболее перспективны для получения блок-сополимеров живущие полимеры [88], (см. раздел 3.2.1.2 и опыт 3-52), способные инициировать анионную полимеризацию добавленного мономера. [c.183]

    Известны два основных метода получения краун-полимеров 1) винильная полимеризация, т.е. получение винильных производных краун-соединений методом радикальной или ионной полимеризации, и 2) использование реакций краун-соединений с функциональными группами, в частности реакций присоединения, поликонденсации, полиприсоединения краун-соединений с двумя или более функциональными группами. В разд. 2.7 описаны методы синтеза краун-соединений, содержащих различные функциональные группы, в частности ви-нильную, аминную, гидроксильную и карбоксильную группы, а также их предшественников - галогензамещенных краун-соединений, соединений с нитро-и нитрильными группами. [c.313]

    Образование полимеров возможно в результате а) поликонденсации — синтеза полимера с выделением низкомолекулярных продуктов реакции б полимеризации — объединения мономеров без выделения низкомолекулярных продуктов в) поликоординации (для неорганических или металлорганических соединений), при которой молекула образуется путем координирования ионами металла двух бифункциональных молекул. [c.12]

    Также отметим, что еще один тип низкотемпературных полимеризационных процессов, а именно, ионная полимеризация, осуществляемая при сильном охлаждении реакционной среды, но без изменения ее фазового состояния (замерзания), лежит вне рамок данного обзора. Его предметом является формирование полимеров в замороженных растворах. Подобный синтез представляет не только теоретический, но и определенный практический интерес, поскольку в этом случае часто удается получать полимерные продукты с очень высокими молекулярными массами, а также работать с термически нестабильными мономерами. [c.70]

    Хотя методы синтеза блоксонолимеров путем радикальной полимеризации хорошо известны [55, 100], они не получили широкого применения для получения стабилизаторов. В раннем патенте [102] описано приготовление сополимеров стирол-б-метакриловая кислота и лаурилметакрилат-б-метакриловая кислота с целью пластикации полимера в присутствии другого мономера. Недавно показана возможность использования полимерных инициаторов для получения привитых сополимерных стабилизаторов [73 ] (см. стр. 100). Однако для получения блоксополимеров-стабилизаторов, как свободнорадикальный метод, так и реакции ноликонденсации используются ограниченно. На практике для этой цели большее применение нашли методы ионной полимеризации. [c.121]


    Стереоспецифичность такого синтеза обеспечивается еще и влиянием структуры поверхности гетерогенного катализатора на соответствующую ориентацию мономерных звеньев в цепи. Внедрение каждого следующего мономерного звена происходит в указанный комплекс и таким образом растущая цепь полимера как бы отодвигается от катализатора, чего не наблюдается в радикальной или других видах ионной полимеризации. (Соединения алюминия и титана аналогичной структуры, но взятые в отдельности, не являются стереоспецифическими катализаторами.) Поэтому при координационной полимеризации происходит не только химически регулярное соединение звеньев по типу голова к хвосту (что характерно вообще для ионной полимеризации), но и одновременно обеспечивается правильно чередующееся в пространстве расположение заместителей при атомах углерода основной цепи полимера (см. гл. П1). [c.22]

    Радикальная полимеризация — полимеризация, в к-рой растущие цепи представляют собою свободные макрорадикалы. Р. п. возможна для большинства ненасыщенных мономеров винильного и диенового рядов. Она широко используется для иромышленного синтеза полимеров, в том числе наиболее массовых — полиэтилена, поливинилхлорида, полистирола. Широкое применение Р. п. в пром-сти обусловлено гораздо меньшей ее чувствительностью к влияниям, существенным для ионной полимеризации, и исключительной избирательностью нек-рых мономеров, т. е. их способностью к образованию макромолекул только под действием свободных радикалов (винилхлорид, винилацетат). [c.131]

    Основной способ инициирования Р. п.— применение индивидуальных соединений, способных к разложению на свободные радикалы в определенной температурной области, или систем, действующих по принципу индуцированного генерирования свободных радикалов (см. Инициирование полимеризации). Радиационная полимеризация — наиболее универсальный из методов синтеза полимеров в отсутствие специально введенных инициаторов, но она может протекать как по радикальному, так и по ионному механизму. Фотополимеризация, применимая к ряду ненасыщенных мономеров, характеризуется невысоким квантовым выходом. Его величина определяется природой мономера и используемой об- [c.131]

    Второе условие асимметрич. синтеза — получение истинно асимметрич. углеродных атомов в основной цепп (см. Стереохимия). Натта со своей группой исследовал полимеризацию сложных эфиров сорбиновой к-тьт. При использовании обычного ионного катализатора был получен кристаллический, но оптически неактивный полимер. При полимеризации на оптически активном катализаторе был синтезирован полимер, обладающий оптич. активностью. Одновременно было показано, что активность продукта не обусловлена активностью катализатора. [c.261]

    Ионная полимеризация. К катионной полимеризации склонны изобутилен, а-бутилен, пропилен, т. е. те О., к-рые имеют повышенную электронную плотность у двойной связи. Катионная полимеризация а-0. при темп-рах выше О °С приводит к синтезу низкомолекулярных продуктов (олигомеров). Полимеры с высокой мол. массой могут образовываться лишь при низких темп-рах (см., напр., Изобутилена полимеры). [c.223]

    Получение. Для получения П. п. используют гл. обр. ионную полимеризацию и поликонденсацию. Исходные иономеры — альдегиды, кетоны, циклич. эфиры, фор-мали, ацетали, спирты, гликоли и др. Для синтеза высокомолекулярных продуктов наибольшее распространение получил метод катионной полимеризации. По анионному механизму полимеризуются только эпоксиды (см. Окисей органических полимеризация) и альдегиды (см. Альдегидов полимеризация). Полимеризация по радикальному механизму крайне затруднена из-за относительно высокой энергии гомолитического разрыва связи С—О. Известны лишь немногочисленные работы по синтезу полимеров и сополимеров путем прививки карбоцепных блоков к готовым полиэфирным цепям. [c.65]

    Р. ц. в принципе является бимолекулярной реакцией (лишь в отдельных случаях, напр, при полимеризации несопряженных диенов, Р. ц. происходит путем чередования меж- и внутримолекулярных актов). В большинстве случаев порядок Р. ц. по мономеру равен 1. Однако в случае координационно-ионной полимеризации, если лимитирующей стадией является перегруппировка комплекса по схеме (26), реакция может иметь нулевой порядок по мономеру. Нек-рые кинетич. особенности, связанные с кооперативным взаимодействием между молекулами мономера, могут наблюдаться при твердофазной полимеризации или матричных полиреакциях. Термодинамич. характеристики Р. ц. определяют принципиальную возможность полимеризации данного мономера, скорость этой реакции — общую скорость полимеризации, а стереохимия — структуру образующегося полимера. Поэтому осуществление Р. ц. в контролируемых условиях является основной задачей в проблеме направленного синтеза полимеров с заданными свойствами. [c.176]

    Процессы ионной полимеризации подразделяются на катионные и анионные. К последним относятся также ионно-координационные процессы, имеющие особо важное значение для синтеза стереорегулярных полимеров. [c.103]

    Синтез полимеров с длинными боковыми ответвлениями может быть осуществлен как по радикальному, так и по ионному механизму. Акрилаты, метакрилаты и виниловые эфиры легко полимеризуются по радикальному механизму с образованием макромолекул атактического строения. Радикальная полимеризация а-олефипов практически не идет вследствие деградационной передачи цепи. [c.128]

    Последние годы характеризуются интенсивным развитием исследований в области ионной полимеризации. Это связано как с широким применением процессов ионной полимеризации в промышленности, и особенно в научной практике для синтеза различных полимеров, так и со значительными успехами, достигнутыми в понимании механизма ионной полимеризации [1]. [c.160]

    В главе Б рассматриваются методы синтеза полимеров поликонденсация, ступенчатая полимеризация, радикальная и ионная полимеризация, а также природные полимеры и превращение макромолекулярных соединений — синтетических и природных. [c.4]

    Ионной полимеризацией называется процесс синтеза полимеров, при котором активными центрами, возбуждаюшими цепную реакцию, являются ионы. Ионная полимеризация протекает в присутствии катализаторов. Катализаторы ионной полимеризации можно разделить на три класса  [c.253]

    Ионная полимеризация - процесс синтеза полимеров, при котором активными центрами, возбуждающими цепную реакцию, являются ионы (см. Анионная, Катионная, Ионно-координационая полимеризация). [c.399]

    Полимеризация эмулы ионная - способ гетерофазного синтеза полимеров, осуществляемый в среде с высокоразвитой поверхностью раздела между несме-щивающимися фазами, одна из которых содержит мономер. [c.403]

    Таким образом, несмотря на наличие некоторых общих черт у радикальной н ионной полимеризации как цепных реакций синтеза полимеров, где кинетическая цепь реакций активных расту1цих частиц с молекулами мономера воплощается в материальную цепь макромолекул, между ними имеются существенные различия. Прежде всего в ионной полимеризации в качестве растущей частицы действуют заряженные ионы, а в свободнорадикальной полимеризации— свободные радикалы с неспаренным электроном на атоме углерода. Ионы более активны и реакциоппоспособны. В связи с этим требуются более тщательно контролируемые условия их образования и существования. Инициирующие системы в ионной полимеризации в основном являются каталитическими, т. е. восстанавливают свою исходную структуру, а не расходуются необратимо, как в случае радикальных инициаторов. Во многих случаях катализаторы ионной полимеризации осуществляют не только химическое инициирование полимеризации, но и координируют молекулы мономера около растущих частиц. Это позволяет получать строго регулярное пространственное (стерическое) расположение звеньев мономера в цепи полимера (стереорегулярные полимеры). [c.36]

    Итак, ионная полимеризация также является видом цепных процессов синтеза полимеров. Она может быть катионной и анионной, причем последняя более распространена. Стабильность карбаниона нозрасгает с увеличением электроотрицательиости заместителя при двойной связи мономера. Для ионной полимеризации характерно наличие ионных пар каталитического комплекса, стабильность которых определяет ход реакции полимеризации. Существенно влияет на эти реакции среда, в которой они проводятся. Структура получаемого полимера, как правило, более регулярная, чем при свобод-норадикальпой полимеризации, причем в ряде случаев со строго упорядоченным расположением заместителей в пространстве. В связи с наличием одинаковых по знаку зарядов на концах растущих цепей часто происходит не обрыв реакционной цепи, а либо передача цепи на мономер, либо образование макроионов ( живые полимеры). Эти виды полимеризации открывают большие возможности для регулирования структуры, а следовательно, и свойств полимеров. [c.47]

    ПОЛИМЕРИЗАЦИЯ (аддиционная полимеризация), синтез полимера путем последоват. присоединения молекул низкомол. в-ва (мономера) к активному центру, находящемуся на конце растущей цепи. В П. вступают соед., содержащие кратные связи С = С, С = С, С = 0, С = М и др., либо способные раскрываться циклич. группировки (окиси олефинов, лактоны, лактамы и др.). По числу участвующих в р-ции мономеров различают гомополимеризацию (один мономер) и сополимеризацию (два и более). В зависимости от природы активного центра выделяют радикальную полимеризацию (активный центр — своб. радикал) и ионную полимеризацию (ион, ионная пара или ноляризов. молекула см. Анионная полимеризации, Катионная полимеризация). Важная разновидность II.— стереоспецифическая полимеризация, при к-рой образуются полимеры с высокой степенью упорядоченности пространств, строения. [c.462]

    БЛОЧНАЯ полимеризация (полимеризация в массе, полимеризация в блокеХ способ синтеза полимеров, при к-ром полимеризуются жидкие неразбавленные мономеры. Помимо моиомерш и возбудителя (инициатора, катализатора) реакционная система иногда содержит регуляторы мол. массы полимера, стабилизаторы, наполнители и др компоненты. Механизм Б. п. может быть радикальным, ионным или координационно-ионным. В конце процесса реакционная система м. б. гомогенной (расплав полимера, его р-р в мономере) или гетерогенной, в к-рой полимер образует отдельную жидкую или твердую фазу. Обычно в результате Б. п. получают продукты, макромолекулы к-рых имеют линейное или разветвленное строение. Особый случай Б. п. многофункциональных мономеров или олигомеров, приводящая к образованию трехмерных сетчатых полимеров. [c.298]

    ВИНИЛОВЫЕ МОНОМЕРЫ, этилен и его монозамещенные производные, способные полимеризоваться по схеме n Hj= HX -> (—СНг—СНХ—) . В зависимости от природы X мономеры могут вступать в анионную, катионную, коордииационио-ионную и радикальную полимеризации. Наиб. пром. значение для синтеза полимеров и сополимеров имеют этилен, пропилен, винилхлорид, акрилонитрил, стирол, винилацетат, метилакрилат и др. эфиры акриловой к-ты. [c.370]

    Значения Сь становятся сравнимыми с См в таких растворителях, как толуол и этилбензол, которые По своей активности в реакциях передачи близки к нормальным парафиновым углеводородам. Существенное преобладание реакции передачи наблюдается в I4. Но даже и в этом случае роль передачи по сравнению с реакцией роста относительно невелика. Как например следует из данных для стирола, отношение вероятностей актов передачи и актов роста составляет около 0.01. А это означает, что один акт передачи приходится на 100 актов роста. Явления передачи должны учитываться при выборе среды для проведения полимеризации, если к молекулярному весу полимера предъявляются определенные требования. Все приведенные в табл. 20 растворители могут использоваться в качестве реакционных сред при полимеризации различных мономеров. Полимеризация в растворе представляет собой полезный прием. С ее помощью решается проблема теплосъема и исключается сильное загустевание поли-меризующейся смеси, что практически крайне важно. В технике полимеризация в растворе используется, например, при синтезе поливинилацетата и при ионной полимеризации изобутилена (гл.У). [c.248]

    Первая из них состоит в том, что ионная полимеризация привлекала до 40—50-х годов меньше внимания исследователей и отчасти уже поэтому изучена слабее. Исторически такая несправедливость объясняется, по-видимому, следующим. Вначале во всех странах в качестве основного метода синтеза высокомолекулярных соединений исследовались процессы поликонденсации, которые очень близки к таким простым реакциям, как этерификации, амидирование и гидролиз. Следующая ступень — интенсивный экспериментальный и теоретический анализ полимеризации иод действием свободных радикалов. Широкое исследование этих процессов объясняется главным образом тем, что они могут быть проведены в гомогенных условиях, удовлетворительно воспроизводимы и приводят к образованию полимеров, которые легко можно охарактеризовать по их молекулярному весу и молекулярно-весовому распределению. По тем же иричи-нам, а также вследствие низкой стоимости и доступности многих этиленовых и диеновых мономеров, основная масса промышленных полимеров производилась путем свободнорадикального инициирования. Сфера промышленного применения ионной полимеризации ограничивалась, в основном, получением (путем низкотемпературной полимеризации) нолпизобутилена, некоторых каучуков, в частности бутилкаучука (сополимер изобутилена и [c.88]

    Книга представляет собой монографию по синтезу и свойствам сте-реоспецифических полимеров, в которой собран и систематизирован обширный материал по линейной и стереоспецифичеспой полимеризации и сополимеризации этиленовых и ацетиленовых углеводородов, виниловых соединений, в том числе виниловых эфиров, акрилатов и окисей оле-финов. Приведен краткий обзор теории радикальной и ионной полимеризации и подробно рассмотрены вопросы каталитической полимеризации и механизма таких реакций, в том числе на гетерогенных катализаторах Циглера—Натта. Особое внимание уделено способам получения и свойствам катализаторов для стереоспецифической полимеризации. Рассмотрены также вопросы очистки полимеров, их физические и механические свойства. В книге содержится обширная библиография. [c.4]

    Ионная полимеризация. Наибольшие принципиальные возможности для синтеза Б. заданного состава и строения (при отсутствии гомополимеров) дают анпонная и координационно-ионная полимеризации. Отсутствие обрыва цепи при аниоппоп полимеризации и, следовательно, наличие жииг/щих полимеров, а также длительное сохранение активности растущих цепей при координационно-иониой полимеризации позволяют осуществлять непрерывную блоксополимеризацию путем попеременного введения различных мономеров в реакционную смесь (после 100%-ной конверсии или удаления одного из мономеров). При этом возможно регулировать длину, число и порядок чередования полимерных блоков в макромолекулах. [c.134]

    При детальнодм изучении процесса синтеза полиформальдегида и сополимеров формальдегида с кислородсодержащими мономерами важные результаты были получены Н. С. Ениколоповым [46]. Благодаря исследованиям процессов образования и свойств гетероцепных полимеров, получаемых ионной полимеризацией гетероциклов, В. А. Пономаренко установлено большое влияние строения звеньев полимерной цени, непосредственно примыкающих к активным центрам [47]. В анионных и координационно-анионных процессах они образуют вокруг нротивоиона или металла асимметричную координационную сферу, подобную правой и левой спиралям полипептидов, которая определяет стереоспецифичность процесса. Развитые представления о строении указанных активных центров позволяют по-новому подойти к объяснению закономерностей анионной и координационно-анионной полимеризации пе только оксиранов, по и серу- и азотсодержащих гетероциклов. [c.116]

    История развития области полимераналогичных реакций включает несколько этапов. Модификация целлюлозы, введение достаточно простых функциональных групп путем реакций замещения в полимерной цепи и полимераналогичных реакций по группам, сохранившимся после полимеризации, обусловили успехи в синтезе ионообменных полимеров и их практическом использовании (катализ путем ионного обмена). Большие успехи достигнуты и при иммобилизации энзимов, применении в качестве носителей гомогенных катализаторов, разработке специальных вариантов синтеза полимеров (например, синтез Мерифилда) и использовании функциональных полимеров для афинной хроматографии. Эти достижения привели к тому, что специфические полимераналогичные превращения на подходящих полимерных матрицах позволили вводить фиксированные на носителе определенные реакционноспособные группы. Полимеры, содержащие связанные с ними функциональные системы, часто называют полимерными реагентами. Необходимость направленного синтеза таких реагентов обусловлена специфическими областями их применения (например, полимерные катализаторы или полимерная фармакология). [c.78]

    Совершенно новые возможности открылись для применения явления ионообменной сорбции в течение последних двух десятков лет в связи с синтезом ионообменных смол. Последние представляют собой полимеры, несущие кислотные или основные функциональные группы. В первом случае это катиониты, т. е. сорбенты, способные к обмену катионов, во втором — аниониты. Направленный синтез ионообменных смол открыл большие возможности для получения ионитов, несущих различные кислотные или основные радикалы, способных находиться не только в солевой, но и в кислотной или основной форме, а также ионитов, обладающих различной, в том числе и очень значительной, емкостью сорбции. На основе органического синтеза и процессов полимеризации и поликонденсации имеется возможность получать иониты, обладающие исключительно большой избирательностью сорбции ионов. Один из принципов синтеза специфических ионитов основан на использовании в качестве мономера при получении ионообменной смолы вещества, являющегося аналитическим реактивом, например осадителем, на тот или иной ион. Так, например, описан ионит, избирательно сорбирующий ионы калия [5] и не обладающий подобными свойствами по отношению к ионам натрия. Избирательной способностью сорбировать поны тяжелых металлов обладают иониты, содержащие сульфгидрильные функциональные группы [6]. Перспективным является также 1Ювоо направление синтеза специфических ионитов на основе введения комплексона в структуру смолы [7]. [c.7]

    Альдегиды и кислородсодержащие гетероциклические соединения, как правило, полимеризуются по ионным механизмам. Ионная полимеризация даже применительно к винильным мономерам и диенам, изучена далеко не полно. В случае альдегидов и окисей исследователи сталкиваются с еще более сложными проблемами, связанными с еще большим разнообразием конкретных механизмов и факторов, влияющих на кинетику реакций, строение и свойства образующихся продуктов. Монография Фурукавы и Саегусы подводит итоги начального этапа исследований в новом, перспективном нанравленни. Она, конечно, не претендует на исчерпывающие обобщения. В ряде случаев при рассмотрении механизмов реакций из-за недостатка экснериментальных данных авторы вынуждены ограничиться качественными рассуждениями и предположениями. Ценность книги состоит прежде всего в том, что она вводит читателя в одну из увлекательных областей современной химии полимеров, фиксирует внимание на ее наиболее важных аспектах, вооружает комплексом сведений и представлений, необходимых для дальнейших поисков и технологических разработок. Ее с интересом прочтут химики-исследователи и технологи, занимающиеся синтезом полимеров из альдегидов и окисей и их переработкой. Кроме того, книга полезна для широкого круга научных работников, преподавателей и студентов, интересующихся п )облемами химии полимеров. [c.6]


Смотреть страницы где упоминается термин Синтез полимеров ионная полимеризация: [c.193]    [c.146]    [c.100]    [c.100]   
Стабилизация синтетических полимеров (1963) -- [ c.34 ]




ПОИСК





Смотрите так же термины и статьи:

Ионная полимеризация

Ионная полимеризация Полимеризация

Полимеры в синтезе ионитов

Синтез гетероцепных полимеров ионной полимеризацией



© 2024 chem21.info Реклама на сайте