Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость диффузии тепла

    Время распространения тепла на расстояние порядка длины волны —/2- Скорость диффузии тепла определяется коэффициентом температуропроводности [c.125]

    Хотя авторы [31, 32] использовали другие методы для решения этих уравнений, они предположили, что рост пузырька зависит от скорости диффузии тепла к поверхности раздела и что влиянием сил инерции жидкости и поверхностного натяжения можно пренебречь. Мы будем предполагать, что скорость роста пузырька выражается равенством [c.164]


    Течение описанных процессов, схематически изо-брал<енных на рис. 14, связано, очевидно, с диффузией растворенного вещества от мелких кристаллов к крупным. Диффузия же происходит при комнатной температуре очень медленно. Повышение температуры вызывает увеличение скорости диффузии, а также повышает растворимость, и поэтому ускоряется процесс созревания осадка. Точно так >се действует и перемешивание раствора. Следовательно, указан- ый процесс выгодно вести, поместив стакан с осадком в теплое место (например, на кипящую водяную баню) и время от времени перемешивая содержимое его. [c.104]

    Хотя для описания кинетики цепных разветвленных взрывных реакций есть различные механизмы, совершенно отличные от чисто тепловых взрывов, формально зависимости пределов воспламенения от температуры совпадают. Механизм распространения разветвленного взрыва в виде медленной волны горения должен быть связан скорее о диффузией радикалов, ведущих цепь, а не с диффузией тепла. Зельдович [54] показал, что в первом приближении можно считать, что градиенты концентрации и температуры пропорциональны друг другу. В этих условиях формальные уравнения для распространения волны будут одинаковы для обоих механизмов взрыва и совершенно независимо от цепного механизма градиенты концентрации и температур в пламени будут пропорциональны друг другу во всех точках. С физической точки зрения это вполне вероятный результат, потому что наиболее резкие перепады температур должны проявляться там, где скорость реакции наибольшая, что в свою очередь вызывает образование максимальных концентраций продуктов. [c.399]

    Массо- и теплопередача в порах. Наиболее важное значение в процессах гетерогенного катализа имеет перенос вещества и тепла внутри пористой частицы катализатора. Перенос вещества в порах осуществляется исключительно путем молекулярной диффузии. Если диаметр поры значительно превышает среднюю длину свободного пробега, то молекулы диффундирующих веществ сталкиваются друг с другом гораздо чаще, чем со стенками поры и последние не оказывают существенного влияния на скорость диффузии в пористом зерне. В этих условиях диффузия в порах протекает так же, как в объеме неподвижной жидкости или газа и скорость переноса вещества вдоль поры, отнесенная к единице ее поперечного сечения, определяется законом Фика - [c.98]


    В присутствии примесей процесс теплопередачи определяется уже не скоростью отвода тепла, выделяющегося при конденсации, а, главным образом, интенсивностью движения частиц пара из центральной части трубок к поверхности, на которой происходит конденсация. Движение пара обусловлено как диффузией, так и конвективным обменом. Скорость движения пара к поверхности определяется разностью парциальных давлений у поверхности и в основной массе. В процессе конденсации воздух концентрируется у поверхности охлаждения и создает дополнительное сопротивление движению пара к поверхности. Ограниченный приток пара к поверхности постепенно вызывает увеличение толщины экранирующего слоя инертных газов, поэтому коэффициент теплоотдачи снижается. В парогазовой смеси всегда присутствует некоторое количество инертных примесей даже после эффективного их удаления, что приводит к уменьшению парциального давления водяного пара н снижению температуры к. а следовательно плотности теплового потока на теплообменных секциях. [c.135]

    Скорость процесса диссоциации и состояние равновесия в системе зависят от температуры, парциального давления оксида углерода (IV), интенсивности передачи тепла к поверхности обжигаемого материала и скорости диффузии газообразных продуктов из зоны реакции. Парциальное давление оксида углерода (IV) становится равным атмосферному при 900°С. На практике, для ускорения процесса, обжиг ведут при температуре около 1200°С. [c.314]

    По своей физической сущности сушка является сложным диффузионным процессом, скорость которого определяется скоростью диффузии влаги из глубины высушиваемого материала в окружающую среду. Как будет показано ниже, удаление влаги при сушке сводится к перемещению тепла и вещества (влаги) внутри материала и их переносу с поверхности материала в окружащую среду. Таким образом, процесс сушки является сочетанием связанных друг с другом процессов тепло- и массообмена (влагообмена). [c.583]

    Однако при высушивании толстослойных материалов скорость сушки может определяться не скоростью подвода тепла, а скоростью внутренней диффузии влаги или требованиями, предъявляемыми к качеству высушиваемого материала (недопустимость коробления, нарушения структуры [c.628]

    Скорость испарения жидкости (в кг м час), зависящая в данном случае не только от скорости подвода тепла, но и от величины зеркала испарения, линейной скорости газа, коэффициента диффузии и других факторов, может быть ориентировочно определена по формуле  [c.402]

    Давление паров у поверхности жидкости равно давлению насыщения при температуре поверхности, однако оно может заметно отличаться от общего внешнего давления. Причиной является резкая зависимость давления насыщения от температуры (рис. 11-2). Небольшое отличие температуры поверхности от температуры кипения может привести к существенному отклонению давления паров у поверхности от общего давления. Поэтому расчет испарения более правильно проводить по количеству подведенного к поверхности жидкости тепла, затраченного на испарение (в предположении, что температура поверхности равна температуре кипения небольшие отличия не играют роли). Расчет испарения по скорости диффузии паров менее надежен из-за трудности точного определения давления паров у поверхности жидкости .  [c.247]

    Явление теплопроводности родственно диффузии, так как оно также обусловлено беспорядочным движением молекул, которые переносят тепло от одних областей тела в другие. Если какое-либо тело или система тел нагреты неодинаково, то возникает поток тепла от областей с более высокой температурой к областям с более низкой температурой. Молекулы в более нагретых частях тела имеют более высокие энергии поступательного (или колебательного) движения. При столкновениях и скачках более горячие молекулы передают часть своей энергии молекулам, двигающимся медленнее, и тем самым ускоряют их движение. В свою очередь, такие ускорившиеся молекулы передают часть энергии еще более медленным молекулам. Таким образом, тепло распространяется благодаря столкновениям молекул. Скорость передачи тепла П (через единицу [c.124]

    При горении конденсированных веществ можно представить себе режим, когда существенная часть тепла (а в предельном случае так называемого беспламенного горения —все тепло) выделяется в ходе реакции в твердой или жидкой фазах. Такой режим, с теоретической точки зрения, должен резко отличаться от горения гомогенных газовых и летучих систем, так как в конденсированной фазе скорость диффузии продуктов горения (и, в частности, активных частиц) в свежее вещество практически равна нулю, и распространение горения может идти только за счет передачи тепла теплопроводностью. [c.62]


    Феноменологические соотношения, определенные в подразделе 1.1, играют важную роль в термодинамике необратимых процессов. Общую основу макроскопического описания необратимых процессов составляет неравновесная термодинамика, которая строится как теория сплошной среды и параметры которой, в отличие от равновесной термодинамики, являются функциями пространственных координат и времени. Центральное место в неравновесной термодинамике играет уравнение баланса энтропии [10]. Это уравнение выражает тот факт, что энтропия некоторого элемента объема сплошной среды изменяется со временем за счет потока энтропии в рассматриваемый объем извне и за счет положительного источника энтропии, обусловленного необходимыми процессами внутри объема. При обратимых процессах источники энтропии отсутствуют. В этом состоит локальная формулировка второго закона термодинамики. Поэтому основной задачей в теории необратимых процессов является получение выражения для источника энтропии. Для этого необходимо использовать законы сохранения массы, количества движения и энергии в дифференциальной форме, полученные в разделе 1. В уравнения сохранения входят потоки диффузии, тепла и тензор напряжений, которые характеризуют перенос массы, энергии и импульса. Важную роль играет термодинамическое уравнение Гиббса (5.49), которое связывает скорость изменения энтропии со скоростями изменения энергии и состава смеси. Оказывается, что выражение для интенсивности источника энтропии представляет собой сумму членов, каждый из которых является произведением потока, характеризующего необратимый процесс, и величины, называемой термодинамической силой. Термодинамическая сила связана с неоднородностью системы или с отклонением параметра от его равновесного значения. Потоки, в свою очередь, в первом приближении линейно зависят от термодинамических сил в соответствии с феноменологическими соотношениями. Эти линейные законы отражают зависимость потока от всех термодинамических сил, т. е. учитывают перекрестные эффекты. Так, поток вещества зависит не только от градиента концентрации, но и от градиентов давления, температуры, электрического потенциала и т. д. Неравновесная термодинамика ограничивается в основном изучением линейных феноменологических соотношений. [c.83]

    Количество тепла, выделяющееся на поверхности, определяется макроскопической скоростью реакции, в частности в диффузионной области — скоростью диффузии. Количество тепла, отводимое от поверхности, определяется условиями теплоотдачи. Стационарная температура поверхности, которая установится, когда скорость теплоприхода сделается равной скорости теплоотвода, зависит, таким образом, от соотношения между скоростью реакции и интенсивностью теплоотдачи, и при вычислении этой стационарной температуры необходимо одновременно учитывать как процессы диффузии, так и процессы теплопередачи. Очевидно, что при решении рассматриваемой задачи нам потребуются уравнения теплопроводности и диффузии при одновременном про- [c.390]

    Те же идеи и методы, которые были применены в теории теплового воспламенения для гомогенных реакций, мы применим теперь к вопросу о тепловом режиме гетерогенных экзотермических реакций. Отличие от гомогенных реакций заключается в том, что в этом случае скорость реакции не может уже возрастать неограниченно, вплоть до самых высоких температур. Скорость гетерогенного химического процесса определяется как истинной скоростью химической реакции на поверхности, так и скоростью подвода реагирующих веществ к этой поверхности молекулярной или конвективной диффузией. При низких температурах, пока скорость реакции мала по сравнению со скоростью диффузии (кинетическая область), суммарная скорость процесса определяется истинной кинетикой на поверхности и экспоненциально возрастает с температурой, согласно закону Аррениуса. Но это возрастание может продолжаться лишь до тех пор, пока скорость реакции не сделается сравнимой со скоростью диффузии. В дальнейшем процесс перейдет в диффузионную область, где скорость его всецело определяется скоростью диффузии и лишь весьма слабо возрастает с температурой. При такой зависимости скорости выделения тепла от температуры и при определенных условиях теплоотвода возможны три стационарных тепловых режима, из которых средний оказывается неустойчивым, верхний отвечает протеканию реакции в диффузионной, а нижний — в кинетической области. Воспламенение поверхности представляет собой скачкообразный переход от нижнего к верхнему стационарному тепловому режиму. Обратный переход от верхнего теплового режима к нижнему происходит также скачком при критическом условии потухания, не совпадающем с условием воспламенения. [c.391]

    Количество тепла, выделяющегося на поверхности при протекании экзотермической химической реакцпи, определяется скоростью реакции (в кинетической области) или скоростью диффузии (в диффузионной области). [c.133]

    Как и при конвекции тепла, в рассматриваемом случае можно принять эквивалентную толщину пограничного слоя X (ламинарного), где сопротивление чистой диффузии будет такое же, как действительное сопротивление массопередаче. Другими словами, мольная скорость диффузии N через эквивалентный слой будет такая же, как и скорость массопередачи через действительную систему. [c.552]

    В работе [256] иа основе решения уравнения Навье — Стокса в постановке Прандтля и уравнения конвективной диффузии при заданных эффективных коэффициентах турбулентной диффузии и температуропроводности предложены методы расчета тепло- и массопереноса в двухфазных системах, используемых в высокоэффективных и высокоскоростных тепло- и массообменных аппаратах, работающих в турбулентных режимах. Совместный тепло- и массоперенос экспериментально исследовался в [257], где изучалось влияние турбулентного газового потока и течения жидкой пленки на скорость массо- и теплопереноса в пленочных колоннах в условиях прямотока и противотока движущихся фаз. Установлено, что при этих условиях образование волн на поверхности жидкости практически не влияет на скорость процессов тепло- и массопереноса. [c.127]

    Скорость основной реакции и эффективность работы всей реакторной подсистемы зависит от сочетания скоростей прямой, обратной и побочных реакций, скорости диффузии (транспортировки) реагентов в зону реакции и продуктов химического превращения из нее, а также интенсивности подвода (отвода) тепла. [c.134]

    Синтетические и природные полимеры рассматриваемого типа являются плохими проводниками тепла. Как пониженная скорость диффузии, недостаточная для компенсации расхода реагентов в ходе процесса, ограничивает скорость реакции, так и теплопроводность полимера может оказаться недостаточной для поддержания постоянной температуры образца. Этот фактор особенно важен в случае сильно эндотермических реакций, какими являются многие реакции деполимеризации. Положение еще больше усугубляется, когда происходит выделение большого количества летучих продуктов, так как потеря теплоты испарения в этом случае происходит обычно на поверхности, наиболее удаленной от места подвода тепла. [c.21]

    Уравнения материального и теплового баланса с эмпирическими коэффициентами массо- и теплопередачи повсеместно применяются при расчете гетерогенно-каталитических процессов, скорость которых лимитируется диффузией реагентов к поверхности частицы катализатора и теплообменом между потоком и активной поверхностью. Строго говоря, использование эффективных коэффициентов обосновано только когда поверхность катализатора равнодоступна (см. п. 2). Более тонкие эффекты могут определяться явлениями термодиффузии и диффузионной теплопроводности, возникающими при наложении и взаимном влиянии процессов тепло- и массопереноса, а также изменением физических свойств пограничного слоя, а следовательно и значений коэффициентов диффузии и температуропроводности в результате химических превращений. Ошибка, допускаемая в результате пренебрежения этими явлениями, в условиях большинства химических реакций мала. В некоторых процессах значительную роль играет так называемый стефановский поток, возникающий вследствие неравной скорости диффузии исходных веществ и продуктов реакции или изменения объема в ходе химических превращений. Влияние стефановского потока на скорость химической реакции рассматривается в п. 2. [c.116]

    Скорость, с которой распространяется зона реакции, определяется скоростями процессов, ответственных за химическое превращение исходных реагентов. Если предполагать, что это достигается только передачей тепла, то скорость инициирования будет функцией теплопроводности исходных реагентов. Однако реакции во многих пламенах происходят по цепному механизму с участием свободных радикалов, обычно содержащих атомы водорода следовательно, инициирование может быть вызвано диффузией свободных радикалов в область несгоревшего газа. Скорость диффузии атомов водорода существенно выше как скорости диффузии других радикалов, так и их теплопроводно сти поэтому не удивительно, что скорость распространения пламени может быть непосредственно связана с концентрацией атомов водорода [1] (рис. 3.2). [c.201]

    Уравнение Семенова широко используется при интерпретации экспериментальных данных по скоростям распространения медленных пламен [9, 10], однако оно неудовлетворительно предсказывает наблюдаемую зависимость скорости пламени от давления. Это уравнение также неприменимо для быстрых пламен, где определяющую роль играют цепные разветвленные реакции с участием атомов водорода. Такие пламена имеют малую энергию активации и распространяются намного быстрее, чем углеводородные, для которых первоначально и применялось уравнение (3.3). Высокая скорость таких пламен определяется не температурой горения или потоком тепла в исходную смесь газов, как в тепловой теории, и не скоростью диффузии исходных компонентов в зону реакции, как в диффузионной теории, а, скорее, скоростью, с которой активные центры — радикалы и ато-мЫ — диффундируют в горючую смесь и инициируют реакцию. [c.208]

    В период постоянной скорости высушивание происходит путем диффузии пара с насыщенной влагой поверхности материала через инертную пленку воздуха в окружающую среду. Внутри твердого тела влага движется настолько быстро, что на поверхности материала непрерывно поддерживается состояние насыщения, й скорость сушки зависит только от скорости подведения тепла к поверхности испарения. Скорость массопередачи находится в равновесии со скоростью теплопередачи, и температура насыщенной поверхности остается постоянной. Механизм удаления влаги аналогичен процессу выпаривания жидкости из твердого тела и по существу не зависит от природы последнего. [c.502]

    Если и в этом случае элемент объема остается вблизи температуры воспламенения, то его температура продолжает подниматься по экспоненциальному закону вплоть до взрыва. Температура смежных элементарных объемов будет повышаться вследствие теплопроводности, а так как на границе этих объемов температура уже достигла точкп воспламененпя, произойдет взрыв. Как только любой элементарный объем достигает критического предела воспламенения в открытой системе, образуется волна давления, которая распространяется в системе со скоростью звука. За этой волной следует более медленно распространяющаяся тепловая волна (скорость ее движения определяется скоростью выделения тепла в реакции и теплопроводностью системы). Движущей силой для таких волн является тепло, выделяющееся в реакции диффузия препятствует распространению волны. [c.398]

    Очень большая константа скорости обрыва цепи ( 10 л моль сек) свидетельствует о том, что фактическая скорость, с которой реагируют два полимерных радикала, приближается к скоростям диффузии молекул в растворе. При полимеризации, проводящейся в неразбавленной массе мономера, это часто ведет к очень интересным последствиям, а именно к тому, что по мере увеличения вязкости системы и повышения запутанности полимерных цепей скорость, с которой растущие цепи могут сближаться, снижается до меньшего значения, чем скорость, при которой они могли бы нормально реагировать снижается и скорость процесса обрыва цепей, который в конце концов начинает контролироваться диффузией. В результате этого кривая скорости для таких реакций полимеризации может быстро расти с увеличением степени превращения. Типичный пример показан на рис. 3. Это явление легко может привести к неуправляемым и почти взрывообразным реакциям, особенно потому, что в вязкой, быстро полимеризующейся системе тепло не может рассеиваться с такой же скоростью, с какой оно выделяется. Правильность этого объяснения, впервые предложенного Норришем и Смитом [116], подтверждается тем, что молекулярные веса полимеров увеличиваются в стадии ускорения полимеризации [ 144], а также путем прямых измерений ki и кр как функции глубины реакции методом вращающегося сектора. Так, например, при полимеризации в массе мономера метилметакрилата к1 может снизиться менее чем до 1% от начального его значения при 35%-ном превра- [c.128]

    Если реакция проходит со значительным положительным тепловым эффектом, то при протекании ее во внешнедиффузионной области температура поверхности частиц значительно больше температуры газового потока. Разогрев поверхности частиц катализатора (распространяющийся в результате теплопроводности в их объем) происходит потому, что процессы переноса тепла и вещества подобны и движущие силы их (С — с) и (Гпов—Т об) пропорциональны. Разница температур газового потока и поверхности частиц катализатора, как и концентраций реагента в объеме и на поверхности, при протекании реакции во внешнедиффузионной области максимальна. На скорость реакции это явление влияния не оказывает, так как она определяется скоростью диффузии, но оно может сильно изменить селективность процеоса. [c.140]

    Пример 1Х-7. Моделирование процесса конденсации смеси паров . В случае смеси паров процесс конденсации протекает сложнее (по-прежнему считаем, что характер процесса не изменяется, конденсация остается пленочной). Скорость конденсации чистого пара (см. пример 1Х-6) зависит в основном от скорости передачи тепла, выделяющегося при конденсации, от пара к хладоагенту. В случае конденсации смеси паров лимитирующим процессом по скорости является диффузия пара к поверхности пленки конденсата через слой неконденсирующе- изменешв [c.205]

    Термодинамич. расчет дает лишь частичную информацию о процессе-равновесный состав и т-ру продуктов. Полное описание Г., включающее также определение скорости процесса и критич. условий при наличии тепло-и массообмена с окружающей средой, можно провести только в рамках макрокинетич. подхода, рассматривающего хим. р-цию во взаимосвязи с процессами переноса энергии и в-ва (см. Макрокинетика). В случае заранее перемешанной смеси горючего и окислителя р-ция Г. может происходить во всем пространстве, занятом горючей смесью (объемное Г.), или в сравнительно узком слое, разделяющем исходную смесь и продукты и распространяющемся по горючей смеси в виде т. наз. волны Г. В непереме-шанных системах возможно диффузионное Г., при к-ром р-ция локализуется в относительно тонкой зоне, отделяющей горючее от окислителя, и определяется скоростью диффузии реагентов в эту зону. [c.595]

    Диффузионное горение имеет место в условиях, когда горючее и окислитель диффундируют в зону р-ции с противоположных сторон таково, напр., Г. свечи, фитиля. Если при этом константа скорости к р-ции Г. много меньше константы скорости диффузии , реагенты успевают перемещаться и р-ция протекает в обычном кинетич. режиме (относительно низкотемпературном). При fe реагенты взаимод. тотчас же после их поступления в зону р-ции, прежде чем они полностью перемешаются, и р-ция протекает в режиме Г., т.е. при высоких т-рах. Отношение диффузионных потоков реагентов определяется стехиометрией р-ции концентрации горючего и окислителя в зоне р-ции малы, осн. компонент смеси - продукты сгорания, к-рые диффундируют в области, занятые горючим и окислителем (рис. 4). Выделяющееся при р-ции тепло передается горючему и окислителю, к-рые поступают в зону р-ции нагретыми до высокой т-ры. В отличие от Г. перемешанных смесей, т-ра диффузионного Г. зависит от отношения D/y.. При D = и она совпадает с т-рой Г. перемешанной стехиометрич. смеси горючего и окислителя, с уменьшением О/и-падает. По этой причине диффузионное Г. не реализуется в конденсиров. средах, для к-рых значения D/v. очень малы помимо газофазных систем, диффузионное Г. характерно для гетерог. р-ций на пов-сти (Г. твердых в-в, гете- [c.596]

    Ограничением обычной термодинамики является то, что она позволяет описывать только равновесные состояния и обратимые процессы. Реальные необратимые процессы составляют предмет возникшей в 30-е гг. 20 в. термодинамики необратимых процессов. Эта область Ф. х. изучает нрравно-весные макроскопич. системы, в к-рых скорость возникновения энтропии локально сохраняется постоянной (такие системы локально близки к равновесным). Она позволяет рассматривать системы с хим. р-циями и переносом массы (диффузией), тепла, электрич. зарядов и т. п. [c.93]

    При эксплуатации установок для каталитической изомеризации пинена надо иметь в виду, что изомеризация 1 кг пинена в камфен связана с выделением около 335 кДж (80 ккал) тепла, а в лимонен около 290 кДж (70 ккал) (гл. ХП1, табл. 62). Если это тепло недостаточно быстро отводится с поверхности частиц катализатора, то превращение может ускориться из-за местного перегрева и скорость диффузии пинена к поверхности катализатора окажется меньше скорости реакции. В результате задержавшиеся на поверхности частицы камфена и лимонена подвергаются вторичным превращениям, в том числе полимеризации. А эта последняя реакция протекает с выделением 1000— 1200 кДж (230—280 ккал) на 1 кг прореагировавшего вещества, что приводит к дальнейшему ускорению реакции, которая может принять исключительно бурный характер. [c.73]

    Расчет скорости диффузии в такой трактовке применяется и теперь в процессах адсорбции твердыми телами из потока газов, в процессах адсорбции из растворов [91—94] и др. Все же теория неподвижной пленки теперь устарела. В связи с развитием теории турбулентности указанной пленке (газовой или жидкостной), граничащей с реагирующей или поглощающей поверхностью, стали придавать уже иное физическое значение, а именно, ее представляют в виде ламинарного погранич1[ого слоя , который уже не является неподвижным, а только лишенным вследствие наличия твердых границ беспорядочных поперечных движений, характерных для основной массы турбулентного потока. О)гласно представлениям Ирандтля, в такой ламинарной пленке — так называемом подслое—предполагается только струйчатое вязкое течение и полное отсутствие пульсаций. В связи с этим в пленке предполагается исключительно молекулярный, диффузионный перенос массы и тепла. [c.98]

    Пренебрежем, кроме того, третьим членом — энергпей дпссипации за счет молекулярной диффузии. Учтем только общий тепловой поток и скорость выделения тепла химической реакцией А ,.. [c.513]

    Процессом сушки называется удаление влаги из различных сыпучих, пастообразных, кристаллических и волокнистых материалов. Разделение материала и влаги может проводиться механическими способами — отстаиванием, отжимом. Но достаточно полного .азде-ления этими методами получить нельзя, и более полного удаления влаги из материала достигают путем ее испарения при затрате тепловой энергии. В некоторых случаях при проведении естественной сушки иапользуется солнечное тепло, но в химической промышленности применяется только искусственная сушка —нри подводе тепла от различных теплоносителей. По своей физической сущности сушка — сложный тепло- и массообменный процесс, скорость которого в основном определяется скоростью диффузии влаги в материале. [c.196]

    Существенное влияние на селективность процесса синтеза мономеров из углеводородов оказывают макрофакторы (диффузия, тепло). Увеличивая линейную скорость потока газа или скорость циркуляции, можно устранить в определенных условиях влияние внешней диффузии. Для предотвращения влияния внутренней диффузии носители для катализаторов подбирают с определенной струк- [c.237]

    В литературе имеются работы, посвященные экспериментальному изучению скоростей теплопередачи и диффузии прн прохождении газовых потоков через неподвижный слой, состоящий из зернистых частиц. В этих работах получены обобщенные эмпирические уравнения для определения значений ксэф-" фициентов переноса массы в зависимости от режима движения потока. На примере процесса высушивания твердых частиц в струе воздуха в ряде работ изучались скорости переноса тепла и массы, причем зерна высушиваемого слоя по размерам и форме моделировали гранулы промышленных катализатороц. [c.261]


Смотреть страницы где упоминается термин Скорость диффузии тепла: [c.143]    [c.178]    [c.85]    [c.83]    [c.125]    [c.249]    [c.146]    [c.389]    [c.66]    [c.43]    [c.212]   
Термохимические расчеты (1950) -- [ c.238 , c.239 , c.271 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия скорость диффузии

Диффузия тепла

Скорость диффузии

Скорость тепла



© 2025 chem21.info Реклама на сайте