Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая связь изображениях

Рис. 4.4. Способы изображения химических связей в молекулах метана (а) диоксида углерода Рис. 4.4. Способы изображения химических связей в <a href="/info/986289">молекулах метана</a> (а) диоксида углерода

    Э/золюция графического изображения валентности и химической связи с 1855 по 1864 г, выглядит так  [c.193]

    Вернемся к уравнению (III.4), где волновая функция представлена в форме произведения радиальной и угловой частей. Теперь можно отметить, что графическое изображение орбиталей на рис. II 1.2 основано на угловой зависимости 6 (д) Ф (ф) волновой функции, поэтому остается рассмотреть радиальную часть R (г). Эта компонента волновой функции отвечает на вопрос, как распределен заряд внутри указанных поверхностей. На рис. II 1.3 на примере первых трех s-состояний показано изменение как самой радиальной части R (г), так и полной вероятности нахождения электрона в сферическом слое радиуса г и толщины dr. Последняя может быть получена умножением вероятности нахождения в единице объема (г) dx на объем элементарного сферического слоя 4n /- dr. Рассмотрение графиков необходимо сопровождать анализом уравнений, представленных в табл. III. 1. Например, функции 11)200 и г )зоо содержат в скобках члены, обращающиеся в нуль при конечных значениях г. Это означает, что волновая функция проходит через нуль и соответствующая вероятность нахождения электрона в данном случае тоже равна нулю. Места, где волновая функция меняет свой знак, называются узлами. Для любого распределения число радиальных узлов равно (п—1— ). Представление об узлах (узловых поверхностях) играют большую роль в теории химической связи. [c.166]

    Образование п-связей между атомами А и В не влияет на геометрию молекул и в схеме не указывается, но должно быть учтено в пространственных изображениях частиц. Когда число а, тс-связанных концевых атомов В (чаще других элементов — атомов кислорода) больше одного, то я-связь изображается пунктиром. При наличии п-связывания симметричность направленности химических связей не уменьшается. [c.165]

    Фрагмент структуры жидкого теллура отличается следующим. Каждый атом в среднем имеет три более прочные химические связи, изображенные жирными линиями, и три более слабые, представленные пунктиром. Расстояния д и одинаковы. Валентный угол между более прочными связями уменьшается до 97°. При нагревании до 1700° и повышении давления до 61 10 Па ближний порядок жидкого теллура принимает структуру, характерную для простой кубической решетки, изображенной на рис. 57, а. Такая же структура наблюдается у кристаллов а-полония, следующего элемента подгруппы кислорода. Различие между более сильными и более слабыми химическими связями исчезает. Валентный угол между связями снижается до 90°.  [c.215]


    Связи в комплексах с лигандами — как с ионами, так и с нейтральными молекулами, — часто прочнее других химических связей. Изображение одних связей в комплексе сплошной чертой, а других — пунктиром или стрелкой, говорит только о происхождении этих связей, а не об истинном состоянии валентных электронов в случае одинаковых лигандов различное изображение связей неверно, а при разных лигандах о расположении образующих связь электронов (точнее — электронной плотности) мало что известно. Поэтому в современных работах предпочитают изображать комплексные связи обычной чертой. В комплексах типа Кислотного синего 23М лигандами являются гидрокси- и азогруппы красителя, также, по-видимому, молекулы воды и гидроксильные ионы (точные аналитические данные в большинстве случаев отсутствуют). При крашении молекулы воды замещаются на КНг-и ОН-группы кератина шерсти и других протеиновых волокон, образуя более прочные, чем вода, связи с хромом. В Кислотном синем 23М во внутренней сфере комплекса (в квадратных скобках) Сг + связан с двумя ионизированными гидроксильными группами азокрасителя 0 в комплексе участвуют, кроме атома азота азосвязи, две нейтральные молекулы воды и один гидроксил-ион краситель содержит еще две группы 80з, поэтому общий заряд внутренней сферы комплекса равен  [c.287]

    При объяснении строения фтора и азота кадры диафильма позволяют понять, почему при образовании молекулы фтора образуется одна химическая связь, а при образовании азота — три. С этой целью приводятся электронные формулы атомов (схематическое изображение заполнения квантовых ячеек). Учитель уточняет, что только неспаренные электроны атомов участвуют в образовании неполярной ковалентной связи. Приведенные схемы перекрывания электронных облаков, символические схемы образования молекул из одиночных атомов, а также величины энергий связи обеспечивают более глубокое понимание сложных теоретических вопросов. [c.124]

    Бензол и в самом деле более устойчив, чем можно ожидать для молекулы с шестью простыми связями С—С, шестью простыми связями С—Н и тремя я-связями С—С. Его дополнительная устойчивость обусловлена тем, что электроны на трех я-связях делокализованы по всем шести атомам углерода. Орбиталь Я , показанная на рис. 13-25, симметрична относительно всех шести атомов углерода. Орбитали я и Яз выглядят несимметричными, но их комбинация оказывается симметричной. Атомы а и ничем не отличаются от остальных атомов углерода можно записать орбитали 2 и Яз таким образом, что атомы / и с покажутся находящимися на оси молекулы. Если не допустить делокализации электронов в молекуле С Н , связь в ней окажется такой, как это описывается структурами Кекуле и Дьюара, изображенными на рис. 13-25 или 13-27. Однако наилуч-шсе описание химической связи в бензоле достигается в рамках модели, схематически изображенной в нижней части рис. 13-27. Как можно подсчитать, пользуясь экспериментальными данными, молекула бензола на 167 кДж моль более устойчива, чем если судить по сумме энергии шести связей С—Н, трех связей С—С и трех связей С=С. [c.575]

    Проводя построения, аналогичные (2.47), для химической реакции типа (2.28) вблизи химического равновесия получим диаграмму связи, изображенную на рис. 2.2. Эта диаграмма в отличие от (2.44) учитывает изменение объема и энтропии системы в процессе химического превращения. В частности, энтропия, подводимая или отводимая со стороны теплового источника Sr, состоит из двух существенно разных составляющих. Первая составляющая есть разность между выделенной энтропией реагентов и поглощенной энтропией продуктов реакции. Этот поток, обозначаемый обусловливает мощность [c.128]

    Изображения органических соединений с помощью символов для элементов и черточек для обозначения химических связей называются структурными формулами. Например  [c.11]

    Ковалентная связь. Поляризация. Способы изображения химической связи [c.61]

    В заключение заметим, что если бы мы удаляли из какой-либо энергетической зоны кристалла несколько электронов, то удаление первого, второго, третьего и т. д. электрона сопровождалось бы неодинаковым изменением полной потенциальной энергин системы. В связи с этим валентная зона и зона проводимости изображаются иногда в виде целой системы энергетических уровней (рис. 17). При таком способе изображения зоны на каждом энергетическом уровне не может находиться больше двух электронов, которые должны обладать противоположной ориентацией спинов. Последнее соответствует тому, что на один участвующий в образовании химической связи электрон не может приходиться меньше двух элементарных объемов. Неполное заполнение энергетических уровней валентной зоны указывает на присутствие в ней дырок, т. е. ненасыщенных химических связей. Разобранная выше диаграмма бывает удобна при рассмотрении движения электронов по валентной зоне кристалла. Следует, однако, отметить, что она не дает никакой дополнительной информации и поэтому в дальнейшем не используется. [c.82]


    В результате рекомбинаций электронов с дырками возникают нейтральные невозбужденные атомы кристаллической решетки, т. е. атомы, которые связаны со своими соседями только насыщенными химическими связями. Форма потенциального барьера для рассматриваемых процессов имеет простейший вид, изображенный на рис. 7. Отсюда следует, что энергия активации процесса генерации равна ширине запрещенной зоны (—AE,), а энергия активации процесса рекомбинации равна нулю. Таким образом, результирующая скорость процесса генерации — рекомбинации должна описываться уравнением (36). Заменяя индексы в формуле (36), получаем [c.137]

    Правильное изображение размещения электронов в атомных орбиталях в пределах одного подуровня является важной задачей, решение которой позволяет оценивать способность атома образовывать химические связи с другими атомами и в конечном итоге предугадывать химические свойства элемента и главные свойства веществ, образованных с его участием. [c.38]

    Изображение химических связей производят по-разному. [c.40]

    Обозначение орбиталей и подуровней совпадает (см. табл. 2.4), но вводится дополнительная индексация в зависимости от направления осей (угловая составляющая решения уравнения Шредингера). Формы орбиталей для различных состояний электрона в атоме водорода приведены в табл. 2.6. Изображение орбиталей дано схематически, так как плоский рисунок является проекцией некоторого объема. Формы, размеры и число орбиталей атома водорода при различном его возбуждении (п) в дальнейшем будут широко использоваться при рассмотрении учения о химической связи. [c.43]

    В 1916 г. Льюис и Ленгмюр выдвинули так называемую октет-ную теорию химической связи, считая, что всякая перестройка атома объясняется его стремлением принять устойчивую восьмиэлектронную оболочку атома ближайшего инертного газа. Поэтому атомы одинаковых или разных элементов объединяют свои электроны так, чтобы каждый из них имел восьмиэлектронную оболочку, содержащую обобщенные электроны. Пример графического изображения молекул простых веществ дан на рис. 29. Однако объяснения процесса объединения электронов по существу эта теория не дала. Развитие волновой механики атома явилось основой современного учения о химической связи и строения молекул. Причиной возникновения связи между атомами является уменьшение энергии двух или нескольких изолированных атомов при образовании общего, более устойчивого агрегата — молекулы. При соединении атомов между собой их орбитали с одним электроном (незаконченные) образуют общую систему орбиталей молекулы с выделением энергии, так как полученная система [c.69]

    Наглядное представление о я-электронном строении бензола можно получить, если мысленно наложить друг на друга изображения пяти канонических структур и учесть при этом те же коэффициенты. При этом становится ясно, что используя существующие методы изображения химической связи — черточки, пунктир и т. д. — практически невозможно достаточно точно изобразить строение бензола и других ароматических соединений. Поэтому химики в ряде случаев стали пользоваться для изображения формул ароматических соединений несколькими структурами, имея при этом в виду, что только их наложение дает истинное строение вещества в основном состоянии. [c.19]

    Из сказанного следует, что величина Я,— важная характеристика МО гетеросоединений. Именно поэтому необходима количественная взаимосвязь А, с моментом диполя [г, величина которого может быть измерена экспериментальным путем. Представим себе молекулу 2 в виде схемы, изображенной на рис. 24.1. Пусть линия химической связи совпадает с осью X. В качестве начала координат выберем точку О, равноудаленную от ядер 2 и V (02 = 0 ) расстояние между 2 и У примем за У . Если точка О является центром тяжести положительных зарядов ядер, а точка С — центром тяжести отрицательных зарядов, то отрезок ОС представляет собой длину диполя г, который можно найти из соотношения [c.300]

    С помощью диаграмм, типа изображенных на рис. 4.3 и 4.4, покажите структуру химических связей в следующих соединениях  [c.91]

    Комбинация дважды вырожденных групповых орбиталей Ф1 и Ф3 дает связывающую и разрыхляющую МО, показанные на рис. 6-34. Картина химических связей видна на орбитали ЪЕ , изображенной на рис. 6-30. [c.294]

    Удобство символического изображения электронов в виде точек станет более очевидным при подробном рассмотрении химической связи, которое проводится в гл. 7. Однако такая символика таит и некоторые опасности. Привыкая к подобной записи, не следует забывать, что на самом деле электроны вовсе не являются неподвижными точками. Эти символы используются только для подсчета числа валентных электронов и никоим образом не отражают пространственного расположения электронов в атоме, которое было подробно рассмотрено в гл. 5. [c.93]

    Полученные Гейтлером и Лондоном (и впоследствии уточнен- ные другими исследователями) расчетные значения межъядерного расстояния и знергии связи в молекуле водорода оказались близки к экспериментально найденным величинам. Это означало, что нри ближения, использованные Гейтлером и Лондоном при решении уравнения Шредингера, не вносят суии стеенных ошибок и могун считаться оправданными. Таким образом, исследование Гейтлера и Лондона позволяло сделать вывод, то химическая связь в молекуле водорода осуществляется путем образования пары электронов с противоположно направленными спинами, принадлежащей обоим атомамДПроцесс спаривания электронов при образовании моле кулы водорода может быть изображен следующей схемой  [c.121]

    Схематическое изображение слоистой структуры приводилось во многих публикациях [6, И, 12, 1038] для иллюстрации на схеме 7.1 воспроизведен вариант, предложенный авторами работы [1038] для макроструктуры асфальтенов из битума ромашкинской нефти. В рамках — фрагменты, составляющие отдельные слои. Штрихами показаны химические связи между атомами, расположенными в различных слоях. Конечно, строение фрагментов, сос-ставляющих отдельные слои макромолекул, должно отличаться несоизмеримо большим разнообразием. Кроме того, надо учитывать, что сведения об этих структурных особенностях получены с помощью рентгеноспектрального анализа кристаллических веществ и что за образование многослойных кристаллитов и плоскопараллельную укладку полициклоароматических блоков могут быть ответственны не только связывающие слои углеводородные или гетероатомные цепочки, но и взаимно ориентирующие я—л-взаимодействия непосредственно не связанных конденсированных ароматических систем. [c.187]

    Можно также показать форму электронного о блака, изобразив граничную поверхность, внутри которой находится большая часть облака ( %). Если требуется показать на рисунке точное значение волновой функции, то пользуются контурными диаграммами, где линии соединяют точки, для которых гр (или 1JJ ) имеет определенное значение. На рис. 1.8 показаны различные изображения 2рг-орбитали атома водорода. Несмотря на то, что представленные здесь фигуры имеют различную форму, они обладают одинаковой симметрией, характерной для рг-орбитали. Форма орбиталей важна для понимания особенностей химической связи, и в дальнейшем мы неоднократно будем пользоваться подобными изображениями орбиталей. На схемах часто рисуют орбитали стилизованно, несколько искажая их форму и пропорции. [c.24]

    Из молекулярно-кинетической теории газов нам известно, что при повыщении температуры средняя кинетическая энергия молекул газа возрастает. Тот факт, что скорость реакции перегруппировки метилизонитрила при повьЕшении температуры возрастает, заставляет предположить, что перегруппировка молекул может быть связана с их кинетической энергией. В 1888 г. щведский ученый Сванте Аррениус выдвинул цредаоложение, что, прежде чем вступить в реакцию, молекулы должны получить некоторое минимальное количество энергии, чтобы перейти из одного химического состояния в другое. Такая ситуация очень напоминает изображенную на рис. 13.6. Валун, находящийся в долине Б, имеет более низкую потенциальную энергию, чем в долине А. Для того чтобы переместиться в долину Б, валун должен получить определенную энергию, необходимую для преодоления барьера, препятствующего переходу из одного состояния в другое. Подобно этому, молекулам может потребоваться некоторое минимальное количество энергии на преодоление сил, удерживающих их в исходном состоянии,-тогда они смогут образовать новые химические связи, создаю-Ецие другую структуру. В нащем примере с метилизонитрилом можно представить себе, что для протекания перегруппировки необходимо, чтобы в этой молекуле группа К= С перевернулась таким образом  [c.16]

    Обычные или сокращенные структурные формулы алканов не дают представления о трехмерной структуре этих веществ. На основании теории отталкивания валентных электронных пар (ОВЭП см. разд. 8.1. ч. 1) можно предположить, что в алканах каждый атом углерода находится в тетраэдрическом окружении связанных с ним атомов. Другими словами, четыре группы, присоединенные к каждому атому углерода, расположены в верщинах тетраэдра, в центре которого находится данный атом углерода. Для изображения трехмерных структур молекул используются различные способы, продемонстрированные на рис. 24.3 для молекулы метана. Описание химической связи в алканах обычно основывается на представлениях о 5р -гибридизованных орбиталях углерода, как это уже обсуждалось в разд. 8.2, ч. 1. [c.413]

    Для хороших условий видимости достаточно I = 3, для удовлетворительных / = 1J, для вспомогательной информации (осевые линии, штриховые и т. д.) допускается / = 1. Рисунок, так же как и текст, может занимать любую площадь в зависимости от задач кадра. Однако при максимальном заполнении кадра высота буквы не может быть меньше /зо—высоты листа основы, высота химического знака Vis— /26- Учитывая, что символ элемента состоит в большинстве случаен н лвух знаков, размеры их определяются более жестко, чем размеры букв. Размер изображения химических связей такой же, как и букв или химических знаков. В некоторых химических формулах необходимо проставлять индексы. В этом случае рекомендуется уменьшать его размер не более чем в 2,5 раза по сравнению с высотой знака химического элемента. Соблюдение этих требований обеспечивает читаемость всех химических формул в кадре. [c.122]

    Согласно методу валентных связей единичную химическую связь образуют два электрона с противоположными спинами, прннадле-жавдие двум атомам (двухцентровая связь). При изображении электронной структуры молекул с помощью валентных схем общие для двух атомов электроны условно обозначают точками. В другой схеме каждая пара точек (электронов) соответствует одной черточке (одной валентности). Например Н + Н->Н Н или Н—Н Р + + 7 -> Р Р в подобргых случаях в схеме можно показывать только неспаренные (холостые) электроны  [c.99]

    Рис. 1.8 иллюстрирует разные способы изображения 2р>-ор6итали атома водорода. Несмотря на то что представленные фигуры имеют различную форму, они обладают одинаковой симметрией, характерной для р,-орбитали. Форма орбиталей важна для понимания особенностей химической связи. [c.26]

    Сопоставлением изображения спектра на спектрограмме со спектром железа найти, между какими спектральными линиями расположена спектральная линия СМ. Произвести отсчеты по микроскопу компаратора справа для обеих линий железа, между которыми находится измеряемая линия СМ, и линии СМ. Перед каждым отсчетом микрометрическим винтом столика компаратора справа, зажав винт снизу столика, переместить спектрограмму так, чтобы измеряемая линия совпала с индексом в поле зрения левого микроскопа. Линейной интерполяцией, зная волновые числа линий железа слева и справа, рассчитать волновое число линии СМ. Повторить аналогичные измерения трижды для всех линий СМ. Рассчитать колебательную постоянную сое и ангармоничность соеХе радикала СМ в электронно-невозбужденном состоянии и энергию химической связи. [c.78]

    Для получения нитридов наиболее пригоден аммиак, который nqpeA азотом имеет некоторые преимущества. В молекуле аммиака химическая связь непрочная, и при нагревании наблюдается его разложение, которое ускоряется на поверхности металлов. Выделяющийся атомный азот активен, поэтому реакции образования нитридов идут при более низких температурах, по сравнению с реакциями, идущими с азотом. Атомный BOAqpoA восстанавливает оксидные пленки на металлах, которые ме-щают получению чистых нитридов. Небольшое количество кислорода или паров воды в аммиаке не мешает получению чистых нитридов, если исходные металлы (медь, железо, кобальт, никель и т. д.) не обладают большой активностью к кислороду. Активные металлы (магний, кальций, алюминий и т. д.) соединяются даже со следами кислорода, поэтому нитриды загрязняются оксидами. Если при нитровании использовать азот, то следы кислорода или паров воды будут переводить металлы или неметаллы в оксиды даже при небольшом сродстве к кислороду. Для получения нитридов с использованием аммиака применяют установку, изображенную на рисунке 19. [c.50]

    Анализ амплитуды вероятности Хюо начнем с угловой составляющей Уоо, = так как угловая сост авляющая определяет симметрию АО и форму граничной поверхности электронного облака. Если описать вокруг ядра как центра сферу радиусом то она будет графическим изображением функции постоянной и положительной во всех направлениях (см. рис. 4, 6). Последнее свойство функции важно при описании химической связи. Поскольку = onst, то плотность вероятности углового распределения Уоо1 также постоянна, т. е. не зависит от направления. Если задаться определенным расстоянием от ядра, то вероятность найти электрон в направлении оси л та же, что и вдоль осей у и г или в любом ином направлении. Геометрическим местом точек равной вероятности нахождения электрона в этом случае будет сфера. Тем самым и граничная поверхность электронного облака 15-орбитали оказывается сферической (см. рис. 4, в). Сечение этой поверхности плоскостью листа (zox) даст круг. Постоянство радиус-вектора окружности символизирует независимость вероятности нахождения электрона или электронной плотности от направления. Радиальная амплитуда вероят-HO Tir J iu( ) — экспоненциальная функция расстояния, экспоненциально ,бывает с расстоянием и ее квадрат (рис. 6). Плотность вероятности радиального распределения электрона в состоянии Is равна  [c.25]

    Изображенные так называемые развернутые формулы (в них отдельно обозначен каждый атом и каждая связь) вначале кажутся очень наглядными, в действительности же становятся трудно читаемыми уже при небольшом усложнении молекулы. Поэтому широко применяют сокраш,енные структурные формулы, которые передают порядок химической связи атомов и являются более удоб-кыми и наглядными. Метан, этан и пропан можно сокращенно изобразить так СН4, СН3-СН3, СНз—СН..-СН3. [c.221]

    К. Туарап, Б. Кабен и М. Брюнль [46] предлагают правдоподобную картину распределения атомов жидкого теллура в первой и второй координационной сферах. Рис. 57 помогает понять те изменения, которые происходят в теллуре при его плавлении и нагревании расплава. На рис. 57, б изображен фрагмент структуры кристаллического теллура. Жирные линии указывают химические связи между атомами в цепочках. Каждый атом теллура имеет две такие связи, образующие угол в 102,6°. Пунктиром указаны более слабые химические связи между атомами теллура, принадлежащими соседним цепочкам. Каждый атом теллура имеег четыре такие связи. При плавлении строение теллура изменяется так, как показано на рис. 57, в. [c.215]

    Особую группу кислородных соединений элементов составляют перекиси. Обычно их рассматривают как соли перекиси водорода Н Оа, проявляющей слабые кислотные свойства. У перекисей атомы кислорода химически связаны не только с атомами других элементов, но и между собой (образуют так называемую перекисную группу —О—О—). Например, МааОа — перекись натрия, графическое изображение N3—О—О—Na. [c.152]

    Для расчета молекулярно-массовых характеристик авторы [108] использовали метод, по существу эквивалентный подходу теории ветвящихся процессов. Область его применимости ограничена лишь решеткой Бете, для которой были вычислены а) точное значение статистической суммы и кривая сосуществования фаз б) средневесовая степень полимеризации и граница области гелеобразования. Характерной особенностью последней, как видно из рис. 1.29, является наличие максимальной температуры Гтах, выше которой геле-образование невозможно даже при ф = 1 вследствие слишком малого количества химических связей. Для всех типов растворителя, т. е. значений энергии Z7, имеется температура (лежащая ниже критической температуры смешения Гс), при которой линии сосуществования фаз и гелеобразования пересекаются. Если в интервале температур Гс < Г < Гтал система гомофазна (хотя при достаточно больших ф в ней может образоваться бесконечная сетка геля), то при 7 р<Г<Гс (см. рис. 1.29) происходит расслоение на две фазы. Они или обе содержат гель-фракцию (см. рис. 1.29, е), или обе не содержат ее (см. рис. 1.29, а) в зависимости от типа фазовой диаграммы. При Т <.1 только в одной из двух фаз, а именно в той, которая обеднена растворителем, образуется полимерная сетка геля. Фазовые диаграммы, качественно похожие на изображенные на рис. 1.29, получены путем расчета по методу Монте-Карло полимерной системы в рамках той же самой модели, но уже на трехмерной кубической решетке [109]. [c.187]

    Действительно, поскольку в приближении СПФВ объемные взаимодействия при фиксированно плотности не меняют МСР, сумма вкладов в (1У.39) диаграмм, изображенных на рис. 1У.23, а, равна просто структурной функции, полностью определяемой МСР ансамбля полимерных молекул. По этой же причине при суммировании вкладов диаграмм типа рис. 1У.23, б появляются сомножители g(т — Г1) и (г2 — г"). Каждый из них отвечает той части маршрута, соединяющего расположенные в точках г и г" корни диаграммы, которая проходит по сплошным линиям (химическим связям) ствола (молекулы полимера), начинающегося в соответствующем корне. Оставшейся третьей части указанного маршрута отвечает множитель Р(г1 —Гг), который описывает объемное взаимодействие пары имеющих координаты Г1 и Гг звеньев разных молекул. Эти звенья могут взаимодействовать друг с другом как непосредственно между собой, так и через звенья других молекул (рис. 1У.24), что приводит вследствие фактора исключенного объема к их эффективному отталкиванию. Характерным масштабом этих сил является средний размер молекул полимера в системе. При его возрастании по мере увеличения конверсии одновременно происходит ослабление интенсивности эффективного отталкивания, и в результате коррелятор полной плотности (IV.39) не имеет особенностей в точке гелеобразования. [c.269]


Смотреть страницы где упоминается термин Химическая связь изображениях: [c.16]    [c.144]    [c.469]    [c.15]    [c.42]    [c.182]    [c.67]    [c.265]    [c.13]   
Справочник по общей и неорганической химии (1997) -- [ c.49 , c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте