Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура см также нуклеиновые кислоты

    До сих пор мы говорили лишь о тепловой денатурации ДНК, обусловленной энтропийной выгодностью денатурированного клубкообразного состояния. Энергия молекул ДНК и других нуклеиновых кислот меньще в спиральном состоянии, которое поэтому является устойчивым при достаточно низких температурах. В энергетический баланс молекул нуклеиновых кислот вносят существенный вклад не только внутри- и межмолекулярные водородные связи и взаимодействие гидрофобных групп, но и электростатическое взаимодействие заряженных групп цепи. Поэтому температура денатурации нуклеиновых кислот зависит от степени ионизации макромолекул, определяемой концентрацией водородных ионов, а также от ионной силы раствора, т. е. от концентраций других низкомолекулярных ионов. [c.371]


    В ТО же время бактерии бобовых растений, микроорганизмы почвы и водоросли в присутствии воды легко переводят атмосферный азот в аммиак при обычной температуре и нормальном давлении. Известно также, что атомы азота входят в состав нуклеиновых кислот и белков, играющих первостепенную роль в жизненных процессах. Долгое время оставалось загадкой, как в природных условиях в водной среде происходит биологическая фиксация азота, каков механизм связывания атмосферного азота с водородом й другими элементами при нормальном давлении и комнатной температуре. Основываясь на сходстве химических связей в молекулах азота и ацетилена, можно было предполагать, что синтез аммиака при обычных условиях может быть осуществлен при последовательном разрыве межатомных связей в молекуле N2 в присутствии соответствующего катализатора по схеме [c.122]

    Для соединений фтора и кислорода характерно образование за счет водородной связи группировок из одинаковых молекул — ассоциаций (НаО) и (HF)m. Это сказывается на целом ряде свойств соединений и, в частности, на таких параметрах, как температуры кипения и замерзания. По относительной величине молекулярных масс НаО и H S для воды и /3 должны быть ниже, чем для сульфида водорода (—60,75 и —85,60 °С). В действительности они много выше (100 и О °С), что связано с увеличением молекулярной массы воды за счет ассоциаций ее молекул. Карбоновые кислоты в жидкой и газовой фазах существуют в основном в виде димеров. В белках, нуклеиновых кислотах и других органических соединениях, имеющих большое биологическое значение, водородная связь обеспечивает поперечное сшивание цепочечных молекул. Для некоторых соединений возможно также образование внутримолекулярной водородной связи, например в нитрофеноле. [c.122]

    СООН, —СК, —С1, сильно поляризующихся или больших по размеру групп заметно ограничивает свободу вращения и повышает жесткость цепей так, например, поливиниловый спирт или полихлорвинилы обладают сравнительно жесткими цепями при комнатной температуре. Жесткие цепи содержат также белки и нуклеиновые кислоты. [c.223]


    В полиэтиленовых цепях величины Е сравнительно невелики. Наличие в молекулах полярных групп — ОН, —СООН, —СЫ, —С], сильно поляризующихся или больших по размеру групп заметно ограничивает свободу вращения и повышает жесткость цепей так, например, поливиниловый спирт или полихлорвинилы обладают сравнительно жесткими цепями при комнатной температуре. Жесткие цепи содержат также белки и нуклеиновые кислоты. [c.223]

    Число примеров возможных, но пока неосуществленных каталитических реакций можно было бы увеличивать до бесконечности. То, что во многих, а может быть даже в большинстве случаев реакции, разрешенные термодинамически, в принципе поддаются реализации с помощью катализаторов, показывает биокатализ. В любой живой клетке происходят сотни и тысячи тончайших каталитических процессов, поражающих своей слаженностью и совершенством. При этом в клетке исключается использование основных методов форсирования химических реакций с помощью повышения температуры и давления или применения необычных растворителей. При комнатных и даже несколько более низких температурах в растениях совершается каталитический фотосинтез углеводородов и тесно с ним связанные термические каталитические синтезы всей остальной широчайшей гаммы веществ, требующихся для жизнедеятельности организма. Высшие растения, прекрасно ассимилирующие углерод из СО2, неспособны усваивать азот воздуха но существуют микроорганизмы (бактерии, грибки), которые осуществляют эти реакции без прямого участия энергии света. Продукты таких первичных каталитических синтезов у микроорганизмов далее также каталитическим путем превращаются в аминокислоты и азотные основания, из которых построены белки и нуклеиновые кислоты, а также различные другие азотные соединения живой клетки (алкалоиды и т. д.). Существуют бактерии, способные осуществлять каталитически весь комплекс биохимических процессов, в том числе синтез аминокислот,. [c.9]

    Необходимо отметить, что химия нуклеиновых кислот, как и всякая химия высокомолекулярных веществ, имеет ряд существен ных отличий от химии соответствующих мономерных компонентов. Уже нуклеозиды и нуклеотиды являются полифункциональными соединениями, хотя различие в реакционной способности определенных группировок, входящих в состав четырех обычных типов нуклеотидных звеньев, сравнительно невелико. Полинуклеотиды представляют собой гигантские молекулы с множеством реакционных центров. Особые сложности в химию нуклеиновых кислот вносят следующие обстоятельства. Реакционная способность отдельных группировок в нуклеотидных звеньях зависит не только от условий реакции (растворителя, pH, температуры и т. д.), но и от наличия и характера взаимодействия отдельных звеньев друг с другом (в одной и той же цепи и на комплементарном участке в двухспиральных двухцепочечных молекулах), а также взаимодействия с молекулами белков, ионами металлов и т. д. Все эти взаимодействия, как правило, кооперативны, т. е. нелинейно изменяются при изменении условий реакции. Модификация одного из звеньев полинуклеотидной цепи приводит к изменению характера и силы взаимодействия этого звена с соседними звеньями (или с молекулой белка в случае нуклеопротеидов), что в конечном счете сказывается на реакционной способности звеньев на обширных участках полинуклеотидной цепи. [c.15]

    Эфирные связи фосфорной кислоты в нуклеиновых кислотах (см. гл. XI, стр. 259) расщепляются рибонуклеазой и дезоксирибонуклеазой. Рибонуклеаза получена в кристаллическом виде путем фракционирования водного экстракта поджелудочной железы быка сернокислым аммонием при слегка кислой реакции [54]. Фермент сравнительно устойчив к нагреванию [4] и инактивируется лишь при температуре выше 85° при охлаждении раствора активность фермента, однако, вновь восстанавливается. Термостабильность рибонуклеазы обусловлена, по всей вероятности, очень жесткой структурой ее небольшой молекулы, вес которой равен 12 700 [55]. Кроме рибонуклеазы из поджелудочной железы быка получена также кристаллическая дезоксирибонуклеаза [56]. [c.290]

    На устойчивость двойной спирали в растворе влияют многочисленные факторы. Образование упорядоченных структур является экзотермическим процессом, и поэтому спирали стремятся расплавиться при повышении температуры растворов ДНК. Из числа сил, стабилизующих нативную форму, водородные связи и диполь-дипольные взаимодействия между пуриновыми и пиримидиновыми остатками, упакованными в двойную спираль [344], должны приводить к выделению тепла. В то же время следует ожидать, что гидрофобное взаимодействие будет эндотермическим. Значение гидрофобного взаимодействия иллюстрируется тенденцией водных растворов ДНК к денатурации при добавлении органических растворителей с большими неполярными остатками [345]. Как и следовало ожидать, высокая плотность заряда, обусловленная ионизованными фосфатными остатками, расположенными вдоль цепи ДНК, обусловливает неустойчивость спиральной конформации. В результате этого добавление умеренных количеств электролитов должно стабилизовать нативную форму ДНК, что и было обнаружено при добавлении таких солей, как галогениды щелочных или щелочноземельных металлов [346, 347]. Если определить температуру плавления (Г ) как температуру, при которой изменения в спектре, характеризующие денатурацию, происходят на 50%, то Т- , по-видимому, будет иметь примерно линейную зависимость от логарифма концентрации катионов щелочных металлов. В типичном случае повышается от 36 до 82° при увеличении концентрации ионов натрия с 0,0003 до 0,1 н. Увеличение концентрации соли приводит также к сужению интервала температур, в котором происходит переход спираль — клубок. В отношении стабилизации спиральной конформации особенно эффективны некоторые двухвалентные иопы, образующие специфические комплексы с фосфатными группами основной цепи ДНК (например, Mg +). Нуклеиновая кислота как бы образует стехиометрические комплексы с этими катионами, причем Тт таких комплексов высока даже при очень слабой ионной силе. При всех условиях переход спираль — клубок происходит в удивительно узком температурном интервале, причем 90% изменений, как правило, происходит в интервале менее 10°. [c.127]


    Последние исследования также убеждают в том, что гиббереллины и ауксины, а в некоторых случаях и цитокинины, весьма существенно сдвигают онтогенез растения, стимулируют переход клеток, органов и организма в целом на новые этапы (стадии) и пути развития. Так, в работах А. Ланга, Линкольна, Боннера и других показано, что некоторые соединения этой группы способствуют перерыву покоя у спящих почек и переходу последних в состояние активного роста. И в данном случае эффект достигается за счет активирования синтеза информационной РНК и соответствующих ферментов. Следовательно, соединения гормонального типа вызывают у покоящихся почек сдвиги в обмене, идентичные тому, какие при естественном пробуждении этих органов возникают под влиянием определенной температуры, длины дня, либо имитирующих действие последних соединений типа этиленхлоргидрина, паров эфира и др. Это хорошо согласуется с приведенными выше данными о значительном повышении содержания нуклеиновых кислот в результате обработки тканей ауксинами, гиббереллинами и цитокининами. [c.615]

    Одни методы разрушения вирусов особенно хорошо приспособлены для получения нативных белков, а другие — для получения интактных нуклеиновых кислот. Во всех наиболее удачных методах выделения белков весь процесс проводят на холоду, но при этом используют растворы с низкими или высокими значениями pH, а при таких значениях pH возникает опасность разрушения нуклеиновых кислот. В отличие от этого при использовании двух наиболее широко распространенных методов выделения инфекционных нуклеиновых кислот, а именно методов с применением детергентов и фенола, которые иногда используют в сочетании друг с другом, разрушение вирусов проводят при нейтральном значении pH, хотя в некоторых случаях при этом необходимо применять повышенные температуры. Инфекционную РНК можно выделить также путем нагревания вируса в солевых растворах. [c.56]

    При физиологических условиях флуоресценция аде-нина, гуанина, цитозина, тимина, а также ДНК имеет крайне низкие квантовые выходы (около 10 ) и время жизни (т 10-12 с) (табл. 11). Выраженная люминесценция нуклеиновых кислот и оснований наблюдается только при экстремальных значениях pH, а также при низких температурах. [c.223]

    Имеются данные, что при фотосенсибилизированной инактивации разрывов рибозо-фосфатного остова нуклеиновых кислот не происходит. Как и в случае белков, реакция фотоокисления нуклеиновых кислот приводит к глубоким структурным перестройкам, о чем свидетельствуют изменения вязкости, температуры плавления ДНК, полярографического поведения, иммунологических свойств, чувствительности к гидролитическим ферментам. При фотодинамическом действии образуются также поперечные сшивки между ДНК и белком, что уменьшает экстрагируемость нуклеиновой кислоты из клетки. [c.347]

    ПУРИНОВЫЕ ОСНОВАНИЯ - бесцветные кристаллические вещества с высокой температурой плавления, малорастворимы в воде. П. о.— органические природные соединения, производные пурина, входят в состав нуклеиновых кислот, нуклеотидов, нуклеозидов и некоторых коферментов. Свободные П. о. найдены во многих растениях, в печени, крови, молоке, камнях мочевого пузыря, в рыбьей чешуе и др. Наиболее распространены аденин, гуанин, гипоксаптин. Конечным продуктом пуринового обмена у большинства животных является мочевая кислота. Химические свойства П. о. определяются, главным образом, заместителями в пуриновом ядре. П. о. получают из нуклеиновых кислот, нуклеотидов, нуклеозидов, а также синтетически. [c.206]

    Водород — составная часть воды, своеобразной жизненной среды с молекулами, составленными из двух кайносимметриков, а потому особо устойчивыми термодинамически воды, имеюш,ей в своих молекулах значительный дипольный момент, содействующий образованию межмолекулярных связей, которым способствует и сетка водородных связей, устанавливающихся в тетраэдрически (симметрия р ) структурированной жидкой воде, а также имеющих большое значение для структурирования белков и нуклеиновых кислот. Особенно важными свойствами, порождающими электролитическую диссоциацию и многие другие важные для жизни явления, обладает вода в узком интервале температур от 0° С до примерно 60—100° С, т. е. в области, удобной для эволюции жизни с сохранением наследственности и тонкой психической информации (память). В условиях получения землей солнечной энергии и охлаждения земной поверхности путем излучения инфракрасных квант в мировое пространство вода легко конденсируется, образуя океан, чему помогает межмолекулярное притяжение дипольных молекул НаО друг к другу. [c.356]

    Одним из самых важных применений электрофореза является использование его в анализе естественных смесей коллоидов, например белков, полисахаридов и нуклеиновых кислот, а также продуктов, полученных фракционной перегонкой. При электрофорезе между раствором белка и буфером в специальной У-образной трубке, снабженной электродами, образуется резкая граница, за движением которой можно проследить с помощью оптической шлирен-системы (разд. 11.10). Эти опыты обычно проводят при температуре 4° С, т. е. при максимальной плотности воды, так что температурный градиент в электрофоретической кювете, вызванный нагреванием током, сопровождается наименьшим градиентом плотности. Градиенты плотности горизонтально поперек кюветы стремятся вызвать конвекцию. На рис. 20.1 [1] показана электрофоретическая картина плазмы крови человека в буферном растворе (pH 8,6) диэтилбарбитурата натрия с ионной силой 0,10 (после 150 мин при 6,0 В/см и 1°С). Строится график зависимости градиента показателя преломления от расстояния в кювете (горизонтальная ось). Одна картина получена для той части кюветы, в которой белки опускаются вниз, а другая — для той части, где белки поднимаются вверх. Начальные положения границ указаны на рисунке тупыми концами стрелок. Различные виды белков представлены альбумином, аг, аг-, р-, у-глобу-линами и фибриногеном ф. Площадь под определенным пиком почти точно пропорциональна концентрации белка, дающего эту границу. Так, например, процент альбумина может быть получен делением площади пика альбумина на суммарную площадь всех пиков белков. е-Граница в спускающейся части и б-граница в поднимающейся части картины обусловлены не белковыми компонентами, а изменениями концентрации соли, которые возникают в опытах с обычным переносом вблизи начального положения границы. [c.603]

    Важнейщим путем интенсификации биосинтеза антибиотиков является выведение и использование штаммов продуцентов с повышенной антибиотической активностью. Получение таких штаммов стало возможным благодаря разработке и широкому применению методов экспериментального мутагенеза. Из физических факторов в селекционной работе эффективно используются ионизирующие излучения (рентгеновы лучи, -у-лучи, быстрые нейтроны и др.), ультрафиолетовая радиация, температура, ультразвук. Высокую частоту наследуемых изменений вызывают у микроорганизмов также многие химические соединения, которые предложено объединять (Никифоров, 1965) в следующие группы ингибиторы предшественников нуклеиновых кислот аналоги азотистых оснований, включающиеся в нуклеиновые кислоты алкилирующие соединения окислители, восстановители и свободные радикалы акридиновые красители. Из факторов биологической природы в селекции продуцентов антибиотиков часто применяются фаги и антибиотики. [c.179]

    Можно привести примеры адаптации нуклеиновых кислот, их комплексов и хроматина к температуре тела гомойотерм-ных животных и температуре среды обитания пойкилотермных живых существ (см., например, [10]). Однако такая адаптация ДНК, вследствие ее сравнительной стабильности, протекает крайне медленно и на временах жизни организмов часто мало заметна. Адаптация структуры РНК протекает несколько быстрее. Тем не менее, получается, что структура ДНК организмов в процессе филогенеза (эволюции) заметно меняется по мере изменения температуры (как и других факторов) окружающей среды. Все это подтверждает общее положение нашей физической теории эволюции эволюционные изменения в биологическом мире определяются генетическими факторами и факторами окружающей среды. Относительная роль этих факторов зависит от выбранной шкалы времени (в которой мы наблюдаем те или иные изменения), а также от стабильности эволюционирующих структур. В этом проявляется единство общих законов природы второго начала термодинамики и закона временн ых иерархий. [c.20]

    Однако при анализе фазовых диаграмм таких систем возникают некоторые осложнения. Трудно, например, получить значение температуры плавления чистого ненабухшего полимера. Суш,ествует также вероятность того, что растворитель может войти в кристаллическую решетку и стать составной частью кристаллографической структуры. Например, поглощение воды коллагеном и нуклеиновыми кислотами сопровождается усилением экваториальных рентгеновских рефлексов [14, 15], что указывает на проникновение растворителя в упорядоченную фазу. При этих обстоятельствах условия равновесия, определяемые соотношением (10), уже не достаточны, и должны быть выполнены некоторые дополнительные требования. В частности необходимо, чтобы удовлетворялось равенство  [c.54]

    Нагревание и титрование кислотами помогают завершить разрушение Н-связей. Эту процедуру описали Кавальери и Розенберг [358]. Они показали, что такое поведение находится в соответствии со структурой нуклеиновых кислот, предложенной Уотсоном и Криком. Они установили далее, что температура этого перехода в растворителях, молекулы которых могут образовывать Н-связь, ниже, чем в инертных растворителях, так что эти два фактора действуют в одном и том же направлении. Денатурация может происходить также вследствие ионизации аминогрупп [23], влияние радиации на ДНК объясняют разрывом Н-связей [454, 2147а]. Механические напряжения также могут повести к разрыву Н-связей и к денатурации белков [1105]. [c.276]

    Заканчивая рассмотрение аминокислотного обмена, следует сказать, что обычно в растениях в свободном состоянии содержится 20—30 различных аминокислот, которые подвергаются непрерывным превращениям используются для синтеза белков, нуклеиновых кислот, алкалоидов и других азотистых веществ, превращаются в безазотистые соединения — органические кислоты, углеводы, жиры. Содержание аминокислот в растениях может резко меняться в зависимости от возраста растений, от ряда внешних условий (температуры, длины дня, увлажнения и т. д.), а также от питания. При этом изменяется ке только концентрация, но и качественный состав аминокислот. Различные внешние воздействия, нарушая течение азотного обмена, часто направляют его по другим путям, что приводит к уменьшению или даже к исчезновению ряда аминокислот, характерных для данного растения, или, наоборот, к повышенпю общего содержания аминокислот, или появлению ряда нехарактерных продуктов азотного обмена. При обычных условиях выращивания количество свободных аминокислот с возрастом растений понижается. В вегетативных органах растений свободных аминокислот обычно больше, чем в репродуктивных, в то время как для белков наблюдается обратная зависимость. При различных условиях минерального питания содержание индивидуальных аминокислот в растениях и соотношение между ими могут быть резко различными. Увеличение общего количества свободных аминокислот в растениях и усиленное накопление отдельных аминокислот наблюдается при пониженном питании растений калием, фосфором, серой, кальцием и магнием, а также при недостатке ряда микроэлементов цинка, меди, марганца, железа. Увеличение содержания аминокислот наблюдалось также при лучших условиях азотного питания. При недостатке молибдена количество свободных аминокислот и амидов в растениях уменьшалось вследствие ослабления восстановления нитратов. В настоящее время проводятся широкие исследования [c.264]

    Для удаления РНК из тканевых срезов Поллистер и Рис [236] употребляют не рибонуклеазу, а 0,3 М раствор трихлоруксусной кислоты, в котором срезы выдерживаются при температуре 90 в течение 15 мин. Этот способ воздействия, основанный на аналитическом методе Шнейдера (стр. 100), не нарушает целостность клеточных структур в тканевых срезах или цитологических препаратах. Фотометрически определяют поглощение изучаемой структуры в лучах с длиной волны 254 ммп. Затем нуклеиновую кислоту удаляют горячей трихлоруксусной кислотой, после чего вновь измеряют поглощение. Разность в величинах поглощения соответствует поглощению, обусловленному присутствием нуклеиновой кислоты. Это позволяет рассчитать количество нуклеиновой кислоты. Удаление РНК из гистологических препаратов может быть достигнуто также обработкой их холодной хлорной кислотой [44—46], 0,1 н. раствором КОН ]47] илл горячей 1 н. НС1 [48]. [c.122]

    Реагенты, способные реагировать со свободными аминогруппами. В качестве такого реагента в химии нуклеиновых кислот часто используется формальдегид он реагирует со свободными аминогруппами цитозина, гуанина и аденина, образуя соответствующие оксиметильные производные (или — после дегидратации — шиффовы основания). Эта реакция сопровождается изменением спектра поглощения (смещением максимума в сторону длинных волн и усилением поглощения в области максимума) поэтому ее можно прослеживать спектрофотометрически. Все основания двухцепочечной ДНК в ее нативной конформации, а также больший или меньший процент оснований в других упорядоченных полинуклеотидах защищены от этой реакции, т. е. не реагируют с формальдегидом, если соблюдаются определенные меры предосторожности (нейтральное значение pH, низкая температура, низкая концентрация), сводящие к минимуму конформационные изменения, которые могут происходить даже в условиях, когда новые ковалентные связи не образуются. [c.145]

    Нуклеотидный состав. Температура плавления двухспиральных полинуклеотидов зависит также от их состава. С увеличением содержания пар гуанин цитозин Гщ двухспиральных молекул линейно увеличивается 145,212,343-347 как показано на рис. 4.18 (ср. с данными о стабильности пар оснований, стр. 225). В качестве модели для установления зависимости Гт полинуклеотида от состава оснований можно использовать синтетические олигонуклеотиды. При наличии возможности образования трех водородных связей на пару оснований температура плавления соответствующих двухспиральных полинуклеотидов повышается. Тем не менее число водородных связей на пару оснований само по себе не определяет однозначно Тщ двухспирального полинуклеотида. Так, для двухспирального комплекса поли-2-аминоаденило-вой кислоты с полиуридиловой кислотой Гщ значительно ниже, чем для двухспирального комплекса полицитидиловой кислоты с полигуаниловой кислотой, хотя число водородных связей у них одинаково Этот эффект уже был отмечен при взаимодействии мономерных компонентов нуклеиновых кислот (см. стр. 227). [c.265]

    Изучение ультрафиолетового поглощения также позволяет предположить, что РНК в рибосомах имеет вторичную структуру, сходную со вторичной структурой нуклеиновой кислоты в свободном виде. Коэффициенты экстинкции (рассчитанные но отношению к молярному содержанию фосфора) как свободной РНК, так и рибо-нуклеонротеида при 255 m i (при этой длине волны поглощением белка можно пренебречь) равны между собой (e jj — 8100) и увеличиваются при возрастании температуры до 85° [339, 365]. Далее, гиперхромные эффекты, наблюдаемые при гидролизе рибосом и РНК щелочью или ферментом до нуклеозид-З -фосфатов, идентичны и их величина равна 41% при 260 мц [341]. Нагревание свободной РНК приводит к увеличению оптического поглощения на 29 о, причем это возрастание происходит обратимо. Идентичность гиперхромных эффектов у рибосом и изолированной РНК является веским доводом (но не доказательством) в пользу того, что конфор- [c.629]

    При температурах выше 68° фенол и вода смешиваются в любых соотношениях [14 J. При охлаждении гомогенная смесь разделяется на два слоя верхнюю водную фазу, насыш енную фенолом, и нижнюю фенольную, насыщенную водой. Так, при 15° вода содержит 8,2% фенола, а в феноле растворено 37,4% воды. Если грамотрицателъные бактерии обрабатывают гомогенной смесью равных объемов фенола и воды при 65—68° [9], клетки быстрее разрушаются и значительная часть (до 40%) бактериальных веществ переходит в раствор. После охлаждения до 5—10° и центрифугирования получаются три фракции водный слой, фенольный слой и нерастворимый ни в воде, ни в феноле остаток (методика В в работе [9]). Водная фаза после диализа содержит бактериальный липополисахарид (О-антиген, эндотоксин [И, 12[), свободный от белка, и нуклеиновую кислоту. Липополисахарид и нуклеиновую кислоту можно разделить различными способами, например осаждением спиртом [9, 15, 16] (см. также стр. 285), ультрацентрифугированием [15], избирательным осаждением нуклеиновых кислот катионными детергентами, например цетилтриметиламмоний бромидом (цетавлон) [17, 17а], или комбинацией этих способов. [c.327]

    Эта проблема рассматривалась Райсом и Вада [370], Гиббсом и Ди-марцио [371], Хиллом [372], Зиммом [373] и Лифсоном и Зиммом [374]. Согласно их данным, характеристики конформационного перехода для достаточно длинных цепей не зависят от длины цепи, а переход с изменением температуры довольно резок. Однако, прежде чем сравнивать теоретические результаты с экспериментально наблюдаемыми переходами спираль — клубок в растворах ДНК, следует учесть два дополнительных фактора. Так как ДНК состоит из молекул с очень высокой плотностью ионных зарядов, то нарушение двойной спирали приведет к резкому уменьшению электростатической свободной энергии. Это заставляет предполагать, что добавление электролита, уменьшающего взаимодействие ионных зарядов, присоединенных к макромолекуле, приведет к стабилизации спиральной формы. Экспериментальные данные находятся в качественном согласии с этой точкой зрения, и Шильдкраутом и Лифсоном [347] была предложена количественная теория этого эффекта. Другое осложнение возникает вследствие того, что при спаривании оснований А — Т создается более слабая связь, чем при образовании пар оснований Г — Ц, а также вследствие возможного изменения состава оснований вдоль цепи. Указанные изменения должны привести к расширению интервала плавления. Лифсон [375] обсуждал математический подход к рассмотрению этого фактора, но применение такого подхода в настоящее время ограничивается тем, что нельзя точно доказать последовательность остатков оснований в данном образце нуклеиновой кислоты. [c.134]

    Итак, взаимодействие ультрафиолетового света с нуклеиновыми кислотами приводит к возникновению электронио-возбуж денных состояний различных оснований. При этом нижнее синглетное возбужденное состояние оснований возникает в основном в результате я—я -перехода, хотя в ряде случаев оно может быть следствием п—я -перехпда. Триплетное состояние нуклеотидов, как правило, возникает при я — я -переходе. Нуклеиновые кислоты (а также основания, нуклеозиды, нуклеотиды) при комнатных температурах и нейтральных pH практически не люминесцируют. [c.223]

    Все разновидности методов гибридизации, рассмотренные в этой главе, базируются на вышеупомянутых специфических взаимодействиях пар оснований комплементарных цепей нуклеиновых кислот. Точное соответствие последовательностей гибриди-зующихся фрагментов приводит к быстрому образованию прочного комплекса, устойчивого к высокой температуре в ходе гибридизации и отмывки. Такие комплексы устойчивы также и при низкой концентрации соли. Комплексы, образующиеся при относительно более слабом соответствии структуры цепей, в жестких условиях (высокая температура или низкая концентрация соли) менее устойчивы. При этом гибридизация либо не происходит вовсе, либо гибридный комплекс разрушается при отмывке. Генные семейства, у которых наблюдается некоторая степень гомологии, можно выявить варьированием условий гибридизации и отмывки. Этот же подход применяется и при сравнении аналогичных генов разного видового происхождения. [c.43]


Смотреть страницы где упоминается термин Температура см также нуклеиновые кислоты: [c.255]    [c.536]    [c.255]    [c.58]    [c.147]    [c.121]    [c.594]    [c.199]    [c.585]    [c.596]    [c.624]    [c.220]    [c.414]    [c.125]    [c.509]    [c.547]    [c.106]    [c.109]    [c.211]   
Стратегия биохимической адаптации (1977) -- [ c.222 , c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2025 chem21.info Реклама на сайте