Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сталь разложение кислотами

    Мольная теплота испарения X серной кислоты составляет 46054 кДж/моль, что представляет несколько большую величину, чем X воды (41868 кДж/моль). Поэтому при перегонке в вакууме, согласно правилам Вревского, азеотропная смесь будет изменять свой состав в направлении еще большего обогащения кислотой. Таким образом, все приведенные данные свидетельствуют о принципиальной возможности полного концентрирования кислоты в отгонной вакуумной колонне при умеренных температурах, исключающих разложение кислоты. Кипятильник в такой колонне может быть выполнен из обычной углеродистой стали, так как находящаяся в кубе и кипятильнике высококонцентрированная кислота не будет вызывать коррозии. Отгонная колонна и особенно ее верхняя часть должны быть надежно защищены от коррозии разбавленной кислотой. Можно рекомендовать примерно следующие параметры работы такой противоточной вакуумной колонны температура конденсации отгоняемых водяных паров 40—45 °С (чтобы обеспечить охлаждение конденсаторов дешевой производственной водой). Эта температура соответствует давлению 9,2-9,9 кПа при таком давлении температура кипения 98 %-ной серной кислоты будет равна 210—215 °С и обогрев кипятильников может быть осуществлен водяным паром (Р= 3,99-4,6 кПа, /= 235-240°С). [c.413]


    Кроме того, нами были обнаружены изменения в УФ-спектрах растворов 2-меркаптоимидазолов, снятых до и после коррозионных испытаний. Это свидетельствовало о том, что ингибиторы этого типа в процессе взаимодействия со сталью и кислотой, подвержены каким-то процессам разложения, которые могут протекать либо на поверхности стали, либо в растворе под влиянием серной кислоты или образующихся при коррозии ионов железа. Последнее предположение возникло в связи с имеющимися в литературе данными о десульфировании 2-меркаптоимидазолов ионами трехвалентного железа. [c.100]

    Своеобразная картина наблюдалась при растворении сталей в серной кислоте, содержащей 0,1 м-моль л тиомочевины на диффузионной стороне образца водород начинает выделяться намного раньше, чем при растворении стали в кислоте без ингибитора. При этом в первые часы травления выделялось значительное количество продиффундировавшего водорода, которое в последующие часы резко увеличивалось. Скорость же растворения сталей в такой кислоте очень мала. Такое влияние тиомочевины объясняется частичным разложением ее в кислой среде с образованием сероводорода, присутствие которого в травильном растворе даже в незначительном количестве способствует усилению диффузии водорода через сталь. [c.116]

    По указанной выше причине материал тигля для плавки металлов в вакууме не должен испаряться при рабочих температурах, а также не содержать или не образовывать в результате реакции с жидким металлом сильно летучих и легко диссоциирующих соединений. Так, например, не рекомендуется проводить плавку стали под вакуумом в кварцевых тиглях из-за значительной летучести кремниевой кислоты и оксида кремния. Плавка в вакууме также сильно ухудшает службы магнезитового тигля, удовлетворительно работающего при плавке в атмосфере воздуха. Здесь имеет место разложение материала тигля ввиду сильного испарения магния в вакууме. Испаряющийся магний конденсируется на холодных внутренних деталях печи и на смотровом стекле, что затрудняет ведение плавки. [c.96]

    В зависимости от количества и качества сополимера регулируется количество тионилхлорида и серной кислоты (точнее, соотношения тионилхлорид/сонолимер и серная кислота/сополимер ) [8—19]. Кроме того, количество тионилхлорида зависит от концентрации серной кислоты, так как чем больше в кислоте воды, тем большее количество тионилхлорида она разлагает на хлористый водород и сернистый ангидрид. В то же время тионилхлорид расходуется при разложении его водой, выделяющейся в результате реакции сульфирования. Для вывода хлористого водорода и сернистого ангидрида из аппарата в верхней части его предусмотрен патрубок, соединенный с нейтрализатором. Все детали аппарата, соприкасающиеся с реакционной массой и продуктами реакции, изготавливаются из кислотостойкой стали. [c.391]


    В 1746 году был разработан камерный метод производства, в котором сера в смеси с нитратом калия сжигалась в свинцовых камерах, причем оксид серы (VI) и оксиды азота растворялись в воде на дне камеры. В последующем в камеры стали вводить пар, и процесс производства превратился в непрерывный. В начале XIX века серу сжигали в печах, а оксиды азота получали отдельно разложением нитрата калия серной кислотой. В начале XX века в установку была включена специальная башня для улавливания оксидов азота, что повысило интенсивность камерного процесса. В последующем свинцовые камеры были заменены башнями с кислотоупорной насадкой. Тем самым камерный метод производства серной кислоты, сохранив принцип окисления оксида серы (IV) в оксид серы (IV), трансформировался в башенный метод, существующий в настоящее время. С 1837 г. в качестве сырья вместо серы стал использоваться железный колчедан. [c.152]

    Уксусная кислота — первая нз органических кислот, которая стала известна человеку. Впервые она была получена И.Глаубером в 1648 г. и в концентрированном виде путем вымораживания ее водных растворов и разложением ацетата кальция серной кислотой Г.Шталем в 1666—1667 гг. Элементный состав уксусной кислоты был установлен Я.Берцелиусом в 1814 г. До начала XIX века уксусную кислоту производили исключительно из природного сырья пирогенетической обработкой древесины и окислительным уксуснокислым брожением пищевого этанола. В настоящее время производство уксусной кислоты из лесохимического сырья имеет второстепенное значение, хотя масштабы его измеряются сотнями тысяч тонн. В этом методе уксусную кислоту выделяют из сконденсированной части парообразных продуктов термической обработки древесины (жижки), получаемой [c.310]

    В природе А. образуется при разложении органических веществ, содержащих азот. В промышленности А. получают прямым синтезом его из азота и водорода при температуре около 550° С и под давлением 35 10 Па на железном катализаторе. С воздухом и кислородом А. образует взрывоопасные смеси. Жидкий А. вызывает на коже тяжелые ожоги, очень опасен для глаз. А. используют для производства азотной кислоты, солей аммония, карбамида (мочевины), цианистоводородной кислоты, кальцинированной соды, в органическом синтезе, для приготовления нашатырного спирта, в холодильных установках, для азотирования стали и др. А. и соединения аммония применяют как удобрения. Жидкий А. растворяет щелочные и щелочноземельные металлы, образующие в нем темно-синие растворы с металлическим блеском. [c.23]

    Задача Н-31. При взаимодействии газа, полученного при растворении 19,05 г меди в избытке 30%-ной азотной кислоты, с газом, выделившемся при разложении хлората калия в присутствии катализатора, общий объем газов стал равным 8,96 дм . Сколько граммов хлората калия было взято, если разложилось 70% его исходного количества  [c.116]

    Важным преимуществом многих ингибиторов второго типа является их низкая стоимость и доступность сырья. Поэтому для крупно-тоннажного травления сталей ингибиторы второго типа нашли наибольшее применение. По эффективности и технологичности они уступают синтетическим ингибиторам и обладают рядом недостатков,, которые в меньшей степени присущи ингибиторам первого типа. К ним относятся непостоянство состава, из-за чего их защитное действие колеблется в широких пределах, что осложняет их практическое использование способность в процессе применения подвер -гаться нежелательным химическим превращениям (разложению, осмолению и т. п.), снижающим эффективность защиты особенно при повышенных температурах. При использовании ингибиторов второго типа существует возможность осаждения отдельных составных частей ингибитора по мере изменения состава коррозионной среды,, например при накоплении солей железа и снижении концентрации кислоты в процессе травления металлов, а также возможность загрязнения протравленной поверхности металла, что препятствует дальнейшим технологическим операциям (холодной деформации,, нанесению металлических и лакокрасочных покрытий). [c.81]

    Интенсивную коррозию стали, протекающую при совместном присутствии сероводорода и кислот, объясняют [15] также каталитическим процессом образования сульфида железа и разложения его кислотой на сероводород и ионы Ре2+ при этом сероводород многократно воздействует на металл. [c.60]

    Аммиак КНз — бесцветный газ с резким характерным запахом, почти в два раза легче воздуха, легко сжижается (т. кип.— 33,4 °С). А. очень хорошо растворим в воде (при 20°С в 1 объеме Н2О растворяется 700 объемов N1 3). Раствор А. в воде называют аммиачной водой и.чи нашатырным спиртом. С кислотами А. дает соответствующие соли аммония. При действии А. на соли некоторых металлов образуются комплексные соединения — аммиакаты. Щелочные и щелочноземельные элементы реагируют с А., образуя в зависимости от условий нитриды пли амиды металлов. На каталитическом окислении А. (до оксидов азота) основан один из методов производства азотной кислоты. В природе А. образуется при разложении (гниении) азотсодержащих органических веществ. Основной промышленный метод получения А.— синтез его в присутствии катализаторов при высокой температуре п высоком давлении из азота воздуха и водорода. А. используют для получения азотной кислоты и ее солей, солей аммония, мочевины, синильной кислоты, соды по аммиачному способу, аммиачных удобрений и др. А. применяют в органическом синтезе, как хладоагент, для азотирования стали, в медицине (нашатырный спирт). [c.16]


    Травление стали соляной кислотой получило широкое распространение, когда были разработаны технологические схемы, в которых прюцессы выделения и разложения хлорида железа были совмещены в одном аппарате. Из зарубежных публикаций известны пять вариантов осуществления этого процесса, отличающихся друг от друга в основном типом реактора для окисления дихлорида железа. Основной принцип процесса для всех вариантов является общим. Он заключается в следующем. Травильный раствор, подлежащий регенерации, распыляется в реакторе при температуре 500—800°С. При этих условиях и в присутствии кислорода воздуха происходят испарение воды и разложение дихлорида железа на оксид железа и хлорид водорода. Образующийся оксид железа осаждается или в самом реакторе или в последующем пылеотделителе и извлекается как побочный продукт. Из газовой смеси, содержащей хлорид водорода, пары воды и газообразные продукты гор>ения, хлорид водорода выделяют поглощением водой и в виде соляной кислоты возвращают на травление. Как уже KaiaHO выше, в зависимости от типа реактора для окисления дихлорида железа установки делятся на пять вариантов. [c.16]

    Разложение триалкилфосфитов в диапазоне температур 250—280 °С сопровождается отщеплением углеводородного радикала и фосфина при разложении трибутилтритиофосфита, помимо этого, выделяется сероводород. В присутствии меди температура разложения трибутилтритиофосфита снижается, и выделяющийся сероводород интенсивно с ней реагирует. Железо не действует каталитически на процесс разложения трибутилтритиофосфита, в связи с чем взаимодействие сероводорода со сталью может протекать только при более высоких температурах. Этим можно объяснить то, что при трении стали по стали эфиры кислот фосфора, содержащие серу, по противоизносным свойствам не имеют заметного преимущества перед эфирами, не содержащими серу при умеренных режимах трения в присутствии присадок, содержащих серу и фосфор, в основном сказывается влияние соединений фосфора, которое выражается в пониженном износе поверхностей. В условиях заедания при высоких температурах на микроконтактах образуются сульфиды металлов, приводящие, как уже указывалось, к смягчению процесса заедания. [c.216]

    Для растворения навески стали употребляют смесь серной, азотной и фосфорной кислот . Азотная кислота окисляет Ре2+-ионы до Ре- -ионов и разрушает карбиды (в частности, карбид марганца), а фосфорная кислота связывает окрашенные РеЗ+-ионы в бесцветный комплекс [Ре(Р04)2р . Кроме того, ее присутствие повышает устойчивость НМп04, в значительной мере предупреждая ее разложение с образованием осадка МпО(ОН)а и выделением кислорода. [c.391]

    Было установлено, что при работе в ресивере создалось разрежение, поэтому реакционная масса, содержащая порофор и соляную кислоту, из окислителей засосалась в ресивер, который был изготовлен из углеродистой стали. Под действием соляной кислоты углеродистая сталь активно растворялась с образованием хлорного железа и водорода. Содержавшиеся в суспензии порофор и гидроазосоединения всплыли на поверхность тяжелого раствора хлорного железа и подверглись воздействию газообразного хлора в условиях плохого отвода тепла. В этих условиях неизбежен был нагрев их до температуры разложения порофора (70—100 С) с выделением значительного количества тепла и газов. Создавшимся высоким давлением ресивер был разрушен. Анализ этой аварии показывает, насколько опасно попадание обрабатываемых органических продуктов в оборудование и трубопроводы хлорного тракта, в котором происходит длительное неконтролируемое взаимо- [c.356]

    Уже в пусковой период была обнаружена сильна коррозия дефлегматоров муравьиной кислотой, котора образуется при термическом разложении формальде гида. В конечном итоге пришлось установить дефлег маторы, изготовленные из нержавеющей стали. [c.98]

    Невит и Блох изучили также окисление этана при давлении 15—100 атм и температуре 260—360 . В продуктах реакции, помимо воды, метилового спирта, формальдегида, муравьиной кислоты и ацетальдегида, в преобладающем количестве находились этиловый спирт и уксусная кислота. Попышение давления благоприятствовало образованию веществ, получающихся без разложения молекулы углеводорода. Впоследствии в Англии и Канаде этот метод окисления под высоким давлением и при отношении углеводород кислород = 9 1 стал промышленным способом получения метилового и эти.чового спиртов из метана и этана. [c.349]

    В концентрированных растворах (98—100% ДЭГ), скорость коррозии, в отличие от более разбавленных растворов, непрерывно увеличивается с повышением температуры вплоть до температуры кипения. Это связано с тем, что в концентрированных растворах ДЭГ температура кипения выше температуры разложения 165°С, при которой происходит выделение агрессивных низкомолекулярных органических кислот муравьиной, уксусной, присутствие которых усиливает коррозию углеродистой стали. Образование низкомолекулярных кислот в результате термического и химического разложения диэтиленгликоля приводит к подкислению раствора. Контакт с кислородом воздуха значительно увеличивает скорость образования органических кислот жирного ряда, поэтому удаление кислорода воздуха из системы установки регенерацпи ДЭГ может явиться одним из методов уменьшения коррозии оборудования в средах, содержащих растворы ДЭГ. [c.173]

    Наряду с моноэтаноламиновой очисткой в промышленности нашел широкое распространение комбинированный процесс гликольаминовой очистки и осушки газа. Применяемые гликольаминовые растворы обычно содержат до 10—30 % моноэтаноламина, 45—85 % ди-этнленглнколя, 5—25% НгО. Они неагрессивны по отношению к углеродистой стали, что объясняется способностью моноэтаноламина при содержании более 5% образовывать пассивные пленки на стали в растворах диэтиленгликоля (рис. У.2). Однако гликольаминовые растворы подвержены термическому и окислительному разложению с образованием низкомолекулярных кислот типа муравьиной и уксусной, способствующих понижению pH и повышению агрессивности раствора. [c.176]

    Разложение пробы и удаление мешающих элементов. Наиболее важно определение никеля в различных минералах и силикатных породах, атакже в сплавах (сталях). Минералы обычно разлагают, обрабатывая навеску азотной кислотой нерастворившипся остаток сплавляют с содой. После разложения плава кислотой и отделения кремниевой кислоты присоединяют полученный раствор к основному азотнокислому раствору. [c.181]

    Растворение металла по химическому механизму необходимо учитывать не только при разложении амальгам щелочных и щелочноземельных металлов. Растворение железа, хрома и хромистых сталей, марганца в кислых растворах частично протекает по химическому механизму, особенно при повышенных температурах (Я. М. Колотыр-кин и сотр.). Необходимым условием химического механизма является хемосорбция окислительного компонента раствора, при которой в определенных условиях реакция растворения металла может происходить и без освобождения электронов непосредственно в одном акте с реакцией восстановления. При растворении металла по химическому механизму можно в первом приближении ожидать отсутствия зависимости между скоростью растворения и потенциалом. Кроме того, важным признаком химического механизма является несоответствие между скоростью растворения и величиной анодного тока, пропускаемого через электрод скорость растворения, найденная, например, аналитическим методом, оказывается больше,чем соответствующая пропускаемому току. На рис. 186 показаны поляризационные кривые, измеренные на стали в растворе серной кислоты, и полученная аналитически зависимость скорости растворения той же стали от потенциала. Скорость растворения стали значительно превосходит ожидаемую из величин анодного тока и не зависит от потенциала. Это указывает на химический механизм растворения хромистой стали в серной кислоте при повышенных температурах. [c.353]

    Для снижения коррозии бурового оборудования в буровые растворы, содержащие хлористые соли, вводят соли аминов, относящиеся к классу алкоксили-рованных алкил- или алкениламинов. Это олеил, стеорил или их смесь, получающаяся при разложении жиров таллового или соевого масла. Хороший эффект обнаруживают этоксилированные жирные амины, образованные взаимодействием аминов с фосфорной, соляной, серной, азотной, уксусной кислотами. В буровой раствор, содержащий хлориды калия, вводят диаммоний ортофосфат (ДАФ). При совместном присутствии ДАФ и КС1 значительно снижается скорость коррозионного разрушения малоуглеродистой стали и меняется характер коррозионного разрушения (от питтингового к равномерному). [c.115]

    Разложение аммиака проводят пропусканием его через трубку диаметром 25—30 мм и длиной 1 л из малоуглеродистой стали, заполненную катализатором. Трубка помещена в трубчатую электропечь. Температура внутри трубки должна быть 650—700 °С. Скорость пропускания аммиака составляет 20—30 л/ч. Прореагировавшую газовую смесь пропускают через последовательно соединенные поглотительные колонки с насадкой из отрезков стеклянных трубок. Первые две колоики с 25%-ным раствором Н2504 служат для улавли вания аммиака, третья колонка с насыщенным раствором щелочного раствора, ацетата свинца — для улавливания сернистых соединений, четвертая и пятая колонки с концентрированной серной кислотой — для удаления мата. [c.181]

    Выделение азотистых соединений. Исследование азотистых соединений, выделенных из широкой фракции жидкофазных гидрогенизатов (табл. Х1П.1), показало, что они состоят из пиридина, николинов, лутидинов, хинолина и его гомологов, ацетонитрила, анилина и других компонентов [4, 7]. Важное практическое значение имеют пиколины, из которых 3-метилпиридин служит сырьем для получения имида никотиновой кислоты (р. р. — фактор витамина Б), а из 4-метилниридина (неотебена) приготовляется гидразин изо-никотиновой кислоты. На одном из зарубежных заводов сооружена промышленная установка по извлечению из легких фракций гидрогенизата пиридиновых оснований обработкой 15—20%-ным раствором серной кислоты с последующим разложением сернокислотной вытяжки щелочью. Выделенные сырые пиридиновые основания подвергаются дистилляции иа фракции пиридиновую, пиколиновую, лутидиновую и остаток. После дистилляции фракции имеют необходимую чистоту и могут быть использованы для дальнейшей переработки. В последнее время пиридиновые основания в виде пх соединений с серной кислотой применяются как защитное средство против образования окалины при прокате листовой и фасонной стали [33]. [c.842]

    В начале 70-х гг. производство динамита предъявило большой спрос на глицерин, причем высокого качества. Значительные количества глицерина-сырца шли на переработку в Гер(Манию , но и в России стали вырабатывать не только сырец. В 1872— 1873 гг. завод Крестовниковых переходит к расщеплению жиров в автоклавах (на 220 п.) под давлением в 8 атм., а при этом не только резко снижается расход извести и затем серной кислоты на разложение кальциевых мыл, но и растет выход глицерина пр и хорошем качестве полупродукта — глицериновой воды. Далее часть жирных кислот подвергают ацидификации (обработке купоросным маслом, затем водой) и в связи с этим развили дистилляцию. Это делается в интересах свечного производства, отчасти и мыловаренного. [c.341]

    Установка титра по А. М. Дымов у . Для установки титра берут стандартный образец чугуна или стали с содержанием марганца, близким к содержанию его в анализируемом материале. Навеску 0,5—1,0 г чугуна или стали, в зависимости от содержания марганца, растворяют в 30 мл смеси кислот (см. выше) в конической колбе емк. 250 мл при нагревании на песчаной бане. После растворения содержимое колбы кипятят еще 3—5 мин. для удаления окислов азота. Если на дне колбы остаются неразложившиеся частицы, то их разминают сплюснутой на конце стеклянной палочкой, что ускоряет разложение. Графит и SiOj отфильтровывают, прибавив предварительно 25 мл воды. [c.192]

    Близки по проведению технологии очисток котлов растворами соляной кислоты, моноцихратом аммония. Наряду с этим, имеются значительные различия в использовании ЭДТА и ее солей. Это относится, например, к используемым-концентрациям и выбору значения pH. В отечественной практике применяются существенно меньшие концентрации комплексонов, чтО позволяет полностью израсходовать их в процессе очистки. Отличительными особенностями применения комплексонов в практике химических очисток являются также созданные в СССР композиции на основе комплексонов, непрерывная дозировка комплексонов в питательную воду котлов высокого давления для увеличения межпромывочного периода, проведение промывок комплексонами для отдельных поверхностей, использование термического разложения комплексонатов железа для повышения коррозионной стойкости перлитных и ферритных сталей и для целей консервации. [c.16]

    Наиболее активным, разъедающим металл агентом является хлористый водород (в присутствии воды), выделяющийся при разложении хлористых солей (осрбенно распадающихся при сравнительно низких температурах хлористых магния и кальция)-, содержащихся в промысловой воде, сопровождающей нефть. Соляная кислота наиболее интенсивно разрушает оборудование в присутствии активных сернистых соединений, особенно сероводорода, т. е. при совместном их воздействии на металл. Вместе с тем, сероводород и другие сернистые соединения (меркаптаны, элементарная сера) сами активно действуют на сталь, разъедают ее с образованием опасного в пожарном отношении пирофорного сернистого железа. Хлористоводородная и сернистая коррозия поражает конденсационно-холодильные системы АВТ и термического крекинга отстойники АВТ и ЭЛОУ днища, верхние пояса, кровли и фермы сырьевых и дистиллятных резервуаров печные трубы и двойники линии продуктов с высокой температурой верхние части ректификационных колонн и т. д. [c.147]

    Разлагают азотной кислотой в аппаратах из нержавеющей стали. Схема и условия дальнейшей обработки, начиная с выщелачивания осадка от первого разложения аммиаком, аналогичны стандартной полимолибдатной схеме, но с нейтрализацией аммиачных растворов азотной кислотой. [c.206]


Смотреть страницы где упоминается термин Сталь разложение кислотами: [c.194]    [c.180]    [c.683]    [c.176]    [c.180]    [c.45]    [c.138]    [c.256]    [c.283]    [c.666]    [c.327]    [c.192]    [c.324]    [c.559]    [c.209]    [c.198]   
Методы разложения в аналитической химии (1984) -- [ c.191 , c.195 , c.197 , c.209 , c.212 , c.220 , c.228 , c.384 ]




ПОИСК





Смотрите так же термины и статьи:

Сталь кислотой



© 2025 chem21.info Реклама на сайте