Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ориентация макромолекул и степень кристалличности

    Удельное сопротивление зависит от химической природы материала, упорядоченности и ориентации макромолекул, степени кристалличности, наличия различных примесей и влаги. [c.69]

    Повышение кристалличности триацетатного волокна вполне понятно, так как с уменьшением числа беспорядочно расположенных групп ОН макромолекулы могут располагаться более упорядоченно. Триацетатная нить, сформованная мокрым способом, иногда вырабатывается из триацетата целлюлозы, полученного гетерогенным методом ацетилирования. Такой триацетат целлюлозы обычно имеет более высокое ацетильное число и большую степень полимеризации, по сравнению с триацетатом, получаемым ацетилированием в гомогенной среде. Это дополнительно увеличивает возможность повысить степень ориентации макромолекул и кристалличность волокна. [c.72]


    Например, метод ИКС НПВО применяли для изучения степени кристалличности и ориентации макромолекул в приповерхностных слоях толщиной около 1 мкм в прессованных образцах ПЭНД [36]. Для оценки ориентации использовали полосу поглощения 2850 см валентных колебаний -СНг-групп, нечувствительную к фазовому состоянию. Степень кристалличности определяли по величине отношения оптических плотностей полос 730 и 720 см ,  [c.233]

    Детальное исследование микроструктуры полимерных цепей с помощью аппаратуры высокого разрешения. Метод ЯМР позволяет определить порядок присоединения мономерных единиц в цепи, характер и степень стереорегулярности полимера. Для изучения упаковки макромолекул сравнивают теоретические и экспериментальные значения второго момента спектральной линии. По соотношению узкой и широкой компонент линии поглощения можно определить динамическую степень кристалличности полимеров. Величина второго момента в ориентированных полимерах дает возможность судить об ориентации молекулярных цепей. Особо следует отметить, что ЯМР позволяет определить положение водородных атомов [5]. [c.264]

    Метод ИКС НПВО применяется для оценки степени кристалличности и ориентации макромолекул в приповерхностных слоях толщиной около 1 мкм в прессованных образцах [20]. Для оценки ориентации ПЭНД используется полоса поглощения 2850 см валентных колебаний -СНг-групп, нечувствительная к фазовому состоянию. Степень кристалличности определяется по величине отношения оптических плотностей полос 730 и 720 см , а для полихлоропренового каучука [21] - из отношения интенсивности полос поглощения при 780 и 1660 см  [c.363]

    Значение то для самых различных материалов лежит в пределах л (10 2—10 ) с. Это значение близко к периоду коле- баний ковалентной связи в полимере, а для низкомолекулярных веществ его можно по порядку величины считать равным времени оседлой жизни атома или периоду колебаний атома в -кристаллической решетке. Значение б о для многих полимеров оказалось близким к значению энергии химической связи в макромолекуле. Наконец, параметр у оказался структурно чувствительным — для полимера определенного химического строения он изменялся при изменении степени ориентации, степени кристалличности, содержания пластификатора. [c.371]


    Для качественного определения степени кристалличности полимера наблюдают двойное лучепреломление в поляризационном микроскопе при этом необходимо исключить влияние возможной ориентации макромолекул, т. е. так называемое ориентационное двойное лучепреломление  [c.90]

    Ионную полимеризацию можно проводить при очень низких температурах. Это предотвращает протекание побочных процессов, поэтому данным методом получают полимеры бо .ее регулярной структуры. При соответствующем подборе катализатора ионной полимеризации возможна строгая взаимная ориентация в пространстве боковых групп в молекулах мономера в момент их присоединения к макроиону. Это позволяет придать строению макромолекул высокую регулярность и получить стереорегулярные полимеры. Чем регулярнее строение макромолекул, тем выше степень кристалличности полимера. [c.401]

    При охлаждении изделия в форме и после его извлечения из нее наблюдается усадка — уменьшение линейных размеров изделия. Величина усадки зависит от сжимаемости расплава полимера, его коэфф. объемного термич. расширения, скорости релаксации и степени кристалличности. Усадка в форме частично компенсируется ее подпиткой расплавом до момента затвердевания литника поэтому материал усаживается гл. обр. после извлечения изделия. Ориентация макромолекул и надмолекулярных образований при литье, а также неравномерность охлаждения изделия в форме обусловливают анизотропию усадки вдоль и поперек направления течения расплава, на участках изделия с различной толщиной и т. д. Анизотропия усадки особенно заметна у кристаллизующихся полимеров. Малая скорость релаксации и кристаллизации приводит к тому, что усадочные явления развиваются в течение длительного времени, что препятствует получению изделий со стабильными размерами. [c.38]

    Макроскопическую релаксацию напряжения в полностью аморфных материалах обычно описывают на основе теории вязкоупругости (см., например, Ферри [31]). Частичнокристаллические материалы ведут себя более сложным образом. В этом случае на релаксационные процессы влияет степень кристалличности, распределение кристалли тов по размерам, структура меж фазных поверхностей, ориентация кристаллитов за счет проходных макромолекул, тип и концентрация дефектов в кристаллах и конформация аморфных частей макромолекул [58]. Простейшая модель вязкоупругой релаксации в аморфных материалах была предложена Максвеллом. Она состоит из соединен ных последовательно пружины и демпфера. Релаксация напряжения S при постоянной деформации выражается экспоненциальным уравне нием [c.460]

    Известно много факторов, оказывающих влияние на величину Гст. давление, степень кристалличности, молекулярная масса, разветвленность макромолекулы, степень поперечного сшивания, включение сомономерных звеньев, присутствие остаточного мономера, низкомолекулярной жидкости или пластификатора [3—11]. Почти все волокна состоят из полимерных материалов. Однако кристалличность и молекулярная ориентация полимерного материала в волокне иные, чем в блочном полимере, из которого изготовлено волокно. Поэтому температура стеклования, волокна может значительно отличаться от значения Гст блочного полимера. Увеличение кристалличности обычно приводит к повышению Гст на 5—15 °С, а повышение степени молекулярной ориентации увеличивает Гст на 3—12 °С. Однако оба этих вклада не совсем аддитивны. Например, Гст высококристаллического и ориентированного полиэфирного волокна, изготовленного из полиэтилентерефталата, приблизительно на 15 °С выше, чем у аморфного блочного полимера. [c.480]

    Кристаллическое строение полимерных материалов своеобразно, так как при охлаждении жидких полимеров чрезвычайно высокая вязкость жидкости затрудняет процесс кристаллизации и можно говорить только о степени кристалличности полимера, в котором кристаллы объединены аморфным полимерным веществом. Типы кристаллических образований в полимерах различны при пачечной ориентации макромолекул возникают, главным образом, кристаллы фибриллярного типа, т. е. в виде вытянутых нитей, видимых на репликах в электронном микроскопе другая форма кристаллов — сферолиты различного строения, обладающие общим центром (рис. 205). [c.501]

    Метод широких линий используется для изучения полимеров в блоке. Форма, ширина и момент второго порядка (или просто второй момент) линии ЯМР зависят от строения цепи — наличия разветвленности, стереорегулярности, от степени кристалличности полимера. Сравнивая экспериментальное значение второго момента линии с теоретическим, рассчитанным для определенной структуры, можно получить информацию о молекулярной структуре полимера. В ориентированных полимерах — волокнах и пленках —спектр ЯМР зависит от угла поворота образца в магнитном поле, и с помош,ью ЯМР можно получить информацию о характере ориентации макромолекул или кристаллитов в полимере. Наблюдая изменение ширины линии с температурой, получают данные о молекулярном движении в полимере. Ширина и форма линии ЯМР меняется также и в том случае, когда в полимере идут химические и физические процессы полимеризация, сшивание цепей, деструкция и т. д. Метод ЯМР дает возможность изучать кинетику и механизм этих процессов. [c.14]


    Химическая стойкость выше у кристаллических полимеров. Так, было показано, что стойкость поликарбонатов к действию воды, воздуха, кислот и щелочей зависит от степени кристалличности и ориентации макромолекул. С повышением степени кристалличности полиамидов снижается их водопоглощение и замедляется скорость абсорбции воды. [c.57]

    Значительная анизотропия е и е" (причем в > в ц и е > е" ) наблюдалась и для р-процесса ориентированного поливинилиденфторида. (У этого полимера р-процесс обусловлен сегментальным движением макромолекул в аморфных областях.) Ориентация полимеров вытяжкой может привести к изменению степени кристалличности. [c.141]

    Ориентационная вытяжка полимеров может привести не только к ориентации осей макромолекул в направлении вытяжки, но и к увеличению степени кристалличности полимера. Изменения е и е", вызванные увеличением кристалличности при вытяжке полимера, могут оказаться большими, чем изменения, обусловленные появлением анизотропии вследствие ориентации. Кроме того, в некоторых случаях ориентация приводит к появлению дополнительных максимумов релаксационных диэлектрических потерь при Т < Тс, которые не наблюдались у неориентированных полимеров [4, с. 141]. [c.94]

    При воздействии газового пламени или коронного разряда на поверхность полимерных пленок, а также при прессовании термореактивных смол, в перерабатываемых материалах проис ходят химические превращения. Регулированием степени кристалличности и ориентации макромолекул в текстильных волокнах и упаковочных пленках можно улучшить механические свойства полимерных материалов. При этом в материале происходят необратимые изменения физических свойств, которые, однако, не сопровождаются химическими реакциями или течением, которое бывает в жидкостях. [c.10]

    Параметр ширины распределения т мало зависит от химического строения мономерного звена или макромолекулы и более чувствителен к морфологии цепей, в частности к изменению степени кристалличности полимера [98]. Появление спектра т связывают с возможной неэквивалентностью взаимодействия элементарных диполей с ближайшим окружением, т. е. с распределением по высоте барьеров, разделяющих равновесные ориентации диполей, в разных точках объема и в разные моменты времени. [c.35]

    В зависимости от скорости охлаждения изменяются степень кристалличности и размеры структур в полимере, что вызывает изменение оптических свойств пленки. При снижении скорости охлаждения расстояние до линии кристаллизации возрастает и увеличивается мутность пленки, так как в результате замедления кристаллизации происходит образование крупных кристаллических структур и уменьшается степень ориентации макромолекул. [c.163]

    Согласно данным рентгенографических исследований, ориентация макромолекул и степень кристалличности волокна из вторичного ацетата целлюлозы, сформованного сухим способом, значительно меньше, чем у гидратцеллюлозных волокон В триацетатном волокне, сформованном сухим способом, ориентация макромолекул также невелика, но кристалличность повышена. Степень ориентации макромолекул, а также кристалличности триацетатного волокна, полученного мокрым способом, еще больше. [c.72]

    С увеличением степени кристалличности или ориентации иолимера возрастает количество функциональных групп (всоседних макромолекулах), оказавшихся в непосредственной близости друг к другу, т. е. увеличивается количество водородных связен, я вместе с этим повышается прочность полимера. Как и для полиамидов, увеличение длины метиленовых цепей между имино-эфирными группами полиуретанов способствует повышению уп- [c.456]

    Прочность синтетических волокон в отличие от природных значительно (в несколько раз) повышается при холодной вытяжке этих волокон после образования их прядением из расплава. Холодная вытяжка способствует дополнительной ориентации макромолекул в направлении вытяжки и увеличению степени кристалличности полимера. При этом длина волокна увеличивается на 400—600%. Ориентированное волокно или пленка имеют прочность на разрыв 3000—4000 кг1см , а неориентированное 500— 700 кг/см [10]. [c.670]

    Поликарбонаты, как и политерефталаты, отличаются высокой кристалличностью. Кристаллизация поликарбоната наблюдается только выше температуры стеклования, т. е. выше 150 . Степень кристалличности полимера п степень ориентации в расположении кристаллов оказывают решающее влияние на прочностные характеристики. При кристаллизации поликарбоната образуются мельчайшие кристаллические области, не нарушающие прозрачности полимера. Кристаллитные образования характеризуются стабильностью вследствие жесткости макромолекулярной цепи, в состав которой входит большое количество фениленовых групп [107], снижающих гибкость макромолекул. Молекулярный вес применяемых в технике поликарбонатов колеблется от 20 ООО до 80 ООО. [c.714]

    Большинство В.х, имеет фибриллярную аморфно-кри-сталлич. структуру со степенью кристалличности 50-95% и углом среднемолекулярной разориентации 25-10°. В формировании мех., термич., сорбционных и др. св-в волокон важную роль играет строение аморфных областей полимера (число проходных макромолекул, их ориентация, раз-нодлинность). Существ, значение имеет также микроструктура волокон (наличие пор, трещин, характер пов-сти), от к-ртй зависят их переработка и эксплуатац. св-ва текстильных изделий. [c.415]

    Зависимость температуры стеклования, характеризующей гибкость и подвижность кинетических элементов только в аморфной фазе, от степени кристалличности и ориентации представляет большой интерес. При изучении влияния кристаллизации полиэтилентерефталата на его диэлектрические потери, было отмечено, что кристаллизация приводит к уменьшению подвижности сегментов в аморфной фазе [36]. Применение метода ядерного магнитного резонанса позволило установить [44], что интенсивность движения в аморфных областях полимера уменьшается с увеличением степени кристалличности. Подвижность частей молекул, расположенных в аморфных областях, ограничена за счет того, что другие их части входят в состав кристаллических областей. Другой причиной снижения подвижности макромолекул в аморфной фазе, по-видимому, является напряжение. Херви экспериментально установил [45], что температура стеклования увеличивается при повышении напряжения при растягивании полиэфирного волокна. [c.111]

    Благодаря развитию современных приборов с лазерными источниками возбуждения получение спектров КР превращается в стандартную процедуру. Путем сравнения спектров комбинационного рассеяния света, поляризованного параллельно и перпендикулярно к оси ориентированных макромолекул полимеров, удается вьщелить линии, чувствительные к изменению ориентации различных фрагментов макромолекул [36]. Метод КР с Фурье-преобразованием и возбуждением в ближней ИК области применяется [37] для определения цис-, транс- и винильных звеньев в полибутадиене, стереорегулярности полистирола, степени кристалличности полимеров и т.д. [c.208]

    ОТ —180 до —100°С третий вид релаксационных потерь, уменьшающихся при понижении степени кристалличности. Энергия активации низкотемпературных потерь 12,6 кДж/моль (3 ккал/моль) характерна для дипольно-радикальных потерь аморфных полимеров. Максимумы tg6 в интервале температур от —50 до 50 °С обусловлены тепловым движением макромолекул в аморфных областях сополимеров. Максимумы и е в диапазоне 100—200°С связаны с плавлением кристаллитов сополимеров. Перед плавлением кристаллитов сополимеров, а также ПВДФ, при низких частотах е достигает значений 30—50 и резко уменьшается при плавлении, что может быть обусловлено ориентационными процессами в кристаллических областях сополимеров [52]. Ориентация образцов сополимера приводит к возрастанию удельного электрического сопротивле- [c.130]

    Значение электрической проводимости и закономерности ее изменения зависят от очень многих факторов типа носителей заряда (электрон, дырка, ион, полиион, молион), механизма их перемещения в полимерной матрице (зонная теория, туннельный переход, прыжковая или перескоковая модель), химического строения или структуры полимеров (наличие, характер и протяженность сопряженных связей, дипольный момент мономерного звена, степень кристалличности полимера и степень ориентации макромолекул, наличие и природа посторонних макроскопических и молекулярных добавок и примесей и др.), воздействия внещних факторов (температуры, электрического и магнитного полей и времени их воздействия). При исследовании и применении полимерных материалов особое внимание следует обращать на приэлектродные процессы, которые могут существенно влиять на силу измеряемого электрического тока. Это [c.12]

    СТЕКЛОВАНИЯ ТЕМПЕРАТУРА полимеров, температура, прн к-рой полимер переходит при охлаждении из вязкотекучего или высокозластич. в стеклообразное состояние. Условно характеризует интервал стеклования и зависит от скорости охлаждения и способа определения. Дилатометрия, измерениями при стандартной скорости изменения т-ры установлено, что С. т. поливинилацетата 29 С, полиэтилентерефталата 80 °С, поливинилхлорида 82 С, полистирола 100 С, полиметилметакрилата 105 С. При увеличении мол. массы и полярности макромолекул С. т. возрастает. Образование поперечных хим. связей между макромолекулами также приводит к росту С. т., а введение пластификаторов — к ее снижению. В меньшей степени на С. т. влияют степень кристалличности полимера, размер кристаллитов, степень ориентации и введение яапошителей. [c.542]

    Главное требование к волокнообразующему полимеру заключается в том, что длина его вытянутой молекулы должна быть не менее 1000А (100 нм), т. е. его молекулярный вес должен быть не ниже 10 000. Эта величина, разумеется, может быть и выше например, молекулярный вес необработанной (не-деструктированной) хлопковой целлюлозы достигает 500000. В случае синтетических волокон молекулярный вес исходного полимера намеренно ограничивают, поскольку прядильный раствор или расплав должен иметь не слишком высокую вязкость. У большинства волокон, сформованных из расплава, молекулярный вес составляет 10 000—20 000. Волокна, получаемые формованием из раствора, могут иметь более высокий молекулярный вес. Для текстильных волокон характерна также определенная степень кристалличности и (или) ориентации молекул вдоль оси волокна. Эти свойства, присущие природным волокнам, придаются искусственным и синтетическим волокнам в процессе их формования, вытягивания и термической обработки. Точность соблюдения параметров этих процессов оказывает существенное влияние на физико-механические и отчасти на химические свойства готового волокна. В свою очередь, регулярная структура волокна возможна лишь при определенной степени регулярности строения макромолекул, достаточной для их плотной упаковки, которая необходима для возникновения сильных меж-цепных взаимодействий (за счет водородных связей, ассоциации диполей или сил вандерваальсова притяжения). Однако при слишком высокой степени крист алличности волокно не только становится очень прочным, но и делается слишком жестким и теряет способность растягиваться в процессе его получения и эксплуатации. Кроме того, такое волокно чрезвычайно трудно окрасить, поскольку реакционноспособные группы почти целиком находятся в неупорядоченных участках. Степень кристалличности наиболее прочных синтетических волокон, по-видимому, не превышает 50—60%. Исключение составляют полиакрилонитрильные волокна, которые обнаруживают мало признаков истинной кристалличности, но вместе с тем обладают высокой однородностью структуры по всему сечению волокна. В неупорядоченных участках силы межцепного взаимодействия [c.284]

    Тип текстуры и дисперсия ориентаций кристаллитов м. б. определены методом рентгенографии. Труднее оцепить ориентацию макромолекул в аморфных областях кристаллического ориентированного полимера. Для этой цели чаще всего применяют различные оптич. методы. С помощью метода малоугловой рентгеновской дифракции во многих ориентированных полимерах обнаружены большие периоды [порядка десятков нм (сотен А) вдоль оси текстуры, характеризующие чередование более плотных кристаллитов с менее плотными аморфными областями. Размер большого периода представляет сумму длин кристаллита и аморфной области. Большие периоды могут отсутствовать при слишком низкой (менее 20—30%) или, наоборот, очень высокой степени кристалличности, а также в том случае, когда разница плотностей кристаллических и аморфных областей слишком мала, тобы [c.593]

    Степень ориентации макромолекул поливинилспиртового волокна, так же как и других волокон, может быть увеличена путем вытягивания его при нормальной и особенно при повышенной температуре. Возможность повышения кристалличности волокна определяется в основном структурой макромолекул. Чем меньше число разветвлений в макромолекуле, чем выше регулярность химического строения (меньше ацетильных групп, оставшихся после омыления) и чем больше содержание стереорегулярных фракций, тем выше при одной и той же степени вытягивания кристалличность волокна и соответственно ниже его растворимость. Увеличенпе кристалличности волокна достигается повышением степени его вытягивания, особенно при наличии последуюш,его процесса терморелаксации. Изменение степени кристалличности поливинилспиртового волокна на отдельных стадиях технологического процесса производства характеризуется следующими данными  [c.241]

    Способность поливинилиденхлорида и сополимеров хлористого винилидена к холодной обработке в аморфном состоянии позволяет получать из них важнейшие промышленные изделия. При растяжении сополимеров хлористого винилидена можно добиться некоторой ориентации макромолекул при температурах выше точки плавления кристаллитов, но если полимер сначала переохладить, а затем подвергнуть растяжению, то возникает высокая степень ориентации. Возникающий при этом поперечный порядок приводит к расширению существующих кристаллических областей расположение полимерных цепей способствует образованию новых областей кристалличности. Рост кристалличности в образцах поливинилиденхлорида, ориентированных путем растяжения на 200—250%, проявляется в слабом дополнительном удлинении без приложения новой нагрузки. Хотя это явление, связанное с дополнительным вытягиванием макромолекул вследствие броуновского движения, может иметь место во всех линейных полимерах, способных к образованию поперечного порядка, оно наиболее ярко выражено в сополимерах хлористого винилидена. [c.421]

    Многообразие химических реакций, в результате которых формируется углеродное волокно, и степень ориентации его структурных элементов зависят от состава макромолекул и степени кристалличности полимера, из которого были изготовлены органические волокна. Изменение степени натяжения волокон, температуры и скорости нагревания на различных стадиях пиролиза и среды, в которой проводится пиролиз, меняет течение химических реакций, структуру кокса и степень ориентации его структурных элементов. На рис. У.1,а схематически показано строение углеродного волокна, состоящего из нескольких тысяч фибрилл, взаимное расположение которых унаследовано от исходного полимерного волокна. Поперечное сечение фибриллы (по данным рентгеноструктурного и,электронно-микроскопического анализов) колеблется от сотен до тысячи ангстрем. Каждая фибрилла (рис. V. , б) состоит из лентообразных графитоподобных слоев конденсированного углерода — микрофибрилл с поперечными размерами LaJ и Ьс (рис. V. , в), разделенных между собой узкими и длинными порами, ориентация которых совпадает с ориентацией микрофибрилл [1]. Наблюдается хорошая корреляция между теоретически рассчитанной зависимостью приведенного модуля упругости Е-а углеродных волокон от параметра ориентации лентообразных слоев углерода [c.205]

    Принадлежность полимеров к аморфным или кристал-лотеским в значительной мере определяет их свойства, и повышении степени кристалличности обычно увели- гч аются прочность, жесткость, плотность и снижается эластичность. Образцы аморфных полимеров обладают одинаковыми физико-механическими свойствами во всех направлениях. Однако при растяжении образцов происходит ориентация макромолекул в направлении этой деформации, сопровождающаяся увеличением прочности полимера в направлении ориентации и возникновением анизотропии его свойств. [c.17]

    Степень кристалличности от поли-о-фениленизофталамида до поли-я-фениленизо-фталамида постепенно возрастает [5]. В этой же последовательности возрастает симметрия звеньев макромолекул и убывает их гибкость [5]. Способность к кристаллизации первых членов ряда, вероятно, определяется гибкостью макромолекул, обеспечивающей поворот и необходимую ориентацию их звеньев при кристаллизации. Однако легкую кристаллизуемость последнего члена ряда поли-п-фенилентерефталамида, являющегося наиболее жесткоцепным и с большим трудом аморфпзующегося, следует отнести за счет высокой регулярности строения его макромолекул. Полп-о-фениленизофталамид и поли-о-фенилентерефталамид в процессе синтеза самопроизвольно выпадают из растворов вследствие кристаллизации [43]. Легкая кристаллизуемость этих ароматических полиамидов, вероятно, не связана с их сравнительно низким молекулярным весом (удельная вязкость 0,5%-ных растворов в Нг504 равна 0,11 и 0,23, соответствен- [c.76]

    Аналогичные результаты получены также при радиационной полимеризации акрилонитрила, акриловой кислоты, метилметакрилата [223—228] и стирола [223], адсорбированных в межслоевом пространстве монтмориллонита. Вследствие упорядочения и определенной пространственной ориентации молекул мономеров в соединениях включения монтмориллонита при радиационной полимеризации образуются, как правило, полимеры, обладающие высо кой степенью кристалличности и стереюрвгуляриости. Установлено [223], что макромолекулы повторяют размер форму листочков монтморилло-нита, между которыми происходит раднационная полимеризация мономеров. В ряде работ [229, 230, 226—228] высказано предположение, что при адсорбции в межслоевом пространстве монтмориллонита двух мономолекулярных слоев мономера макромолекулы, образующиеся при радиационной полимеризации, являются двумерными сетками, сшитыми из регулярно построенных цепей. [c.171]

    К сожалению, образец со 100%-ной степенью кристалличности не существует в природе. Поэтому результаты инфракрасной спектрометрии необходимо коррелировать с данными других методов. Однако, как об этом уже говорилось выше, необходимо помнить, что результаты, получаемые различными методами, могут и не совпадать. Вееркамп и Веерманс указывают на два основных источника ошибок — ориентацию и деструкцию полимера. Интенсивность полос, связанных с кристалличностью полимера, довольно сильно зависит от ориентации макромолекул. Поэтому перед экспериментом необходимо прогревать образцы. Однако при термической обработке возможна заметная деструкция полипропилена (оцениваемая хотя бы по изменению его характеристической вязкости). Эта деструкция в свою очередь влияет на кристалличность исследуемого образца. [c.353]


Смотреть страницы где упоминается термин Ориентация макромолекул и степень кристалличности: [c.514]    [c.14]    [c.58]    [c.70]    [c.40]    [c.229]    [c.104]    [c.139]    [c.175]    [c.51]    [c.69]   
Химические волокна (1961) -- [ c.74 ]




ПОИСК





Смотрите так же термины и статьи:

Кристалличности

Кристалличность и ориентация макромолекул

Кристалличность степень кристалличности

Степень кристалличности

Степень кристалличности ориентации

Степень ориентации

Степень ориентации макромолекул



© 2024 chem21.info Реклама на сайте