Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Палладий применение

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Сульфиды проявляют свойства высокоэффективных экстрагентов серебра, золота, платины, палладия, родия, рутения, иридия и других тяжелых металлов. В 1967-78 гг. в ряде работ [13-17] показана возможность использования нефтяных сульфидов для экстракции ионов металлов А (I), Рс1 (И), Р1 (II), Аи (III) из растворов соляной и азотной кислот. Впервые выявлена эффективность концентрирования высокотемпературной экстракцией суммы платиноидов (Гг, Ки, Ко) [13]. В последние годы предложено использовать нефтяные сульфиды для концентрирования золота из отработанных золотосодержащих руд. Перспективность применения нефтяных концентратов в металлургии и проявляемый значительный интерес к ним связаны с тем, что взаимодействие сульфидов с соединениями благородных ме- [c.228]

    Применяют также растворы, позволяющие объединить сенсибилизацию и активацию в одну технологическую операцию. Такие растворы называют совмещенными активаторами. Готовят их, как правило, путем приливания раствора хлорида палладия в солянокислый раствор хлорида олова(II). Вопрос о природе действия совмещенного активатора однозначно пока не решен. Установлено, что как при раздельной активации поверхности диэлектрика, так и в случае применения совмещенного активатора на поверхности диэлектрика образуются активные центры кристаллического палладия или его сплавов с оловом, инициирующие химическое восстановление металлов. Если после активирования поверхность не обладает достаточной каталитической активностью, то в качестве акселератора (ускорителя реакции восстановления металла) применяют повторно раствор активации или сильный восстановитель (чаще тот, который используют при химической металлизации). Для металлизации диэлектриков наиболее часто используют покрытия медью и никелем. [c.98]

    Нефтезаводские газы, подлежащие разделению, представляют собой смесь углеводородов с водородом. Основные физические константы водорода и газообразных углеводородов приведены в табл. 12. Водород из этих газов вьщеляют методами глубокого охлаждения, абсорбцией, адсорбцией, диффузией через мембраны с избирательной проницаемостью для водорода. Метод глубокого охлаждения нашел промышленное применение для выделения Нз из водородсодержащих газов. Для получения водорода высокой степени чистоты используют метод короткоцикловой адсорбции на цеолитах. Водород очень высокой степени чистоты в небольших количествах получают диффузией через мембраны из сплавов палладия, проницаемых для водорода, но непроницаемых для других газов и паров. Разрабатываются и полимерные мембраны, обладающие аналогичными свойствами, Метод абсорбции углеводородами с последующей ректификацией, особенно при пониженной температуре, может быть также использован для концентрирования водорода. Этот процесс имеет место в системах гидроочистки (см, стр, 20). [c.42]


    Под атмосферным давлением олефины можно гидрировать при температурах около 00—550° С. За этим пределом преобладает дегидрирование. Применение давления и катализатора дает возможность провести процесс гидрирования при комнатной температуре и даже ниже те же условия требуются для доведения до минимума дегидрирования при более высоких температурах. Гидрирование особенно усиливается при повышении давления. Довольно широкий ряд металлов относится к активным катализаторам гидрирования. Наиболее интересны никель, палладий, платина, кобальт, железо, активированная никелем медь. Первые три из них, будучи приготовлены специальным образом, активны при комнатной температуре и атмосферном давлении. Металлические катализаторы легко отравляются серо -мышьяксодержащими [c.89]

    На ряде существующих производств азотной кислоты под давлением, а также в разработке и проектировании крупного агрегата мощностью 400—440 тыс. т/год применен метод очистки, в котором в качестве катализатора используется палладий на носителе. Процесс проводится при объемной скорости газа 15—30 тыс. ч , линейной скорости 1—1,5 м/с. С целью снижения расхода палладия в качестве второго слоя катализатора используется носитель. [c.217]

    Применение диметилглиоксима для определения никеля описано в 45. Кроме никеля, диметилглиоксим образует очень труднорастворимое соединение с палладием, растворимое, окрашенное в красный цвет соединение с Fe" " и с рядом других катионов. [c.102]

    В СССР первые установки по каталитическому восстановлению оксидов азота введены в эксплуатацию в 1965 г. На многих химических предприятиях была реализована схема каталитического восстановления оксидов азота с применением природного газа, разработанная Государственным научно-исследовательским и проектным институтом азотной промышленности и продуктов органического синтеза (ГИАП). Катализатором служит палладий, нанесенный на активный оксид алюминия. Тепло, выделяющееся в процессе восстановления, можно использовать в газовых турбинах для получения дополнительной энергии, что улучшает экономические показатели процесса очистки. [c.65]

    Реакция проводится в серии реакторов с применением катализатора палладий на угле. Продукты реакции фильтруются от катализатора и подвергаются ректификации с целью удаления непрореагировавшего фенола, который затем поступает в рецикл. Полученную смесь циклогексанона и циклогексанола разделяют дистилляцией. Циклогексанон направляют затем на переработку в соответствующий оксим классическим методом. После проведения бекмановской перегруппировки капролактам-сырец, выделенный из реакционной массы нейтрализацией аммиаком и последующей экстракцией растворителем, очищается методом кристаллизации из водных растворов.  [c.307]

    Изомеризация бутена-1 в бутены-2 (для выделения изобутена из фракции С4) низкотемпературной ректификацией и получение сырья для алкилирования. Температуры кипения изобутена, буте-па-1 и бутенов-2 (цис- и транс-) составляют соответственно —6,3°С, —6,2°С, 3,7 °С и 0,9 °С. Перевод бутена-1 при низких температурах в бутены-2 позволяет увеличить разность т. кип. разделяемых изомеров от 0,1 до 5,4°С или до 10°С и может быть осуществлен с применением комплексов палладия. Так, при 25 С в системе, содержащей хлорид палладия, степень превращения бутена-1 составила 90% за 60 мин. Выше (стр. 121) были приведены данные авторов, когда скорость изомеризации была значительно больше за счет применения растворителей и добавок. [c.137]

    Реакции катализируются карбонилами металлов, особенно кобальта, в присутствии таких промоторов, как пиридин и иод. Активны также каталитические системы на основе палладия. Сведения о промышленном применении этого процесса отсутствуют. [c.544]

    Реакция дегидрогепизационпого катализа циклогексана и его гомологов, протекающая в присутствии платиновых катализаторов (а также в присутствии палладия или никеля на окиси алюминия), при температуре 300° приводит к образованию с количественным выходом бензола и его гомологов, структура которых отвечает структуре исходных циклогексановых углеводородов. Эта реакция была открыта Н. Д. Зелинским в 1911 г. и в дальнейшем детально им исследована. Оказалось, что в отличие от условий с применением катализатора, состоящего из чистого никеля, в присутствии которого, как показал Сабатье, циклогексан превращается не только в бензол, но примерно на 30% расщепляется с образованием метана, в условиях, разработанных Н. Д. Зелинским, реакция в случае циклогексана и его ближайших гомологов протекает исключительно гладко, без образования побочных продуктов [239]. Реакция эта обратима  [c.501]

    Промышленные катализаторы гидрирования представляют собой высокодисперсные металлы, обычно нанесенные на пористые носители. Высокой гидрирующей активностью отличаются металлы УП1 и I групп периодической системы элементов (никель, кобальт, платина, палладий, родий, медь и др.). В качестве носителей этих металлов наиболее часто используются окиси алюминия, кремния, цинка, хрома, активный уголь, диатомиты. Находят применение в промышленности и сплавные катализаторы [46, 55]. Готовят катализаторы пропиткой носителя растворами легкоразлагающихся соединений активного металла или же методом их совместного осаждения с носителем [56]. Как правило, перед использованием в процессе катализаторы предварительно восстанавливают. [c.411]


    В остальном аналитическая методика, примененная в цитируемом исследовании, вкратце сводилась к следующему. Раздельное определение формальдегида и ацетальдегида достигалось полярографическим методом [54, 55]. Для раздельного нахождения метилового спирта и суммы высших спиртов был применен метод окисления хромовой смесью [57] (с предварительным отделением спиртов от остальных продуктов, в особенности альдегидов [58]). Сумма кислот определялась титрованием щелочью. Для определения углеводородов был усовершенствован метод низкотемпературного испарения в высоком вакууме [59]. Определение СО2, непредельных углеводородов, О2 и СО производилось обычным образом в приборе типа Орса. Водород определялся сожжением над окисью меди или поглощением раствором коллоидного палладия [60]. [c.229]

    Уже первые опыты применения органических реактивов а-нит-роз-Р-нафтола М. А, Ильинским (1885), диметилглиоксима Л. А. Чугаевым (1905) показали чрезвычайную перспективность этого направления в аналитической химии. Актуальность теоретических и экспериментальных работ в этой области сохраняется до настоящего времени. Теория применения органических реактивов в аналитической химии обосновывает связь строения и свойств органической молекулы со свойствами ионов в растворе, формами их существования, электронной структурой, зарядом, радиусом и т. д. Установлено, что возможность взаимодействия иона с органическим реагентом зависит от наличия в молекуле органического соединения так называемых функциональных или характерных атомных групп на данный ион. Такой группой на ион никеля и палладия является —С—С—, [c.161]

    Примером применения этих принципов служат катализаторы 38-1 и 38-2 фирмы Ай-Си-Ай, разработанные для селективного гидрирования ацетилена в олефины. Активным и селективным металлом является палладий, а носителем — окись алюминия. Пористая структура окиси алюминия сформирована таким образом, чтобы сочетание активности и селективности.наилучшим образом отвечало данным конкретным требованиям. [c.31]

    В ряде процессов гидрокрекинга в качестве носителя используют цеолиты (молекулярные сита). Гидрирующим компонентом в них вместо указанных выше иногда служит палладий. При применении цеолита гидрирующую активность можно регулировать [c.215]

    После этого раствор подвергают электролизу с применением нерастворимых (графитовых или платиновых) анодов и серебряных катодов при сравнительно невысокой силе тока и комнатной температуре. На катоде выделяются в виде порошка платина и палладий. Осыпающийся с катодов порошок собирается на дне. Порошок извлекают из ванны, растворяют в царской водке, после чего платину и палладий разделяют обычными методами. [c.258]

    Бифункциональные катализаторы содержат обычно платину или палладий на кислотном носителе (оксид алюминия, цеолит типа Y), активированном хлором или фтором. Платина или палладий на цеолите позволяют вести процесс изомеризации при 315-345°С, т.е. примерно на 150°С ниже, чем при использовании оксида алюминия. Применение платины на природном цеолите - мордените, позволяет поддерживать такую же активность катализатора даже при 260°С. Обычно содержание платины или палладия в катализаторе находится в пределах 0,3-0,6% мае. [c.191]

    Рассмотрим применение этого подхода к оценке способности молекулярного водорода реагировать с молекулярным хлором и металлическим палладием. Низшая незаполненная молекулярная орбиталь молекулы Н2(а -) и высшие заполненные орбитали С1а (а-)и Р(1 могут быть представлены так .  [c.285]

    Электрохимическое перенапряжение может быть снижено применением электродов-катализаторов. Например, водородное перенапряжение можно снизить использованием электродов из платины, палладия и металлов группы железа. Электрохимическая поляризация уменьшается с увеличением температуры и концентрации реагента и не зависит от перемешивания раствора. Так как плотность тока при одной и той же силе тока снижается с увеличением поверхности электрода, то перенапряжение может быть снижено увеличением площади электродов. [c.200]

    Избирательная гидрогенизация ацетилена была использована в промышленности в двух направлениях. Во-первых, для превращения ацетилена, содержащегося в некоторых определенных крекинг-газах, в этилен. Этот процесс удобен тем, что газы содержат водород в количестве, достаточном для гидрогеиизации ацетилена. Во-вторых, для превращения более или менее чистого ацетилена в этилен. Последнее применение представляет особый интерес для стран, имеющих недостаточное количество природного газа. В Германии во время второй мировой войны ацетилен превращался в этилен в больших масштабах с выходом этилена около 90%, катализатором служил палладий на силикагеле. В течение 8 месяцев температура катализатора в процессе постеиенно повышалась от 200 до 300 , а затем катализатор регенерировался без выгрузки из реактора (на месте) смесью пара и воздуха при 600°. Катализатор выдерживает три регенерации [112]. [c.240]

    Мембраны. Первые инженерные разработки по извлечению водорода с помощью металлических мембран на основе сплзеов палладия начаты 15—20 лет назад. Процесс выделения водорода предлагали проводить при температурах от 673 до 900 К в одну 19] или две ступени [10, II]. Степень регенерации водорода достигает 90% (одноступенчатое разделение при давлении исходного газа 15 МПа и давлении пермеата 0,2—0,3 МПа) и 98,5% при двухстадийном процессе (давление в напорном канале до 45 МПа, давление пермеата I ступени — 3—7 МПа, II ступени — атмосферное). Одно из достоинств металлических мембран — возможность получения водорода, практически не содержащего примесей. Так, применение мембран на основе сплава палладия с серебром в установках каскадного типа английской фирмы Джонсон Маттей Металс [12] позволило получить пермеат, содержащий 99,99995% (о б.) Иг- Отметим, что для. .этого необходимо, чтобы концентрация водорода в исходной смеси была не менее 99% (об.) Н2. Процесс проводится при температуре 550— 600 К под давлением х2, МПа. Производительность установки от 14 до 56 м ч высококонцентрированного водорода. Однако в промышленности металлические мембраны на основе палладия и его сплавов используются редко, в основном из-за дефицитности и высокой стоимости мембран, необратимого отравления палладия, необходимости поддержания высоких температ ур. [c.272]

    Для разделения изотопов водорода кроме микропористых можно применять сплошные металлические [100, 101] (палладий и его сплавы) или полимерные (силиконовый каучук, полиэти-лентерефталат, тетрафторэтилен, ацетат целлюлозы и т. д.) мембраны [99, 102, 103]. При этом проницаемость протия через подобные мембраны выше, чем дейтерия и трития. По сравнению с микропористыми и палладиевыми мембранами селективность полимерных непористых мембран ниже, но, учитывая, что они намного дешевле и не требуют применения высоких температур (а значит более выгодны с точки зрения затрат энергии), можно ожидать их широкого применения для разделения изотопов водорода. [c.315]

    Ввиду таких серьезных преимуществ при применении гидрокрекинга для получения легких нефтепродуктов нужно использовать катализаторы с высокой кислотной активностью. Такие катализаторы очень сильно отравляются азотистыми основаниями в результате блокирования кислотных активных центров, поэтому применять их можно для переработки дистиллятных продуктов с низким содержанием азота. При значительном содержании в сырье азотистых соединений его нужно предварительно очищать от азота и гидрокрекинг проводить в две ступени. В первой ступени в основном проходят гидроочистка и неглубокий гидрокрекинг, при котором гидрируются полициклические ароматические углеводороды. Для этого используют устойчивые к действию азота и серы катализаторы гидроочистки. Во второй ступени гидроочищенное и отчасти гидрокрекированное сырье перерабатывают на катализаторе с высокой кислотной активностью. Из опубликованных данных известно применение в качестве катализаторов гидрокрекинга смеси сульфидов никеля и вольфрама (6% N1 и 19% У), нанесенных на алюмосиликат, палладия (0,5%) на цеолите типа У, платины на цеолите. Катализаторы на основе цеолитов обладают повышенной стойкостью к действию соединений азота и весьма перспективны. [c.298]

    Процесс гидрирования смеси 2,4- и 2,6-динитротолуола осуществляют в среде органического растворителя (например, метанола) при температуре 1(Ю— 170 С, давлении 5—10 МПа с применением суспензированных катализаторов никеля Ренея, платины или палладия на угле и др. Выход диамина достигает 95—97%. [c.303]

    В первый период развития гидрогенизационных процессов в качестве катализаторов применялись специальным образом приготовленные металлы VIII группы периодической системы элементов никель, кобальт, железо, платина, палладий или их окислы [1—7]. Катализаторы этого типа характеризуются весьма высокой гидрирующей способностью и могут использоваться на носителях и без них. В литературе подробно освещены способы приготовления и применения никеля Ренея [8,9], платиновой и палладиевой черни, окиси платины [10], никеля на кизельгуре или на окиси алюминия [II], платины и палладия на активированном угле [12, 13]. [c.64]

    Бензиновые фракции, получаемые при производстве этилена, пропилена, бутилена, бутадиена пиролизом углеводородных газов и низкооктановых бензинов, содержат 40—65 вес. % ароматических, около 20 вес. % олефиновых и 10—15 вес. % диолефиновых углеводородов. Применение их в качестве компонента автомобильного бензина или сырья для получения ароматических углеводородов без предварительной очистки невозможно из-за высокого содержания в них моно- и главным образом диолефинов, а также примесей сернистых, азотистых и кислородсодержащих соединений. Облагораживание таких бензинов методом селективной гидроочистки было проведено на сульфидном вольфрамникелевом, алюмокобальтмолибденовом, алюмоникелевом и алюмопалла-диевом катализаторах [32, 46—49]. Результаты облагораживания на двух последних (низкотемпературных) катализаторах показали, что оптимальное содержание палладия в катализаторе составляет 0,5, а никеля — около 10 вес. % [46—49]. В присутствии алюмопалладиевого катализатора глубина гидрирования непредельных углеводородов повышается с увеличением температуры, давления и с уменьшением удельной объемной скорости подачи сырья. Зависимость глубины гидрирования непредельных углеводородов от давления и удельной объемной скорости подачи сырья показана на рис. 44 [47]. [c.199]

    На рис. 3 изображена схема, использованная в лаборатории автора. Применение байпасной линии позволяет широко варьировать время пребывания углеводородов на поверхности катализатора. Описанный метод с успехом был применен для получения равновесных смесей стереоизомеров в углеводородах различного строения с т. кип. до 250° С. Для более высококинящих углеводородов лучше использовать жидкофазную изомеризацию в стальных капсулах, позволяющих выдерживать давление водорода 5—Юати. Наиболее эффективным катализатором являются платина и палладий, нанесенные в количестве 2—3% на диатомито-вый кирпич. Использование этого катализатора в интервале 500—600° К (227—327° С) позволило осуществить равновесную конфигурационную изомеризацию весьма селективно, без значительного протекания побочных реакций. При работе с микрореактором необходимым условием является использование в качестве газа-носителя водорода, так как присутствие инертных газов тормозит конфигурационную изомеризацию [20]. [c.11]

    Наряду с пленками из сплава палладия, которыми пользуются в интервале температур 200—700 °С, разрабатываются полимерные мембраны, пропускающие водород и задерживающие другие газы. В работах [37] описывается применение пучка пустотелых дакроно-вых полиэфирных волокон с наружным диаметром 36 мкм при внутреннем диаметре 18 мкм для выделения Нз из водородсодержащих тазов НПЗ. Пучок диаметром 300 мкм имеет около 32 млн. таких волокон. Газ входит в каналы волокон, водород же проходит через стенки и выводится из пространства между волокнами. [c.56]

    Окис. гоиие аммиака производят па катализаторе, н качестве которого применяют сетки из сплавов платины с родием или палладием. Находят применение также пеплатиновые катализаторы на основе окислов железа с добавками кобальта и хрома. [c.235]

    В последние годы были попытки применить катализаторы АКМ и АНМ для деароматизации реактивных топлив. Это оказалось достижимым только при проведении гидрирования под давлением 10—20 МПа. Применение для этих целей катализаторов, содержащих платину и палладий, позволило снизить давление. За рубежом разработаны процессы Арофайнинг (давление 3—7 МПа, катализатор содержит платину, сырье предварительно подвергается гидроочистке), который позволяет снизить содержание ароматических углеводородов в гидрогенизате до 1% (масс.), и Юнисар. [c.229]

    Многоатомные спирты легко превратить в соответствующие аль-дозы, если через их водно-спиртовые растворы с суспендированной платиной или палладием продувать воздух при обычной или слегка повышенной температуре. Таким же путем из метанола и этанола получается формальдегид с выходом 18% и ацетальдегид с выходом 40%. Окисление многоатомных спиртов в альдозы хорошо протекает, если его проводить с 3% раствором и следами концентрированного раствора Ре304, действующего каталитически метод Фентона). Этим методом гликоль избирательно и количественно окисляется в гликолевый альдегид, глицерин— в глицериновый альдегид. Применение больших количеств перекиси водорода, в качестве источника активного кислорода, вызывает более глубокое окисление, приводящее к окислительному крекингу. [c.205]

    Кроме названных технологий, нашедших промышленное применение, запатентован целый ряд близких процессов. Процесс гидрокрекинга [303] проводят при 232—454°С, 5,1—23,8 МПа, объемной скорости подачи сырья 0,3—5,0 ч , соотношении водород сырье = 1 10, в присутствии катализатора (платина или палладий, цеолит, алюмосиликатный носитель). На основе тяжелых фракций нефти (> 380°С) возможно получение масел с индексом вязкости 95—150 путем сочетания гидрокрекинга и гидроизомеризации (1РР [305, 306]) последнюю осушествляют при 200— 450°С, 0,7- 0,25 МПа, объемной скорости подачи сырья 0,1 — 10 ч , соотношении водород. сырье = 100+2000 в присутствии катализатора (металл 8-й группы на алюмосиликатном носителе). [c.172]

    Катализируемая солями палладия реакция Хека находит широкое применение в синтезах алкеновых производных гетероарома-тических соединений. Мы использовали реакцию Хека в синтезе метилового эфира 2-амино-3-бром-5-метоксифенилакриловой кислоты 3 и [c.24]

    Прямым способом по пламенным эмиссионным спектрам определяют 40 элементов по атомным линиям и молекулярным полосам. Применение косвенных методов позволяет расширить число определяемых элементов. Например, фосфор или алюминий можно определять по гашению излучения щелочноземельных элементов элементы I, И1, Vni групп — по атомным линиям магний, хром, палладий, родий, марганец, щелочноземельные элементы — по молекулярным спектрам монооксидов и моногидроксидов, а также ионов (стронций и барий), бор — по полосам BOj, РЗЭ — по спектрам монооксидов. [c.15]

    Электрохимическое осаждение некоторых металлов платиновой группы нашло применение в гальванотехнике. Практически используется покрытие металлов платиной, палладием и родием. Платину осаждают в виде блестяшего слоя толш,иной от [c.260]

    Как и для платины, для палладия характерны степени окисления +2 и -1-4 более устойчивы соединения палладия (II). Большинство солей палладия растворяется в воде и сильно гидролизуется в растворах. Хлорид палладия (II) Pd b очень легко восстанавливается в растворе до металла некоторыми газообразными восстановителями, в частности оксидом углерода (II), на чем основано его применение для открытия оксида углерода в газовых смесях. Он используется также как катализатор некоторых окислительно-восстановительных реакций. [c.532]

    Значительно раньше стала известна реакция сочетания алкилгалогенидов с реактивами Гриньяра (обзор см. [1020]). Реактивы Гриньяра обычно обладают тем преимуществом, что их легче приготовить, чем соответствующие Кг СиЫ, но реакция обладает значительно более узким диапазоном применимости. Реактивы Гриньяра вступают в реакцию сочетания только с реакционноспособными галогенидами — аллилгалоге-нидами (хотя в этом случае часто встречаются аллильные перегруппировки) и бензилгалогенидами. Реакция идет также и с третичными алкилгалогенидами, но выходы продуктов низки (от 30 до 50%). При использовании реактивов Гриньяра, содержащих ароматические группы, выходы продуктов значительно выше по сравнению с выходами алкилпроизводных. Кроме того, поскольку реактивы Гриньяра взаимодействуют с группами С = 0 (т. 3, реакции 16-30 и 16-33), их нельзя применять для сочетания с галогенидами, содержащими в молекуле кетонную, сложноэфирную или амидную функциональные группы, И хотя сочетание реактива Гриньяра с обычными алкилгалогенидами не находит, как правило, применения в синтезах, небольшие количества симметричных продуктов сочетания часто получаются при приготовлении самого реактива. Высоких выходов при сочетании реактива Гриньяра с алкилгалогенидами (см. обзор [1021]) можно добиться при использовании катализаторов, таких, как соли меди(1), которые позволяют проводить сочетание реактивов Гриньяра с первичными алкилгалогенидами с высокими выходами [1022] (возможно, интермедиатами здесь являются медьорганические соли), комплексы железа(П1) [1023] или палладия [1024], а также соли меди(II) [1025], под дейст- [c.190]


Смотреть страницы где упоминается термин Палладий применение: [c.152]    [c.700]    [c.426]    [c.328]    [c.56]    [c.340]    [c.243]    [c.374]    [c.229]    [c.252]    [c.188]   
Неорганическая химия Том 2 (1972) -- [ c.653 , c.654 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.380 , c.384 , c.501 ]

Основы общей химии Том 3 (1970) -- [ c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Палладий

Палладий палладий



© 2025 chem21.info Реклама на сайте