Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрирование ионным обменом

    В настоящее время процессы ионообменной сорбции находят все более широкое применение в промышленности. В частности, путем ионного обмена производятся умягчение и обессоливание воды, очистка различных растворов, улавливание и концентрирование ценных металлов из разбавленных растворов, разделение смесей веществ и т. д. В ряде случаев ионный обмен может успешно конкурировать по технико-экономическим показателям с процессами ректификации, экстракции и др. Этому способствует простота аппаратурного оформления ироцессов ионного обмена. [c.581]


    Сорбционные методы концентрирования основаны иа использовании процесса сорбции готовым сорбентом. По механизму сорбции различают физическую адсорбцию (молекулярную), основанную на действии межмолекулярных сил между сорбентом и сорбируемым веществом, и хемосорбцию (ионный обмен, комплексообразование, окисление-восстановление и др.), основанную на протекании химических реакций между сорбентом и сорбируемым веществом. Сорбцию можно осуществлять в статическом, динамическом и хроматографическом вариантах. В этом разделе рассмотрен статический вариант сорбции, т. е. сорбция навеской сорбента в замкнутом объеме раствора или газа. Статический метод обычно используют при большой избирательности сорбента к извлекаемым компонентам. Извлекать можно микрокомпоненты и матрицу. Если сорбируют микрокомпоненты, то для конечного определения их либо десорбируют, либо озоляют сорбент. [c.316]

    Четкость разделения элементов при ионном обмене можно увеличить применением комплексообразующих реагентов. Разработаны ионообменные смолы, обладающие комплексообразующими свойствами в их состав входят активные группы, способные к образованию специфичных комплексов с определяемыми ионами. Существует ряд природных ионообменников, специфичных к определенным ионам, т. е. способных поглощать только один-два иона. Усилия химиков направлены на синтез подобных высокоселективных смол, обладающих большой емкостью Интересной и важной областью применения таких смол является концентрирование редких и драгоценных металлов из морской воды. [c.111]

    Концентрирование ионным обменом — чрезвычайно эффективный прием обогащения для спектрального анализа. Метод применен для определения примеси 10 7о галлия и других элементов в плутонии [680]. [c.164]

    Ионный обмен и ионообменная хроматография широко используются в количественном анализе. С помощью ионитов можно производить очистку реагентов, концентрировать разбавленные растворы. В последнем случае через ионит пропускают разбавленный раствор, после чего поглощенные им ионы вытесняют сравнительно небольшим количеством того или иного реагента (например, кислоты). В полученном гораздо более концентрированном растворе определяют соответствующие ионы. [c.132]

    Наибольшее распространение получил ионный обмен. Для концентрирования элементов ионообменным методом чаще всего используют органические иониты и неорганические ионообменные материалы. Активированный уголь является эффективным сорбентом для молекулярной сорбции. На нем можно концентрировать хелатные комплексы металлов. [c.316]


    Полная обменная емкость характеризуется общим количеством способных к ионному обмену однозарядных ионов ионита (в моль на 1 г сухой массы ионита). Ее можно установить следующим способом ионит в Ыа-форме обрабатывают несколько раз 3 н. раствором сильной кислоты до перевода всех ионнообменных групп в Н-форму. Затем ионит промывают водой до нейтральной реакции, пропускают через него концентрированный раствор хлорида натрия и элюат титруют. [c.248]

    Методы ионного обмена. Рассмотренные методы все-таки не дают той степени умягчения, которая требуется для некоторых областей применения воды кроме того, они громоздки и связаны со значительными расходами реагентов. В последние годы широкое распространение получили методы ионного обмена. Твердые материалы, способные к ионному обмену с окружающей средой, получили название ионитов. Сюда относятся различные вещества неорганические и органические, природные или синтетические. Одним из простейших ионообменных материалов является сульфоуголь, получаемый обработкой бурых углей концентрированной серной кислоты при нагревании. В настоящее время наибольшее значение приобрели различные ионообменные смолы, вырабатываемые на основе синтетических полимеров. В зависимости от того, какие ионы в этих смолах обмениваются — катионы или анионы, — различают катиониты и аниониты. Иониты представляют собой твердые электролиты, у которых один поливалентный ион является нерастворимым, а ионы противоположного знака способны к обмену на ионы, находящиеся в окружающем растворе. [c.70]

    Обмен ионами между раствором электролита и твердой фазой, являющийся разновидностью сорбционных процессов, имеет широкое практическое применение. Он используется для концентрирования ионов из разбавленных растворов, очистки веществ от примесей электролитов, определения суммарного содержания солей в природных водах и разделения некоторых ионов при их одновременном присутствии в растворе. Особенно удачным оказалось сочетание ионообменных процессов с хроматографическим методом, положившее начало развитию ионообменного хроматографического анализа многокомпонентных гомогенных растворов. Разделение анализируемой смеси ионов в растворе позволяет легко идентифицировать и определять их количественное содержание доступными химическими или физико-химическими приемами анализа. [c.37]

    Метод концентрирования считают удовлетворительным, если / 100%, а К составляет 10". Коэффициент концентрирования К, показывающий, во сколько раз изменилось отношение абсолютных количеств или концентраций микроэлемента и основы в концентрате по сравнению с теми же параметрами в исходной пробе, может служить дополнительным критерием при выборе метода концентрирования. Так, экстракция, как правило, дает меньшие значения К (до 50) по сравнению с ионным обменом и соосажде-нием с коллектором, где К может достигать 10 . [c.99]

    Хлориды титана и ниобия разделяют ионным обменом [34, стр. 98]. Смесь хлоридов ниобия и титана растворяют в концентрированной НС1 концентрация ниобия не должна быть более 30 г/л. Раствор пропускают через колонну, наполненную анионообменной смолой. Здесь адсорбируются оба металла. Колонну промывают 6—8 н. НС1. Раствор, вытекающий из колонны, содержит почти весь адсорбированный смолой Ti и около 10% адсорбированного Nb. Для полного удаления Ti колонну промывают 2—3 н. НС1. Извлечение остатков Ti сопровождается вымыванием 30% Nb. Около 60% остающегося на смоле Nb извлекают разбавленной НС1, содержащей 3—5 г/л NaF. Пятиокись ниобия, осажденная из последней фракции, содержит менее 0,1 % Ti при соотношении Nb Ti в исходном растворе 1 1. Промежуточную фракцию, содержащую 30% Nb с примесью Ti, возвращают в процесс. Выход ниобия - 90%. [c.78]

    Ионный обмен используют для концентрирования ионов из очень разбавленных растворов. Сначала большой объем такого раствора пропускают через слой Н-катионита, сорбирующего все катионы. Затем вытесняют их из катионита минимальным объемом соляной кислоты. Таким образом удается повысить концентрацию ионов в сотни раз. [c.322]

    Поэтому одновременно с рассмотренными выше направлениями были проверены и другие способы очистки жидких отходов радиохимических лабораторий и других объектов, применяющих радиоактивные изотопы. В первую очередь к этим способам следует отнести концентрирование путем дистилляции (выпаривания) и метод ионной хроматографии (ионный обмен). Как и следовало ожидать, применение этих способов позволило в реальных условиях получить при обезвреживании сбросных вод более высокие коэффициенты очистки, чем при рассмотренных выше способах. [c.82]

    Следует отметить, что хотя переход от разбавленных растворов к концентрированным при ионном обмене должен привести к внутридиффузионному процессу и при регенерации ионитов следовало бы ожидать независимости скорости процесса от скорости фильтрования раствора. Однако опыт показывает, что некоторое влияние скорости фильтрования на регенерацию катионита остается даже при применении 4—6 н растворов кислот и щелочей. [c.218]


    В другом патенте Александер и Айлер [80] описали выделение частиц, сформированных по рассмотренному выше процессу, путем их коагуляции с ионами металла (наиример, кальция), промывания осадка для удаления соли натрия и последующей пептизации продукта до иолучения более концентрированного золя кремнезема посредством удаления ионов кальция ионным обменом. [c.448]

    В зависимости от объекта анализа применяют различные методы концентрирования, в том числе экстракцию [32, 145—147, 275, 400, 418, 923], соосаждение [184, 348, 349, 923], ионный обмен [35, 184, З О, 923], зонную плавку [148] и ряд других методов (см. гл. V). [c.95]

    Большинство предложенных методов предназначено для определения малых количеств примесей в металлическом кадмии, его сульфиде и некоторых других соединениях высокой чистоты и для нахождения различных его форм в чистых веществах. Меньшее число методов описано для анализа технических продуктов — гальванических ванн кадмирования, сырья для стекольной промышленности, пигментов, сплавов и др. Первая группа методов включает определение следующих 36 элементов Ag, А1, Аз, Аи, Ва, В1,Вг, Са, С1, Со, Сг, Си, Ре, Оа, Ое, Hg, I, 1п, К, Ы, Ме, Мп, Мо, ]Ча, N1, РЬ, 8, 8Ь, Зе, 8п, 8г, Те, Т1, Т1, V, 2п для их концентрирования или отделения от основной массы кадмия используют соосаждение с различными коллекторами, экстракцию органическими растворителями, отгонку летучих соединений, ионный обмен, в спектральных методах — и физическое обогащение. Определение этих элементов выполняют преимущественно эмиссионной спектрографией и абсорбционными методами (визуальная колориметрия, фотоколориметрия и спектрофотометрия). В меньшей степени применяют полярографию и еще реже — другие методы анализа. [c.185]

    Процессы извлечения висмута из растворов гидролизом, экстракцией и ионным обменом — важнейший этап гидрометаллургической переработки висмутовых концентратов с получением соединений. Серьезным достижением химии этих процессов следует признать высокую степень очистки висмута от примесных металлов, содержание которых удалось довести до 10 —10 мае. %, в процессах извлечения гидролизом. Другим важным результатом является устранение различными методами выделения в атмосферу оксидов азота на стадии получения растворов нитратов висмута, а также получения растворов солей висмута из металла. Развитие химии экстракционных и сорбционных процессов позволило разработать новые эффективные способы извлечения, концентрирования и очистки висмута из сложных по составу растворов. В настоящее время остро ощущается потребность в создании комбинированных способов с участием процессов гидролиза, экстракции и ионного обмена. [c.355]

    В автоматическом режиме работы пламенные спектрометры позволяют анализировать до 500 проб в час, а спектрометры с графитовыми печами — до 30 проб. Оба варианта часто используют в сочетании с предварительным разделением и концентрированием экстракцией, дистилляцией, ионным обменом, хроматографией ИТ. п., что в ряде случаев позволяет косвенно определять некоторые неметаллы и органические соединения. [c.850]

    См. лит. при ст. Радиационная химия, Радшгционно-химиче ская технология. Радиоактивность. А. X. Брегер. ИОНИТЫ (ионообменники, ионообменные сорбенты), вещества, способные к ионному обмену при контакте с р-рами электролитов. Большинство И.— твердые, нерастворимые, ограниченно набухающие в-ва. Состоят из каркаса (матрицы), несущего положит, или отрицат. заряд, и подвижных противоионов, к-рые компенсируют своими зарядами заряд каркаса и стехиометрически обмениваются на противоио-ны р-ра электролита. По знаку заряда обменивающихся ионов И. делят на катиониты, аниониты и амфолиты, по хим. природе каркаса — на неорг., орг. и минер.-органические. Неорг. и орг. И. могут быть природными (напр., цеолиты, целлюлоза, древесина, торф) и синтетическими (силикагель, АЬОз, сульфоуголь и наиб, важные — ионообменные смолы). Минер.-орг. состоят из орг. полиэлектролита на минер, носителе или неорг. И., диспергированного в полимерном связующем. Выпускаются в виде зерен сферич. или неправильной формы, порошков, волокон, тканей, паст и изделий (напр., мембран ионитовых). Примен. для очистки, разделения и концентрирования в-в из водных, орг. и газообразных сред, напр, для очистки сточных вод, лек. ср-в, сахара, выделения ценных металлов, при водоподго-товке носители в хроматографии гетерог. катализаторы. [c.224]

    Ионный обмен используют для концентрирования примесей при определении их в минеральных водах [697], а также в селене [1299 [c.164]

    В основу классификации можно положить не только число и агрегатное состояние фаз, но и другой принцип — степень превращения разделяемых веществ. Химическим превращением веществ сопровождаются методы, связанные с осаждением, ионным обменом, выделением газа. При электролизе происходит электрохимическое изменение вещества. Группу методов разделения без превращения вещества представляют хроматография, дистилляция, кристаллизация, зонная плавка, молекулярная седиментация н др. Методы разделения и концентрирования могут быть разделены и по числу (кратности) распределений между фазами — однократные и многократные. [c.71]

    Как метод концентрирования хроматографию применяют сравнительно редко. Исключение составляет ионообменная хроматография, которая весьма удобна для выделения и абсолютного концентрирования определяемых ионов путем перевода из большого объема раствора в малый, а также хроматография на хелатных (комплексообразующих) сорбентах, отличающаяся высокой эффективностью и избирательностью извлечения ионов металлов. Такими способами концентрируют, например, микроколичества металлов при их определении в природных или сточных водах. Для аналогичных целей в органическом анализе широко применяют сорбцию на гидрофобных сорбентах. Ионный обмен, осуществляемый в статических условиях (без направленного движения жидкой и твердой фаз относительно друг друга), часто превосходит ионообменную хроматографию в качестве метода концентрирования. [c.78]

    Определение нитрата в свежей дождевой воде. Концентрирование пробы ионным обменом [2858]. [c.242]

    Для контроля чистоты веществ можно использовать методы классического химического анализа. Например, иодометрически можно определять медь примерно до 10 г/мл раствора. Вообще же для количественного определения примесей в ос. ч. веществах требуются новейшие методы, отличающиеся высокой чувствительностью и селективностью а) фотометрические (колориметрия, спектрофотометрия, пламенная фотометрия) б) флуоресцентные (фосфоресценция, флуоресценция , катодо- и хемилюминесценция и др.) в) электрометрические (полярография, особенно осциллографическая, по-тенциометрия, кондуктометрия, кулонометрия и др.) г) спектральные, обладающие высокой чувствительностью, но малой точностью д )масс-спектрографические , е) радиохимические (активационный анализ, изотопное разбавление и др.) ж) электрофизические (измерение-проводимости, эффекта Холла и др.) з) концентрирование микропримесей в малых объемах (экстракцией, со-осаждени-гм, хроматографически, ионным обменом, электролизом, зонной плавкой и т. д.) с последующим определением их разными способами. [c.319]

    Сформулированы принципы применения полярографии в анализе природных и сточных вод, описаны методы предварительного концентрирования (ионный обмен, экстракция, соосаждение). Дан обзор методов определения большого числа катионов металлов, анионов (галогениды, цианиды, сульфаты, сульфиды и др.), растворенного кислорода, ряда органических соединений (монокарбоиовые кислоты, тиурам, капролактам, СПАВ и др.). [c.262]

    ИОНИТЫ — твердые, практически нерастворимые в воде и органических растворителях вещества, способные обце-нивать свои ионы на ионы раствора. Sto природные или синтетические материалы минерального или органического происхождения. Подавляющее большинство современных И.— высокомолекулярные соединения с сетчатой или пространственной структурой. И. делят на катиониты (способные обменивать катионы) и аниониты (обменивают анионы). Катиониты содержат сульфогруппы, остатки фосфорных кислот, карбоксильные, оксифениль-ные группы, аниониты — аммониевые или сульфониевые основания и амины. Обменную емкость И. выражают в миллиграмм-эквивалентах поглощенного иона на единицу объема или на 1 г И. Природные или синтетические И.— катиониты — относятся преимущественно к группе алюмосиликатов. Аниониты — апатиты, гидроксиапатиты и т. д. Метод ионного обмена очень широко используется в промышленности и в лабораторной практике для умягчения или обессоливания воды, сахарных сиропов, молока, вин, растворов фруктозы, отходов различных производств, удаления кальция из крови перед консервированием, для очистки сточных вод, витаминов, алкалоидов, разделения металлов и концентрирования ионов. И. применяют как высокоактивные катализаторы в непрерывных процессах и т. п. [c.111]

    Реакция протекает вправо при избытке кислоты. Ионит в колонке отмывают водой от избытка кислоты, после чего ионит готов к применению. Пробу пропускают через колонку, колонку промывают водой или элюентом. Собирают элюат целиком или по фракциям. Перед каждым последующим применением необходимо проводить регенерацию ионита в колонке, так как в колонке содержатся различные ионы (например, Х , Хг). Происходящий при этом химический процесс аналогичен описанному уравнением (7.4.5). Процесс замены ионов Х+ ионами Хь Ха. .. называют регенерацией ионита, чтобы подчеркнуть, что ионит при этом возвращается в свое исходное состояние. Для сдвига равновесия вправо необходимо подобрать нужную концентрацию кислоты. Концентрированные растворы повышают скорость ионного обмена, но из-за высокой вязкости раствора снижается диффузия ионов. Поскольку процесс ионного обмена протекает сте-хиометрически, можно рассчитать полную обменную емкость колонки, зная количество ионита. Но рассчитанную обменную емкость не всегда можно полностью использовать (разд. 7.3.1.1). Пусть в колонке имеется ионит в Н -форме. Требуется провести ионный обмен с ионами К" . В месте подачи анализируемой пробы в колонку происходит полный обмен ионов Н+ на ионы При дальнейшем пропускании раствора, содержащего ионы К (фронтальная техника проведения ионного обмена), происходит смещение зоны, заполненной ионами К" , вниз. При этом колонку можно разделить на три слоя (рис. 7.17). В первом слое находится ионит только в К" -форме, во втором слое — ионит, содержащий оба иона, в третьем слое — ионит, содержащий ионы Н" . Распределение концентраций происходит по 8-образной кривой (ср. с формой полос элюентной хроматографии). При дальнейшем пропускании раствора КС происходит зарядка второго слоя ионами до проскока. Число ионов К" , которые могут быть количественно поглощены колонкой до проскока ионов, называют емкостью колонки до проскока. Эта емкость меньше величины полной емкости колонки, так как проскок К" -ионов наблюдается в тот момент, когда в колонке еще содержатся Н+-ионы. [c.378]

    Скорость ионного обмена на обычно используемых ионитах велика — равновесие устанавливается за доли минуты, иногда за несколько минут. Ионный обмен — процесс хемосорбционный, состоящий из внешней диффузии сорбируемого иона к поверхности зерна сорбента, затем внутренней его диффузии в зерне к зоне химической реакции и обратной диффузии вытесненного десорбируемого иона внутри зерна и в растворе. Обменные химические реакции внутри ионитов обычно идут со скоростями, значительно большими, чем диффузия ионов, которая при этом и лимитирует процессы ионного обмена. Эти процессы подчиняются закономерностям диффузионной кинетики, причем взаимодействия между растворами электролитов с малой концентрацией поглощаемых ионов и ионитами большой обменной емкости при малой степени сшивки лимитируются чаще всего внешней диффузией, а в концентрированных растворах и при больших степенях сшивки — внутренней диффузией. Скорость диффузии и обмена возрастает с уменьшением размера зерен ионита. [c.307]

    В зависимости от добавки щелочи, природы глины и содержания ее в суспензии щелочь может загущать или разжижать буровые растворы. Концентрированные суспензии каолина и других малоколлоидальных глин щелочными добавками (каустика, кальциниро ванной соды, пирофосфата натрия, жидкого стекла и др.) обычнс коагуляционно разжижаются. Такого рода обработки давно применяются в керамике при обогащении каолинов и улучшении литьевых свойств шликеров. У глин с высокой коллоидальностью уже небольшие добавки каустика вызывают коагуляционное загустевание Щелочные катионы активно вступают в ионный обмен с глино и усиливают ее набухание и пептизацию. Как показывают наши изме рения (табл. 6), сама щелочь необменно поглощается глиной и вызывает ее разложение. Такое действие щелочи активирует поверхность глинистых минералов и усиливает стабилизацию, производимую другими реагентами. В результате взаимодействия со щелочьк глинистое вещество может полностью разложиться до исходны окислов. [c.98]

    При анализе в-в высокой чистоты, когда требуется определять элементы, содержание к-рых меньше 10 -10 %, а также прн анализе токсичных и радиоактивных в-в пробы предварительио обрабатывают напр., частично или полностью отделяют определяемые элементы от основы и переводят их в меньший объем р-ра или вносят в меньшую массу более удобного для анализа в-ва. Для разделения компонентов пробы применяют фракционную отгонку основы (реже-примесей), адсорбцию, осаждение, экстракцию, хроматографию, ионный обмен. АЭСА с использованием перечисленных хим. способов концентрирования пробы, как правило, наз. химико-спектральным анализом. Дополнит. операции разделения и концентрирования определяемых элементов заметно повышают трудоемкость и дта-тельность анализа и ухудшают его точность (относит, стандартное отклонение достигает значений 0,2-0,3), но снижает пределы обнаружения в 10-100 раз. [c.393]

    В природных и сточных водах, а также в питьевой воде ЗЬ определяют методами активационного анализа с предварительным концентрированием соосаждением с Ге(ОН)з [642], ионным обменом [1359] или испарением в залгороженном состоянии (для избежания возможных потерь), используя для этого пробы объемом до 100 мл [1427]. Предложен также ряд методов без концентрирования ЗЬ [4, 1040, 1636]. Для определения ЗЬ в ледниках поступают следующим образом. [c.157]

    Способ 2. Ионный обмен. Преимущество этого способа состоит в высокой степени чистоты конечного продукта. Исходным веществом служит хорошо растворимая в воде гетерополисоль, очищенная многократной перекристаллизацией. В связи с отчетливо выраженной кислотной функцией гетерополикислот и с их склонностью подвергаться действию восстанавливающих агентов рекомендуется использовать в работе катнонообменники, содержащие сульфо-группы (например, пермутит RS, дауэкс 50W), проявляющие только сильнокислотные функции и практически не способные служить восстановителями. Выбор конкретных условий работы зависит ог устойчивости, качества и количества получаемой гетерополикислоты. Руководствуются следующими ориентировочными правилами обменная емкость обычно составляет 2 мг-экв./см ионообменной смолы (насыпной объем). Целесообразно работать с возможно более концентрированными исходными растворами, которые медленио ( 2— 5 мл/мин) пропускают через колонку. Растворы свободных кислот упаривают в ротационном испарителе до небольшого объема и прн необходимости помещают в эксикатор для кристаллизации. [c.1898]

    Однако с развитием полупроводниковой промышленности и промышленности чистых веществ потребовалось определять значительно меньшие содержания примесей в сурьме и ее соединениях, чем те, которые можно определять прямыми спектральными методами. В связи с этим стали использоваться химико-спектральные методы, включающие предварительное концентрирование определяемых примесей. В большинстве случаев это достигается удалением основы различными методами, а также экстракцией S1), в том числе экстракцией бутилацетатом [187, 446, 447, 671] и 2,2 -ди-хлордиэтиловым эфиром [102, 800, 803] из растворов НС1 и ди-(2-этилгексил)фосфорной кислотой [802], 2,2 -дихлордиэтиловым [805] и диэтиловым эфиром [549] из растворов НВг, отгонкой в виде ЗЬВгз [25, 457, 458] и Sb lj [50а, 187], ионным обменом [767, 803, 804) и направленной кристаллизацией [808] двухступенчатым концентрированием, включающим метод направленной кристаллизации и экстракции бутилацетатом [382]. Химико-спектральные методы характеризуются в среднем на 1—2 порядка более высокой чувствительностью по сравнению с прямыми спектральными методами. Краткие характеристики химико-спектральных методов определения примесей в сурьме и ее соединениях приведены в табл. 16. Эти методы, включающие концентрирование примесей путем их выделения из анализируемого материала (например, зонная плавка [606]), используются редко. [c.160]

    Модифицировав процесс, предложенный Бечтольдом и Снайдером, Рул [7] в своем способе начал с аналогичного подщелоченного основного золя. Но затем к такому золю он добавлял раствор иоликремневой кислоты, полученный ионным обменом, причем перед этой процедурой никакой щелочи в систему не вводилось. Таким образом, частицы кремнезема вырастали в среде, имевшей постоянную концентрацию щелочи, необходимую для стабилизирования подобных систем, что обеспечивало получение стабильных концентрированных золей при минимальном ее содержании. Альбрехт [15] заиатентовал способ добавления поликремневой кислоты с оптимальной скоростью в вышеуказанном ироцессе Рула с целью получения частиц кремнезема размером 45—100 нм. Аналогичным способом, но применяя давления выше атмосферного, удавалось получать частицы размером вплоть до 150 нм [16]. [c.424]

    Айлер и Уолтер [19] разработали способ, с иомощью которого 15 %-ный золь можно приготовить непосредственно ионным обменом. По этому способу основной золь в воде или в разбавленном водном растворе силиката натрия нагревают и перемешивают. Затем к нему одновременно добавляют увлажненную, отстоявшуюся, регенерированную ионообменную смолу (предпочтительно слабокислотного типа) и относительно концентрированный раствор силиката натрия. Скорость добавления регулируется так, чтобы поддерживать pH около 9, и, кроме того, она зависит от температуры и относительного количестйа и размера частиц основного золя. Это способствует увеличению размера частиц кремнезема и предотвращает процесс образования зародышей. В способе с применением колонны или псевдо-ожиженного слоя смола непрерывно добавляется в верхнюю часть колонны и перемещается вниз противотоком по отношению к движению золя кремнезема [20]. [c.426]

    Работа Бёрда [4], в которой натрий удаляется из силиката натрия ионным обменом с последующим концентрированием золя выпариванием при атмосферном давлении, ставшая пионерской в этой области, привела к получению стабилизированных золей кремнезема, содержащих приблизительно 20 % 5102. В дальнейшем [6] удалось осуществить контроль размера формируемых частиц. Другие усовершенствования, введенные Александером [9] и Эткинсом [10] в отношении величин допустимой концентрации соли и оптимального содержания щелочи, дали возможность получить целый ряд концентрированных золей кремнезема, охватывающий широкую область размеров частиц. В указанных работах золи кремнезема приготовляли пропусканием относительно разбавленного раствора силиката натрия через слой ионообменной смолы. Получали достаточно очищенный от натрия кислый золь кремнезема, который затем стабилизировали, и выращивали частицы до желаемого размера. Второй способ, разработанный Уолтером и Айлером 93], заключался в том, что ионообменную смолу в водородной форме и силикат натрия добавляли к слабощелочной водной среде при [c.451]

    Достижение более полного извлечения веществ из исходного раствора даже при весьма низкой их концентрации. В отличие от распределения, константы равновесия которого теоретически не зависят, а практически являются линейной функцией концентрации, зависимость величины коэффициентов адсорбции от концентрации, в особенности в водной фазе, нелинейна из-за выпуклости изотермы адсорбции. Поэтому достигается значительная величина адсорбции, а следовательно, и степень концентрирования даже при низких концентрациях вещества в исходном растворе. При ионном обмене это связано с тем, что органических ионов намного больше К й. не-орга точеских ионов. При проведении сорбции в динамических условиях это позволяет резко сократить габариты аппаратуры. [c.204]

    Предварительное концентрирование бромид-ионов с применением методов осаждения п адсорбции позволяет значительно повысить чувствительность их определения в различных смесях. Концентрирование в растворах осуществляют соосаждением с Ag l [26, 650], электрохимическим выделением [45, 46] и ионным обменом с применением анионообменной бумаги [392] или гранулированных амфолитов [398]. Ионообменные методы особенно удобны в гидрохимическом анализе. [c.52]

    Mn (а) Формальдоксим в щелочной среде в присутствии СН , аскорбиновой кислоты и тартрата измерение при 455 нм после предварительного нагревания (б) 4-(2-пиридилазо)-резорцин при pH = 10 в присутствии бората, аскорбиновой кислоты или гидроксиламина Р , тартрат, тиомочевина, карбонат натрия, СМ , аскорбиновая кислота являются подходящими маскирующими агентами Ре(П), Со, N1 мешают, но Мп(ПАР) хелат может быть разрушен этилендиминтетрауксусной кислотой, что следует учитывать измерение при 598-500 нм Предварительное соосаждение Мп(П) с Zn(0H)2 или экстракция в виде диэтилдитио-карбамата, или отделение ионным обменом. Отделение или предварительное концентрирование Мп(П) как выше [c.309]

    Из рассмотрения уравнений (1) и (2) становится очевидно, что при равновесии концентрации ионов калия и хлора в фазе мембраны сильно отличаются друг от друга, если концентрация фиксироБанного иона в мембране велика, например в случае мембран, изготовленных из синтетических ионитов. Поскольку числа переноса ионов в системе зависят как от их относительных концентраций, так и от их подвижностей, в фазе мембраны число переноса более концентрированного иона (иона калия в приведенном выше случае) будет значительно превышать эту же величину в растворе электролита. Если [А ] велика, [С1 ] будет относительно небольшой и число переноса иона хлора будет почти равно нулю. Следовательно, эта мембрана является в сильной степени селективно проницаемой для катионов, в нашем случае — для иона калия. Если активность внешнего раствора (а ) велика, концентрация ионов хлора в фазе мембраны будет большая, несмотря на высокую концентрацию фиксированного иона [А ]. Этот эффект увеличивает число переноса ионов хлора и снижает селективную проницаемость по отношению к катионам. При снижении концентрации электролита селективная проницаемость приближается к теоретическому максимуму для идеальной мембраны. Однако в каждом электролитическом процессе концентрации ионов имеют вполне огцутимые величины, и поэтому полная селективная проницаемость является идеализированной ситуацией, представляющей небольшой интерес для практики. К ней, можно приблизиться при умеренных концентрациях электролитов, если применять мембраны с высокой обменной емкостью или, что то же, с высокой концентрацией фиксированного иона. [c.149]


Смотреть страницы где упоминается термин Концентрирование ионным обменом: [c.84]    [c.120]    [c.230]    [c.364]    [c.428]    [c.258]    [c.217]    [c.127]    [c.144]   
Физические методы анализа следов элементов (1967) -- [ c.112 ]




ПОИСК





Смотрите так же термины и статьи:

Ионный обмен

Ионный обмен и иониты

Концентрирование ионов ионита

Обмен ионов



© 2024 chem21.info Реклама на сайте