Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенол кислотная, механизм реакции

    Как было отмечено выше, на основании результатов исследования начальных стадий реакции [157-161, 218-224] механизм акцепторно-каталитической полиэтерификации может быть представлен в виде двух каталитических потоков (см. схему 4.Б) нуклеофильного (образование комплекса II) и общего основного (образование комплекса I). Исследование кинетики этерификации [158-160] и определение относительной активности исходных соединений методом конкурирующего ацилирования [156-160] позволили установить, что в отсутствие стерических затруднений у реакционного центра увеличение кислотности гидроксилсодержащего соединения и основности третичного амина создает условия для протекания реакции по механизму общего основного катализа. Так, в случае конкурирующего бензоилирования фенола и метанола найдено, что в присутствии триэтиламина (ТЭА) степень превращения более кислого реагента - фенола -значительно превышает конверсию менее кислого - метанола (рис. 4.4) [156]. Это свидетельствует о преобладании в указанных условиях общего основного катализа над нуклеофильным. Если же конкурирующее бензоилирование проводить в присутствии менее основного третичного амина - пиридина, то в реакцию вступает главным образом метанол, т.е. в этих условиях преобладает нуклеофильный катализ [156]. [c.47]


    Ацилирующие средства галогенангидриды, ангидриды, сложные эфиры. Дцилирование спиртов, фенолов, аминов, аммиака. АциТгиро-вание по Фриделю—Крафтсу. Этерификация. Механизм реакции этерификации. Кислотный и щелочной гидролиз. Омыление жиров. [c.92]

    Присоединение спиртов и фенолов к двойным связям катализируется кислотами и основаниями. При кислотном катализе реакция идет по электрофильному механизму, а атакующей частицей является Н+. Получающийся карбокатион взаимодействует с молекулой спирта  [c.167]

    Напишите уравнение реакции фенола с бромной водой. По какому механизму она идет Какую роль в ней играет вода Как влияет бром на кислотные свойства гидроксильной группы  [c.167]

    Удовлетворительное объяснение механизма реакции алкилирования фенола олефинами дает протонная теория. Рассмотрим это на примере алкилирования фенола изобутиленом. Протон водорода кислотного катализатора образует с олефином карбоний-ион  [c.122]

    Подробно изучена кинетика протонного обмена между группой ЗН тиофенола и группой ОН метанола при кислотном и щелочном катализе. Обмен в этой системе идет на несколько порядков медленнее и с более высокой энергией активации, чем в аналогичной системе с участием фенола, что объяснено слабостью водородных связей, образуемых серой. Обоснован тримолекулярный механизм реакции с участием комплексов, образованных водородными связями. [c.34]

    При пропускании паров фенола и аммиака над кислотным катализатором при 420—440 °С образуется анилин с высоким выходом. Предложите механизм этой реакции. [c.208]

    Реакция разложения ГПК на фенол и ацетон, катализируемая кислотными катализаторами, протекает высокоселективно в среде фенола и ацетона. Однако эта селективность может меняться при изменении состава среды и других факторов. В отсутствие примесей в среде фенола с ацетоном ГПК разлагается под действием серной кислоты на фенол и ацетон практически количественно [9]. Распадом по радикальному механизму, катализируемому кислотами, в условиях, при которых проводят кислотное разложение ГПК, можно пренебречь. При существенном увеличении концентрации кислоты вклад гомолитического распада может стать заметным. О гомолитическом распаде пероксидов при кислотном катализе см. ниже. [c.294]

    Экспериментальные данные о наличии согласованного кислотно-основного катализа процесса мутаротации тетраметилглюкозы в бензоле фенолом и пиридином считаются в настоящее время недостаточно убедительными [51, 52]. Для неферментативных реакций, протекающих в водных растворах, доказать существование такого механизма катализа весьма трудно . Однако он может играть исключительно большую роль в случае ферментативного катализа, поскольку среди боковых групп аминокислот могут найтись две соответствующим образом расположенные кислотные и основные группы. [c.54]


    Все изученные нами реакции протекают по механизму, принятому для кислотного катализа, и механизм этих реакций хорошо объясняется протонной теорией. Согласно этой теории алкилирование фенола олефинами будет протекать но схеме К Н [c.77]

    Полярность о-саязи, индуктивный эффект. Механизм реакций нуклеофильного замещения атома галогена в галогеналкилах. Переходное состояние, энергетика реакции. Сравнительная активность атомов галогена в разтичного типа галогенопроизводных (объяснение). Неподвижность галогена у кратной связи. Сравнительная кислотность гидроксила а разного типа соединениях (объяснение). Водородная связь. Взаимное влияние гидроксила и ароматического ядра в феноле. Влияние заместителей и их положения в ядре ((кнола на кислотность гидроксильной группы. Спектры (ПМР, ИК и УФ) галогенопроизводных, спиртов и с нолов. Гербициды. [c.250]

    В сравнимых условиях бензойная кислота дает понижение температуры замерзания, лишь вдвое превышающее предсказанное значение, что указывает на обычную кислотно-основную реакцию. Далее, при выливании в воду сернокислого раствора метил-мезитоата образуется мезитойная кислота, тогда как аналогичный раствор метилбензоата при этом не дает бензойной кислоты [436]. Механизм Аде встречается также и при гидролизе ацетатов фенолов или первичных спиртов в концентрированной (>90%) серной кислоте (при использовании разбавленной кислоты механизм обычный — Алс2) [437]. [c.113]

    Свейн и Браун [50] провели весьма интересный эксперимент, пока-завщий, что кислотная и основная группы, включенные в одну и ту же молекулу, катализируют мутаротацию сахаров гораздо эффективнее, чем простая смесь кислоты и основания. Так, 0,001 М а-оксипиридин катализирует мутаротацию тетраметилглюкозы (0,1 М) в бензоле в 7000 раз более эффективно, чем смесь, содержащая 0,001 М пиридин и 0,001 М фенол. Свейн и Браун предложили следующий полностью согласованный механизм реакции для полифункционального катализатора а-окси-пиридина. Они допустили, что реакции предшествует образование стабилизированного водородными связями комплекса, аналогичного фер-мент-субстратному комплексу  [c.55]

    В условиях окисления в присутствии уксусного ангидрида распад гидроперекиси с образованием фенола (реакция IV и V) практически не происходит. Содержание фенолов в продуктах реакции не превышает 1%. Иная картина наблюдается при введении в реакционную зону катализаторов кислотного типа. На рис. 2 приведена зависимость распределения продуктов окисления и-ксилола от количества катализатора (H2SO4). В этом случае уже при небольших концентрациях катализатора резко возрастает выход п-крезилацетата за счет снижения доли спиртов в продуктах реакции. Таким образом, появляется третье направление превращепия гидроперекиси, которое, в отличие от рассмотренных, протекающих по гомолитическому механизму, осуществляется гетеролитически [4]. В этом случае состав продуктов окисления будет определяться соотношением скоростей конкурирующих реакций (II, III и IV). Согласно данным, приведенным на рис. 2, с повышением концентрации катализатора выход п-крезилацетата растет, что указывает на повышение скорости реак-1 ,ии IV. [c.79]

    Исследование механизма нитрозирования и-Х-замещенных фенолов (X = СНз, F, С1, N, NO2 ) в среде кислот умеренной и высокой концентрации [1, 1972] показало, что кинетические закономерности орто- и шрд-нитрозирования аналогичны и, следовательно, механизм реакций в обоих случаях одинаков. Продуктами нитрозирования являлись во всех случаях и-Х-замещенные о-нитрофенолы, так как образующиеся в реакции о-нитрозофенолы быстро окислялись в соответствующие о-нитрофенолы. По мнению авторов, величина р = —6,2, полученная из уравнения Гаммета для случая нитрозирования л-Х-фенолов, характерна для такого механизма нитрозирования ароматических соединений, в котором лимитирующей стадией является распад циклогексадиенонового промежуточного продукта А (схема 3). Следует, однако, заметить, что природа лимитирующей стадии меняется при проведении реакции нитрозирования фенола и /3-нафтола в слабокислых средах (рН>4,5) [1, 1973]. На основании того факта, что первичный кинетический изотопный эффект в реакции нитрозирования этих соединений значительно уменьшается по мере уменьшения кислотности среды, авторы предположили, что лимитирующей стадией становится образование циклогексадиеново-го продукта. Близкие кинетические закономерности бьши получены при изучении механизма нитрозирования резорцина и его 0-метильных производных [5]. Скорость реакции сложным образом зависит от кислотности среды, но при этом повторяется примерно тот же профиль, что и для фенола и /3-нафтола (см. выше). Наблюдаемая константа скорости второго порядка не зависит от pH среды в области pH 1—2,5, возрастает при рН<1 и pH>2,5. На основании этих результатов был сделан вывод о том, что лимитирующей стадией реакции при pH>2,5 является образование соединения А (схема 3), его некаталитический распад при К pH <2,5 (путь I) и кислотно-каталитический распад при рН<1 (путь П). [c.8]


    Данные по изомеризации о-крезола на алюмосиликатном катализаторе при относительно низкой температуре (290°) показывают, что первичным продуктом превращения является ж-крезол, изомеризующийся далее в п-крезол. Ступенчатость перемещения метильной групппы, отмеченная также в случае ксиленолов, указывает на внутримолекулярный характер ее миграции при изомерных превращениях подобных соединений. Дезактивация же катализатора органическими основаниями и ионами натрия свидетельствует о протекании реакции на кислотных центрах алюмосиликата. На основании этих наблюдений считают, что механизм изомерных превращений метилированных фенолов аналогичен механизму изомеризации ксилолов [300] (ср. однако [301, 311]). [c.48]

    Такой механизм реакции согласуется с тем, что кислотность водорода фенола выше кислотности водорода спирта. Если этот механизм действительно правилен, мы приходим к выводу, что потеря реакционной способности 2,4-динитрофенолом в присутствии катализатора объясняется тем, что ион 2,4-динитрофенолята недостаточно основен для того, чтобы преодолеть пространственные препятствия, создаваемые своей собственной нитрогруп-пой в орто-положении и успешно атаковать изоцианат. [c.245]

    Реакция со спиртами является общей для диазосоединений, но чаще всего ее проводят с использованием диазометана для получения метиловых эфиров или с использованием диазокетонов для приготовления а-кетоэфиров, что обусловлено доступностью этих диазосоединений. В случае диазометана [493] метод дорог и требует особой осторожности. Он обычно применяется для метилирования спиртов и фенолов, стоимость которых высока или которые доступны лишь в малых количествах, так как эта реакция проводится в мягких условиях и дает высокий выход продуктов. Реакционная способность гидроксисоединений возрастает по мере увеличения их кислотности. Обычные спирты в отсутствие катализатора не реагируют. Катализатором может служить HBF4 [494], ацетат родия (II) Rh2(OA )4 [495] или силикагель [496]. Более кислые фенолы реагируют и без катализатора. Оксимы и кетоны, для которых характерен значительный вклад енольной формы, вступают в реакцию 0-алкилирования, давая соответственно 0-алкилоксимы и эфиры енолов. Механизм [497] здесь тот же, что и в реакции 10-6  [c.122]

    Многие физические и химические свойства обычных фенолов определяются возможностью сопряжения л-электронов ароматической системы связей с р-электронами атома кислорода гидроксильной группы, что зависит, главным образом, от взаимного расположения в пространстве бензольного кольца и гидроксильной группы . К таким свойствам фенолов относятся их повыщен-ная кислотность по сравнению с алифатическими спиртами, соответствующее положение сигнала протона гидроксильной группы в ЯМР-спектрах, склонность к участию в радикальных процессах, особенности механизма реакций электрофильного замещения и др. Очевидно, наиболее полно эти свойства реализуются в такой структуре фенола, в которой гидроксильная группа (связь С—О) копланарна с ароматическим кольцом. Отклонение гидроксильной группы от плоскости кольца будет приводить к уменьшению сопряжения неподеленной пары электронов атома кислорода с я-элек-тронами ароматического кольца и, следовательно, приближать свойства фенола, с одной стороны, к свойствам бензола, а с другой,— к свойствам алифатических спиртов. Возможность подобного отклонения гидроксильной группы наиболее вероятна у пространственно-затрудненных фенолов, содержащих третичные алкильные группы в орто-положениях, так как именно эти группы [c.9]

    На основании этих исследований был сделан вывод, что предложенный Брауном двухстадийный механизм реакции является наиболее вероятным. Таким образом, процесс получения бисфенола А кислотной Еодденсацией фенола с ацетоном по Брауду может быть представлен следуицим образом [75].  [c.22]

    Предлагаемый механизм более правдоподобен, поскольку он включает стадии, доказанные и принятые для ряда кислотно-каталитических реакций нитрозосоединений (см., например, гл. 4). При изучении кинетики нитрозирования анизола [1, 1971] и дифенилового эфира [1, 1972] было установлено, что продуктом реакции в обоих случаях является -нитрозофенол, выход которого превышает 95%. Одновременно с идра-изомером отмечается образование незначительного количества орго-изомера. На том основании, что кинетические закономерности нитрозирования анизола отличаются от закономерностей нитрозирования фенола, авторы предположили, что нитрозирование анизола предшествует стадии деалкилирования [1, 1971]. Гидролиз и-нитрозоанизола и п-нитрозодифенилового эфира происходит по схеме (19), предложенной [c.28]

    Для более глубокого понимания подобного эмпирического правила прежде всего надо выяснить его точность и границы применимости. Являясь правилом, эта закономерность не претендует на строгость закона. Ее область применения очень широка, но не безгранична. Так, например, для стоящей в пара-положении нитрогруппы следует употреблять два значения сг. Приходится задумываться над тем, что замещение в ядре не охватывается данным правилом. Шварценбах [111] высказал поэтому предположение, что условием действительности правила является определенный однотипный механизм реакции. Такое широкое правило, как правило Гаммета, может по Шварценбаху соблюдаться лишь тогда, когда заместители, влияние которых выражается величиной ст, не оказывают воздействия на самую реакционноспособную группу или по меньшей мере оказывают на нее очень малое влияние. Подобное влияние, согласно его точке зрения, может заключаться только в электростатическом действии, которое изменяет поле вокруг молекулы, так что заместитель, вызывающий такое изменение, независимо от природы реагирующей группы понижает или повышает энергию активации определенных механизмов реакций всегда на одну и ту же величину. Это имеет силу для большинства находящихся к мета- и пара-положениях заместителей, но не для орто-, так как последние стоят слишком близко к реакциопиоспособной группе. Исключений следует также ожидать в том случае, если введение заместителя глубоко изменяет состояние связи в молекуле. Подобные влияния, касающиеся распределения электронов, имеются в частности тогда, когда возможна мезомерия во всей системе ядро + заместитель. Кроме того, следует принимап, во впимапие и возможный индуктивный эффект (ср. стр. 528). Хорошим примером, показывающим значение мезомерного эффекта, являются исследования Шварценбаха о кислотности фенолов и т и о ф е и о л о в. Для констант диссоциации фенолов и тиофенолов в общем довольно хорошо соблюдается соотношение Гаммета, которое в этом случае дает [112]  [c.509]

    Очень важным является промышленный процесс производства фенола и ацетона пз кумола (изоиронилбензола). При окислении кумола кислородом воздуха образуется гидроперекись изопро-пплбензола, которая под воздействием кислотного катализатора разлагается на фенол и ацетон [350, 351]. Реакция идет по ионному механизму. Важнейшими побочными продуктами в этом процессе являются а-метплстирол и ацетофенон. Из алкилзамещенных кумолов вышеописанным образом можно получать крезолы, ксн-ленолы и т. д. [c.590]

    Следует отметить, что превращения высших фенолов в присутствии кислотных катализаторов протекают сложно, очевидно по ионным механизмам. При этом идет не только деалкилирование, но и реакции изомеризации и диспропорционирования. Реакции диспропорциони-, рования являются основными, например, при проведении процесса при 70—215 °С в присутствии серной кислоты при более высоких температурах (до 400 °С) на кислотном катализаторе ВГд на А1аОз реакции деалкилироваиия усиливались, но все еще не были главными — преобладала изомеризация Поэтому для деалкилироваиия фенолов стремились работать при еще более высоких температурах, не придавая большого значения кислотным свойствам катализаторов. [c.196]

    Кроме свободнорадикального пути расш,епления алкилароматические гидропероксиды способны к распаду под влиянием кислотных и щелочных катализаторов. В присутствии уже небольшого количества сильной кислоты (например, 0,1% Н2804) гидропероксиды распадаются с образованием фенолов и карбонильных соединений. Реакция протекает по сложному механизму ионного типа с промежуточным возникновением положительных ионов  [c.372]

    Однако а-пиридон (XXXVIII), объединяющий кислотную и основную функции в одной молекуле, катализирует реакцию значительно сильнее, чем смесь фенола с пиридином, а именно, скорость реакции в присутствии 0,001 М XXXVIII в 7000 раз выше, чем в присутствии смеси 0,001 М фенола и 0,001 М пиридина. Механизм катализа может быть в данном случае изображен [6 таким образом  [c.99]

    Трипсин и химотрипсин, очевидно, имеют второй активный центр, содержап ий гистидин. Второй участок удален от первого, но на спиральной цепочке они сближены. Установление активной роли гистидина основывалось частично на изменении скорости ферментативной реакции в зависимости от pH, что соответствовало предположению о стратегическом расположении слабоосновного остатка, имеющего характер гистидина. Даже сам имидазол также катализирует гидролиз простейших сложных эфиров (БрюИ С" и Шм Ир 1965—.19i57 Бендер, 1957). 7 о, что фермент в 10 раз эффективнее, чем имидазол, имеет аналогию в модельных опытах по мутаротации глюкозы — реакции, катализируемой кислотами и основаниями. о -Оксипиридин, содержащий кислотный и основной центры (оба относительно слабые), более эффективен как катализатор, чем смесь пиридина и фенола (Свайн, 1952). И в а-окси-пиридине, и в протеолитическнх ферментах бифункциональность повышает каталитическую активность, поскольку протоны могут быть одновременно поданы и отщеплены в сопряженной реакции. Механизм действия, предложенный, Нейратом (1957) для химотрипсина, сводится к следующему. При взаимодействии гидроксильной группы серина с имидазольным кольцом гистидина отщепляется протон и образуется активированный комплекс П, имеющий электрофильный и нуклеофильный центры. [c.714]

    Переэтерификация спирта ми, фенолами и меркаптанами, как правило, требует применения кислотного катализатора, в то время как в случае карбоновых кислот, по-видимому, сам реагент обладает достаточной кислотностью, чтобы катализировать реакцию. Очевидно, ЧТО в этих условиях реакции переэтерификации протекают с участием карбониевого катиона по следующему механизму [c.33]

    В отличие от фенолов спирты, обладающие значительно меньшей кислотностью, реагируют с дихлорангидридами по механизму нуклеофильного катализа через образование ациламмониевого комплекса дихлорангидрида с третичным амином (комплекс II). Сорбция комплекса на поверхности графита уменьшает электронную плотность карбонильного атома кислорода, что повышает его электрофильную реакционную способность и соответственно увеличивает константу скорости рассматриваемой реакции. [c.306]

    Природный лигнин древесины и выделенные лигнины в присутствии кислотного или щелочного катализатора вступают во взаимодействие с фенолами. Так, при нагревании древесины с избытком фенола в присутствии кислоты лигнин переходит в раствор с образованием феноллигнина. Реакция идет, как и при конденсации лигнина, по механизму ну1Слеофиль-ного замещения через промежуточный бензильный карбкатион. Фенол выступает в роли внешнего нуклеофильного реагента, присоединяющегося к карбкатиону (схема 12.43, а). Фенол в присутствии кислотного катализатора расщепляет связи а-О—4 в фенилкумарановых структурах (см. схему 12.43, б). В щелочной среде взаимодействие фенолов с лигнином происходит через промежуточный хинонметид. Подобные реакции происходят при получении лигнинфенолоформальдегидных смол с заменой на лигнин части фенола. Лигнин, как фенол, и полученный феноллигнин далее конденсируются с формальдегидом. Получаемые термореактивные смолы могут использоваться в качестве связующих (исходное сырье технический щелочной лигнин) и для получения пластмасс (исходное сырье гидролизный лигнин). Многоатомные фенолы, со структурой типа резорцина, имеющие не менее двух активных положений в бензольном кольце, могут в результате реакции конденсации с лигнином сшивать его фрагменты. Поэтому некоторые фенольные экстрактивные вещества затрудняют кислую сульфитную варку (см. 13.1.2). [c.456]

    Нуклеофильный и общий основной катализ составляют два из трех механизмов, выявленных при работе в модельных системах. Третий механизм — это общий кислотный катализ. Этот механизм обычно не наблюдается в реакциях сложных эфиров, но имеет больщое значение при гидролизе ортоэфиров и некоторых ацеталей [22]. Так, гидролиз этилортоацетата (4) катализируется кислым компонентом нитрофенольных буферов [23] и, как принято считать, протекает по механизму общего кислотного катализа [22] схема (10) . Согласно этому механизму, обратному общему основному катализу превращение (4) в (5) и затем обратно (5) в (4) через одно и то же переходное состояние , катализатор посредством протонирования превращает плохую уходящую группу в хорощую. В отличие от специфического кислотного катализа, который зависит только от pH и не зависит от концентрации обобщенной кислоты (в данном случае фенола), здесь стадии переноса прогона и разрыва связи С—О согласованы. [c.464]

    Бифункииональный катализ. Свейн п Браун в 1952 г. Ш отметили, что О. катализирует мутаротацию тетраметилглюкозы по механизму еовмеетыого кислотно-основного катализа и что он более эффективен, чем емесь пиридин — фенол. Несколько лет спустя Бейерман и ваи дер Бринк [2] нашли, что О. п другие бифункциональные соединения катализируют реакцию аминов с метиловыми [c.198]

    Оригинальное открытие Хока и Ланга заключающееся в том, что фенол и ацетон могут быть, получены кислотно-каталитическим разложением гидроперекиси кумола, оказалось весьма перспективным и служит основой промышленного производства этих соединений. Принятый в настоящее время механизм этой реакции, включающий кислород-кислородный гетеролиз, был впервые предложен Карашем, Фоно и Нуденбергом [c.129]

    Этот механизм разложения первичных продуктов окисления в дальнейшем был подтвержден прн исследовании реакций выделенных гидроперекисей в различных условиях, в том числе нх термического, кислотного и щелочного разложения, и сопоставлении состава продуктов с полученным непосредственно прн окислении 2. Строение большей части продуктов наглядно свидетельствовало об их происхождении из мезомерных радикалов (I) и (II), но образование 6-оксигексанона-2 связано, по-видн-мому, с катализированной кислотами полярной реакцией, подобной реакции разложения кумилгидроперекиси (на фенол и ацетон), а также многих других гидроперекисей. Это было подтверждено получением сложных эфиров таких кетоспиртов ири действии на гидроперекиси органическими кислотами [c.465]


Смотреть страницы где упоминается термин Фенол кислотная, механизм реакции: [c.126]    [c.205]    [c.356]    [c.356]    [c.124]    [c.165]    [c.390]    [c.131]    [c.180]    [c.484]    [c.333]    [c.59]    [c.139]    [c.41]   
Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.555 , c.556 ]




ПОИСК





Смотрите так же термины и статьи:

Механизмы фенола

Фенол кислотность



© 2025 chem21.info Реклама на сайте