Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие химически модифицированных

    Таким образом, имеются очень широкие возможности регулирования специфичности адсорбентов III типа и соотношения между вкладами в общую энергию взаимодействия специфического и неспецифического взаимодействия. Химическим модифицированием поверхности, например, макропористых силикагелей или адсорбционным модифицированием графитированных саж путем отложения плотных монослоев макромолекул групп А или СиО можно получить также неспецифические адсорбенты I тина или специфические адсорбенты II типа. [c.58]


    Адсорбционная способность присадок. Адсорбция присадок на границе раздела фаз является первичным актом взаимодействия среды с поверхностью трения. Адсорбция характеризует накопление в граничном слое вещества, способного при прочих равных условиях определять протекание дальнейших процессов, связанных (в зависимости от назначения присадки) с формированием прочной защитной пленки либо химически модифицированного поверхностного слоя. Под адсорбцией в данных случаях понимается адсорбция в электрически нейтральной форме (физическая адсорбция) и адсорбция с обменом зарядами (хемосорбция), тем более что во многих случаях четкую грань между этими двумя формами адсорбции провести невозможно [274]. [c.255]

    Для создания устойчивых по отношению к воздействию среды поверхностных химических соединений нужны прочные химические связи между поверхностью и веществами-модификаторами. Таким химическим модифицированием поверхности можно резко изменять ее адсорбционные свойства. Для многих процессов адсорбции с последующей регенерацией и особенно для адсорбционной хроматографии нужна такая поверхность, которая по отношению к молекулам в газе или растворе соответствовала бы девизу хроматографии схвати, подержи и отпусти . Этот девиз хроматографии отличается от девиза схвати и не отпускай , которым можно выразить требования к работе противогаза или шунта с адсорбентом, применяемого для экстракорпорального (вне организма) поглощения ядов из крови. В адсорбционной хроматографии адсорбция на поверхности адсорбента в хроматографической колонне должна сопровождаться десорбцией, полностью регенерирующей адсорбент в самом процессе хроматографии. Поэтому и взаимодействия молекул подвижной среды колонны (газа, жидкости) с неподвижным адсорбентом, заполняющим хроматографическую колонну, не должны быть слишком сильными. [c.7]

    Помимо электростатических ориентационных межмолекулярных взаимодействий и водородных связей в жидкостной хроматографии можно использовать и другие виды слабых специфических взаимодействий с образованием нестойких комплексов с переносом заряда. Можно иммобилизовать, т. е. закрепить адсорбционно (см. лекцию 4) или химически (см. лекцию 5) на поверхности адсорбента-носителя соответствующие электронодонорные или электроноакцепторные молекулы или группы. В лекции 5 был рассмотрен пример химического модифицирования [c.327]


    При адсорбции макромолекул на гидроксилированной и химически модифицированной прививкой полярных функциональных групп поверхности кремнеземов, помимо проявления универсальных дисперсионных межмолекулярных взаимодействий, возможно проявление и специфических межмолекулярных взаимодействий полярных групп макромолекул с адсорбентом. В случае адсорбции на гидроксилированной поверхности кремнеземов специфические межмолекулярные взаимодействия возможны у тех звеньев макромолекул, которые могут образовывать с силанольными группами поверхности водородные связи. Действительно, методом инфракрасной спектроскопии обнаружено образование водородных свя- [c.334]

    Химическое модифицирование поверхности кремнезема, проведенное посредством реакций различных модификаторов с поверхностными силанольными группами (см. лекцию 5), позволяет, как это было показано в лекциях 14, 16 и 17, существенно изменить адсорбционные свойства поверхности и, в частности, характер адсорбции полимеров. Свойства модифицированной поверхности определяются строением и концентрацией привитых органических групп. Из рис. 18.2 видно, что на аэросиле [высокодисперсном непористом кремнеземе (см. лекцию 3)] с гидроксилированной поверхностью полистирол адсорбируется из растворов в неполярном растворителе ССЦ положительно и адсорбция достигает предельного значения (около 1 мг/м , кривая /). Прокаливание при 1000°С, после которого силанольные группы остаются лишь на небольшой части поверхности, несколько (повышает вклад в неспецифическое межмолекулярное взаимодействие макромолекул полистирола с матрицей кремнезема из растворов ССЦ (кривая 2). [c.335]

    Для покрытий, характеризующихся отсутствием явно выраженных функциональных групп (полиэтилен, пентопласт, фторопласт), образование хемосорбированной адгезионной связи полимера с металлом может достигаться оптимальным режимом термической обработки, а также за счет химического модифицирования поверхности, приводящего к повьпиению стабильности адгезии в воде и электролитах. Например, термообработка фторлонового покрытия на основе сополимера 32Л приводит к деструкции полимера с образованием реакционноспособных центров, взаимодействующих с активными центрами металла прочность сцепления покрытия с основой достигает 12-20 МПа [47].  [c.130]

    Для приготовления химически модифицированных электродов используют и угольно-пастовые электроды (УПЭ). Первоначально модифицирование УПЭ осуществляли введением в пасту деполяризатора (см. раздел 11.4). В этом случае угольная паста является электропроводящей средой, в которой распределены частицы электрохимически активного вещества, причем электродный процесс локализован на границе раздела фаз электрод/раствор. Если же в качестве модификаторов использовать электрохимически инертные вещества, то появляется возможность создания специфических электродов для определения различных веществ. В этом случае избирательность определений обеспечивается введением в угольную пасту вещества-модификатора, которое должно отвечать следующим требованиям быть электрохимически инертным в определенной области потенциалов, иметь малую растворимость и специфический характер взаимодействия с определяемыми ионами или органическими соединениями. [c.486]

    Взаимодействие фермента с субстратом А приводит к образованию формы Е через комплекс ЕА. Е — это модифицированная форма фермента, в которой кофермент часто оказывается химически модифицированным (примером может служить реакция переаминирования гл. 8, разд. Д, 1). Одновременно субстрат А превращается в продукт Р, все еще связанный с ферментом. Отщепление продукта Р приводит к высвобождению формы Е, которая затем может взаимодействовать со вторым субстратом, В, и проходить вторую половину цикла с превращением формы Е в форму Е. [c.22]

    Органические соединения промежуточной полярности растворяются в сложных эфирах, спиртах, хлороформе. Эти вещества имеют в составе молекул функциональные группы, способные к довольно сильному взаимодействию с силанольными группами силикагеля, полярными функциональными группами химически модифицированных силикагелей. Подвижные фазы для [c.33]

    Согласно Киселеву [382], ослабление специфичности взаимодействия полярных веществ химически модифицированными кремнеземами объясняется уменьшением числа гидроксильных групп на их поверхности. Резкое ослабление неспецифического взаимодействия при адсорбции апо-лярных веществ вызвано, по его мнению, отодвиганием адсорбирующихся молекул от кремнеземного остова. При этом мерой вклада специфических взаимодействий в общую энергию взаимодействия служит разность между теплотой адсорбции на специфическом адсорбенте и теплотой адсорбции этих же молекул на неспецифическом адсорбенте [383]. [c.172]

    Подобное химическое модифицирование поверхности силикагелей приводит к значительному изменению механизма его взаимодействия с адсорбатами различного химического строения. [c.373]


    Следовательно, для веществ, адсорбция которых происходит в результате дисперсионного взаимодействия (азот, аргон, криптон), молекулярная площадка адсорбата в монослое изменяется сравнительно мало. Для молекул с неоднородным распределением электронной плотности значение со сильно возрастает по мере увеличения степени химического модифицирования поверхности. [c.29]

    Механические свойства коагуляционных дисперсных структур зависят от геометрии частиц, от свойств дисперсной фазы и дисперсионной среды, а также, в особенности, от характера взаимодействия между частицами. Модифицирование поверхности частиц, использование физической адсорбции поверхностно-активных веществ и хемосорбции является эффективным средством изменения механических свойств коагуляционных структур. При этом наибольшее повышение прочности достигается при некотором оптимальном соотношении энергий взаимодействия между частицами дисперсной фазы, молекулами дисперсионной среды и взаимодействия молекул дисперсионной среды с частицами дисперсной фазы. Такое оптимальное соотношение обычно достигается при частичной адсорбционной или химической лиофилизации поверхности дисперсной фазы, причем поверхность частиц принимает мозаичный характер, оказывается состоящей из лиофильных и лиофобных участков [38 Вопросы образования коагуляционных структур и влияния на их прочность адсорбционного и химического модифицирования имеют большое значение для теории и практики использования активных наполнителей в технологии полимеров, а также для разработки оптимальных приемов армирования пластиков волокнистыми дисперсными структурами. [c.23]

    Химическим модифицированием поверхности адсорбента можно создавать новые адсорбционные центры, природа которых определяется характером предполагаемого межмолекулярного взаимодействия адсорбент — адсорбат. [c.163]

    Адсорбционные данные и наши результаты согласуются друг с другом, если предположить, что на химически модифицированной поверхности молекулы бензола адсорбируются менее плоско группы —81(СНз)з создают стерические затруднения в свободе перемещения адсорбированных молекул. Поэтому хотя энергия взаимодействия адсорбат — адсорбент в случае покрытия поверхности метильными группами уменьшается, энергия активации вращения адсорбированных молекул может при этом возрасти. [c.229]

    В первом приближении целый ряд физико-механических свойств полимеров в стеклообразном состоянии, такие, как температура стеклования, коэффициент термического расширения (Р ), удельный объем (У ), модуль упругости Е) и напряжение при разрыве (Ор), являются функцией межмолекулярного взаимодействия между цепями, интегральной количественной характеристикой которого может служить величина плотности энергии когезии. Именно поэтому между этими параметрами часто можно наблюдать линейные корреляции. На рис. 13 и 14 приведены некоторые результаты проведенных нами исследований. На них представлены корреляции Tg—Pg, Tg — Е тз. — Е [43, 75, 76, 80] для различных химически модифицированных эпоксидных систем. Во всех примерах свойство полимера монотонно меняется с изменением его состава. [c.217]

    Хотя ЧИСЛО известных цеолитов велико, в большинстве спектроскопических работ изучаются лишь практически важные широкопористые цеолиты типа X и У. Такие цеолиты, как А, Ь, О, морденит, оффретит, эрионит, и ряд природных минералов исследованы менее подробно. В гл. 2 речь шла о применении средневолновой ИК-спектроскопии для анализа особенностей кристаллической структуры цеолитов, в этой главе мы обсудим данные об активных центрах на поверхности цеолитов, взаимодействии этих центров с молекулами адсорбатов, природе адсорбированных молекул, процессах, протекающих на поверхности в условиях проведения реакций, и об изменении состава поверхности при химическом модифицировании цеолитов. [c.148]

    По современным представлениям, роль противоизносных присадок сводится к химическому модифицированию прежде всего ювенильного (обнаженного) металла поверхности трения реакционноспособными продуктами термического разложения присадок. В общем виде процесс химического модифицирования металлической поверхности трения складывается из трех стадий адсорбции (или хемосорбции) присадки на металлической поверхности, термического разложения (превращения) молекул присадки и взаимодействия продуктов разложения присадки с металлом [1—4]. [c.228]

    Углубленная оценка коллоидной стабильности сложных систем позволяет создать смазочные масла с заданным уровнем эксплуатационных свойств. Исследование особенностей взаимодействия присадок КП-10, ДФ-11 и ОТП в индустриальном масле дало возможность разработать композицию с минимальным износом бронзы. Это обусловлено не столько химическим модифицированием бронзы активными компонентами присадок, как взаимодействием с ней комплексов, образованных присадками и ингредиентами масел. [c.56]

    Для нонимапия механизма адсорбции большое значение имеет изучение влияния химии поверхности адсорбента на адсорбцию молекул разного электронного строения. К сожалению, в основном уделяется внимание роли гидроксильных групп кремнезема в явлениях адсорбции. Механизму же адсорбции на модифицированных кремнеземах посвящено мало работ. Между тем изучение адсорбции на кремнеземах, к поверхности которых привиты определенные функциональные группы, позволяет проследить за взаимодействием молекул различной электронной структуры только с данными атомами или функциональными груннами, расположенными на поверхности адсорбента. Оргапозамещеппые кремнеземы с фиксированными функциональными группами, которые придают поверхности определенную специфичность и концентрацию которых можно менять в известных пределах, представляют собой весьма удобные модели для изучения межмолекулярных взаимодействий. Химическим модифицированием можно создавать на новерхностн адсорбента новые адсорбционные центры. [c.206]

    Вместе с тем в целом ряде случаев отсутствует прямая связь между термической стабильностью и эффективностью их противоизносного действия. Это объясняется тем, что помимо адсорбционной опособности и химической активности необходимо учитывать также свойства химически модифицированных слоев их состав, строение и толщину. Например, фосфиты наиболее эффективно взаимодействуют с металлом при 160 °С [258]. Эксперименты, проведенные с трибутилтритиофосфатом, показывают, что на стали фосфор связывается значительно интенсивнее, чем сера. Так, взаимодействие металла с фосфором отмечается уже при комнатной температуре, тогда как сера взаимодействует с металлом при температуре выше 100 °С [258]. [c.260]

    Такое химическое модифицирование поверхности твердого тела путем прнзиакн больших инертных групп резко снижает энергию адсорбции не только молекул, способных специфически взаимодействовать с гидроксильными группам (например, азота, этилена, бензола, эфира, спиртов и т. п.), но и всех молекул вообще. Это происходит в результате того, что при образовании подобных модифицирующих слоев молекулы адсорбата, во-первых, не могут прянти в соприкосновение непосредственно с основным скелетом твердого тела и, во-вторых, они приходят в соприкосновение с гораздо меньшим числом атомоз, поскольку расстояния между смежными группами СН.ч в модифицирующем слое соответствуют их ван-дер-ваальсовым размерам, а расстояния между атомами кислорода и кремния в основном скелете кремнезема соответствуют гораздо более коротким расстояниям химических связей. [c.503]

    Химия поверхности твердых тел и изменение адсорбционных свойств адсорбционным и химическим модифицированием поверхности. Межмолекулярные взаимодействия с твердым телом и возможность их изучения с помощью хроматографии. Простейший неспецифический адсорбент с однородной поверхностью — графитированная термическая сажа высокая чувствительность адсорбции к геометрии молекул и разделение структурных изомеров. Возможность определения структурных параметров молекул с помощью адсорбционной хроматографии (хроматоструктурный анализ, хроматоскопия). Применение углеродных адсорбентов как накопителей вредных примесей из окружающей среды. [c.5]

    Исключительно важное значение химия поверхности адсорбентов и носителей имеет в газовой и жидкостной хроматографии для анализа сложных смесей, препаративного выделения чистых веществ и управления технологическими процессами. Химия поверхности играет важную роль и в процессах, протекающих в биологических системах. К ним относится, в частности, взаимодействие биологически активных веществ, в том числе лекарственных препаратов, с рецепторами — местами их фиксации в организме. Изучение модифицирования поверхности необходимо для решения вопросов совместимости искусственных материалов с биологическими. Химическое модифицирование адсорбентов применяется при разработке эффективных методов вывода из крови разного рода токсинов (гемосорбция). Прививка к поверхности крупнопористых адсорбентов и носителей соединений с определенными химическими свойствами необходима для иммобилизации ферментов, их хроматографического выделения и очистки, а также для иммобилизации клеток. Иммобилизованные ферменты и клетки эффективно используются в промышленном биокатализе, обеспечивая высокую избирательность сложных реакций в мягких условиях. Очистка и концентрирование вирусов гриппа, ящура, клещевого энцефалита и других для получения эффективных вакцин требует применения крупнопористых адсорбентов с химически модифицированной поверхностью. [c.6]

    Рассмотрим теперь разделение на силикагеле с гидроксилированной поверхностью веществ, растворимых только в сильно полярных растворителях, на примере углеводов. Углеводы плохо разделяются на гидроксилированной поверхности силикагеля из сильно полярных элюентов, потому что силанольные группы поверхности имеют кислотный характер. Особое значение для разделения таких полярных адсорбатов из полярных элюентов на гидроксилированной поверхности силикагеля имеет модифицирование поверхности адсорбента органическими модификаторами с полярными группами основного характера (электронодонорными группами), обращенными к элюенту. Удержать на поверхности полярного адсорбента такие модификаторы можно, как это было показано в лекциях 4 и 5, прибегнув к предварительному адсорбционному или химическому модифицированию поверхности полярного адсорбента кислотного типа. В частности, в лекции 5 было рассмотрено аминирование силикагеля путем проведения химической реакции силанольных групп его поверхности с -аминопро-пилтриэтоксисиланом [см. реакцию (5.23)]. Однако не обязательно проводить предварительное химическое модифицирование повер ) -ности. Можно воспользоваться адсорбцией бифункциональных веществ, в данном случае диаминов, добавив их в элюент в такой концентрации, при которой обеспечивается создание достаточно плотибго адсорбционного слоя. Молекулы этих непрерывно действующих на адсорбент в колонне при прохождении элюента адсорбционных модификаторов должны быть бифункциональными, в данном случае обе группы должны быть донорами, чтобы одна из них обеспечивала сильное специфическое взаимодействие с силанольными группами поверхности силикагеля, а другая была бы обращена к элюенту для Обеспечения опецифичеокого взаимодействия с дозируемыми адсорбатами. Важно при этом, чтобы создание достаточно плотного мономолекулярного слоя модификатора обеспечивалось при весьма малых его концентрациях в элюенте. Такими бифункциональными модификаторами по отношению к кислым силанольным группам силикагеля из водно-ор- [c.301]

    Способность ПЭВД, как и других полиолефинов в определенной мере взаимодействовать с различными соединениями используется на практике для направленного изменения свойств — химического модифицирования. Широко изучены процессы хлорирования, сульфохлорирования, фосфонирования, окисления с последующей прививкой различных функциональных групп и созданием привитых сополимеров. Большую роль играют процессы физико-химического модифицирования, сочетающие воздействие химических реагентов с воздействием УФ-излучения, ионизирующего излучения. Вопросы направленного изменения структуры и свойств ПЭВД и других полиолефинов подробно рассмотрены в монографии [154]. [c.163]

    Многие органические соединения, особенно алифатического ряда, не проявляют электрохимической активности в обычных условиях и не детектируются амперометрическими детекторами. Этот факт наряду с выбором условий детектирования (потенциала электрода, растворителя, pH раствора и др.) в значительной степени определяет селективность отклика амперометрических детекторов при анализе матриц сложного состава, одновременно ограничивая их использование в ВЭЖХ. Тем не менее, существуют возможности для расширения сферы применения амперометрических детекторов. С этой целью применяют химически модифицированные электроды. При этом достигаются две основные цели повышение чувствительности детектора за счет ускорения медленных редокс-реакций и увеличение избирательности отклика при нанесении на поверхность электрода веществ, специфически взаимодействующих с определяемыми соединениями. [c.569]

    В газоадсорбционной хроматографии (ГАХ) разделение соединений происходит за счет различной адсорбируемости на поверхности адсорбента. Г АХ — один из основных методов газовой хроматографии наряду с газо-жидкостной хроматографией. ГАХ широко используется для разделения газов и паров легкокипящих соединений, структурных изомеров, а также для разделения высококипящих соединений. Адсорбция на плоских поверхностях более чувствительна к геометрической структуре молекул по сравнению с растворением, т.к. в первом случае молекула испытывает одностороннее межмолекулярное взаимодействие с адсорбентом, а во втором она окружена молекулами растворителя со всех сторон. Для ГАХ разработаны однородные неорганические, полимерные и углеродные адсорбенты. Возможности ГАХ значительно расширила разработка различных методов геометрического, адсорбционного, ионообменного и химического модифицирования. Колонки с неорганическими и углеродными адсорбентами не имеют собственного фона, в отличие от колонки с сорбентами на основе жидких фаз. Это обстоятельство позволяет работать на таких колонках и при более высоких температурах в режиме программирования, используя более чувствительные шкалы. [c.279]

    По классификации Киселева [382], рассмотренные нами химически модифицированные адсорбенты можно отнести к двум группам. К первой принадлежат силикагели с химически насыщенной поверхностью — модифицированные фтором, алкильными и алифатическими группами. Поверхность таких адсорбентов неспецифически взаимодействует не только с молекулами, имеющими л-связи (ароматические углеводороды, азот, ненасыщенные углеводороды), но и с молекулами, имеющими свободные электронные пары (вода, спирты, эфиры и др.). Так как доля дисперсионной компоненты взаимодействия в адсорбции полярных молекул [c.177]

    При взаимодействии бурого угля с раствором гидроокиси калия образуется щелочно-угольная композиция. Поведение щелочно-угольной композиции на всех стадиях переработки отличается от разложения сырья в производстве адсорбентов сернисто-калиевой активацией. Это обусловлено физико-химическими особенностями бурого угля как сырья и различным характером разложения композиций. Влияние модификатора (гидроокиси калия) начинает проявляться с момента его введения в исходный бурый уголь, который представляет собой сложную пространственную структуру с большим числом областей ароматического характера, высокой реакционной способностью. Наличие гуминовых кислот и большого количества функциональных групп повышает реакционную способность материала, в результате чего бурый уголь активно откликается на обработку щелочными реагентами. При этом идут процессы диспергирования исходных структурных элементов маточного материала бурого угля за счет процессов, схожих с процессом омыления. Происходит значительный разогрев пасты. Имеет место глубокое химическое модифицирование исходного сырья, приводящее к пластической гелеобразной системе, обладающей высокой пространственной подвижностью. Равномерное распределение водного активатора по всей массе материала и большая вероятность образования соединений близких по типу к ПАВ способствуют получешпо пластичной композиции с достаточной исходной прочностью, обусловленной действием сил адгезии. Увеличение количества модификатора улучшает пластические свойства системы, так как вместе с гуматами в процессе струк-турообразования принимает участие и непрореагировавшая с гуминовыми кислотами щелочь. [c.542]

    В последние годы накоплен большой экспериментальный материал, свидетельствующий о том, что форма изотерм сорбции, помимо структуры адсорбентов, в значительной степени зависит от химической природы их поверхности, характера адсорбата и размера адсорбирующихся молекул. При этом былс показано, что химическое модифицирование поверхности твердых тел приводит к изменению их активности как по отношению к веществам, адсорбирующимся за счет электростатических сил, так и к веществам, адсорбция которых является результатом дисперсионного взаимодействия. Так, например, при замене гидроксильных групп поверхности силикагеля фтором, хлором или органическими группами (метильными, этильны-ми, пропильными и другими насыщенными радикалами) [14— 24] наблюдается резкое падение его адсорбционных свойств как к полярным, так и к неполярным веществам. Наиболее сильно данная особенность выражена для паров воды, спиртов, в меньшей мёре — для паров бензола, циклогексана и еще в меньшей для азота и аргона (рис. 62). [c.149]

    С помощью подходящих реакций химического модифицирования можно привить к поверхности кремнезема и другие соединения, содержащие на свободном конце функциональные группы —СН=СНг, —СбНз, —СЫ, со, г о, -СООН, —он, ЫН и т. п., в свою очередь способные к разнообразным специфическим взаимодействиям (литературу см. в [27]). Большое значение для многих практических применений (например, в газовой хроматографии для снижения адсорбционной активности адсорбентов и носителей [6]) имеет полнота поверхностной реакции замещения, т. е. образование на поверхности кремнезема плотного слоя привитых к ней модифицирующих групп. Прививка к по- [c.95]

    Процесс взаимодействия црисадки типа эфира трихлорметилфосфиновой кислоты с железом, т. е. процесс химического модифицирования поверхности трения, может быть представлен следующим образом. [c.234]

    Описанный процесс химического модифицирования поверхности трения в результате взаимодействия эфира трихлорметилфосфиновой кислоты с ювенильным металлом является основным. Вместе с тем в некоторых условиях возможно и другое направление химического модифицирования разложение эфиров трихлорметилфосфиновой кислоты с образованием соответствующих кислот, как описано выше, и взаимодействие образовавшихся кислот с железом поверхности с образованием солей железа. Как было показано, трихлорметилфосфиновые кислоты легко образуют металлические соли. [c.235]


Смотреть страницы где упоминается термин Взаимодействие химически модифицированных: [c.138]    [c.199]    [c.170]    [c.352]    [c.352]    [c.172]    [c.193]    [c.205]    [c.271]    [c.97]   
Химия привитых поверхностных соединений (2003) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте