Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

сгь растворов электропроводность растворов

    Электропроводность растворов сильных электролитов. Теория сильных электролитов Дебая и Гюккеля исходит из положения, что между ионами существуют силы взаимодействия. Вблизи каждого иона данного знака будет находиться большее число ионов с обратным знаком. Такое распределение ионов называется ионной атмосферой, которая создает на месте данного иона потенциал, противоположный ему по знаку. При наложении внешнего поля ионная атмосфера вокруг иона вызывает появление двух эффектов, тормозящих движение иона в растворе релаксационный эффект, обусловленный нарушением симметрии расположения ионной атмосферы вокруг центрального иона, и электрофоретический эффект, обусловленный движением иона против потока сольватированных ионов противоположного знака. Кроме этих двух сил, тормозящих движение иона в растворе, существует и сила трення, зависящая от вязкости среды, в которой движется нон. [c.272]


    Гипотеза Аррениуса дала возможность объяснить многие особенности в химических свойствах растворов электролитов (реакции гидролиза, значение концентрации водородных ионов и др.). Вытекающие из нее количественные соотношения между различными свойствами растворов — электропроводностью, темпер-атура-ми замерзания и др. — оказались в согласии с опытными данными (хотя и не для всех электролитов). Это в большой степени способствовало признанию правильности исходных положений гипотезы. Однако в гипотезе Аррениуса раствор электролита рассматривался по существу как механическая смесь из молекул растворителя и ионов и молекул электролита, т. е. в этой гипотезе не находило отражения взаимодействие между всеми этими частицами, и поэтому оставалась без объяснения и основная сущность явления. [c.382]

    Электропроводность является одним из наиболее важных электрических свойств любого материала, причем это относится в одинаковой мере как к твердым телам, так и к растворам. Электропроводность растворов варьирует в пределах от значительных величин, свойственных ионным растворам соли, до чрезвычайно низких, характерных для чистых углеводородов. В табл. 40 приведено удельное сопротивление нескольких типичных материалов (см. ссылку 159). Надо полагать, что среди физических свойств имеются очень немногие с таким громадным диапазоном величин, как это наблюдается у электрического сопротивления. [c.192]

    Во-вторых, измерения электропроводности растворов, например раствора серной кислоты д умя медными электродами, показало, что в растворах некоторых веществ соблюдается закон Ома этот факт согласуется с теорией электролитической диссоциации. Между тем ранее полагали, что ток в растворах электролитов может протекать только после того, как приложенное напряжение достигнет некоторого минимального значения, необходимого для разложения молекулы на ионы. [c.308]

    I при работе ставится на столик магнитной мешалки 6, якорь 7 перемешивает раствор. Электропроводность раствора измеряют мостиком Кольрауша (описание см. на стр. 278). К опыту приступают после установки термостата на указанную температуру и проверки постоянства температурного режима. Во время нагревания термостата подготовляют и собирают прибор для проведения опыта. [c.437]

    Для геометрически правильных объемов можно легко определить повышение электропроводности, отнесенное к 1 см периметра, при расстоянии между электродами 1 см. В качестве примера техники расчетов в таких случаях можно привести экспериментальные данные из работы Мак-Бена, Пакера и Кинга, в которой определялась электропроводность растворов КС1 в щелях из полированного стекла. Константа ячейки (щели) находилась из геометрических размеров. В опытах со щелью (ширина 0,0125 мм, длина 0,01 мм. и толщина 1,058 мм) ими было получено увеличение удельной электропроводности внутри щели на 52,96% для 0,001 н. раствора КС1. Исходя из определения поверхностной проводимости величина ее находится следующим образом объемная удельная электропроводность 1-10 н. раствора КС1 при 25° равна 0,000146 ом см тогда поверхностная проводимость в щели, составляя 52,96% от объемной, будет 0,00007764 oм см К Из размеров щели следует, что численное значение поверхности в 1601,6 раз больше, чем ее объем. Следовательно, проводимость на 1 см поверхности составит [c.105]


    В сосуд для титрования (см. рис. 12, г) наливают 50 мл анализируемого (0,1—0,05 н.) раствора, погружают электроды с мешалкой, включают мотор для вращения ванны и милливольтметр. При помош,и делителя напряжений стрелку милливольтметра устанавливают в такое положение, при котором кондуктометрическая кривая может полностью разместиться на ленте. Если электропроводность раствора при титровании понижается, стрелку устанавливают в верхней части шкалы, если повышается— в нижней. Затем прибор устанавливают так, чтобы отводная трубка сосуда Мариотта (см. рис. 14) находилась над ячейкой. Включают регистрирующую часть милливольтметра и при нанесении второго показания на ленту начинают подачу стандартного раствора. Запись кривой заканчивают при избытке титранта. После окончания титрования электроды вынимают и удаляют из ячейки раствор. Промывают ячейку и электроды дистиллированной водой и проводят параллельные определения. На кондуктометрических кривых графическим методом устанавливают точки эквивалентности и определяют количество интервалов между записью показаний милливольтметра до ее изломов. Десятые доли интервалов вблизи точки эквивалентности находят на глаз. Продолжительность титрования зависит от числа определяемых компонентов и достигает 5—20 мин. [c.106]

    Изменение эквивалентной электропроводности растворов сильных электролитов с разбавлением связано с изменением межионного взаимодействия. Под влиянием приложенной разности потенциалов равномерность распределения ионов в ионной атмосфере нарушается, центральный ион и противоионы атмосферы начинают смещаться в противоположных направлениях и благодаря возникновению тормозящих сил уменьшается подвижность ионов. В более концентрированных растворах подвижность также уменьшается благодаря более частым столкновениям катионов и анионов, движущихся в электрическом поле в противоположных направлениях. При больших разведениях раствора межионное взаимодействие очень незначительно и ионы движутся с максимальными скоростями, не зависящими от дальнейшего разведения. [c.242]

    Если такие соли находятся в равновесии с углеводородами и если повышение концентрации соли увеличивает электропроводность раствора, то изменение числа метильных групп (стабилизирующих положительный заряд) и их положения в бензольном кольце должно влиять на электропроводность растворов метилированных бензолов в жидком фтористом водороде. Данные табл. 16-1 это подтверждают раствор гексаметилбензола обладает приблизительно в 10 раз большей электропроводностью, чем раствор ге-ксилола Можем ли мы объяснить, почему, например, раствор 1,3,5-триметил-бензола (мезитилена) в жидком фтористом водороде лучше проводит электричество, чем раствор в том же самом растворителе 1,4-диметилбензола (и- [c.613]

    Титрование слабой кислоты слабым основанием. В этом случае изменение электропроводности раствора до точки эквивалентности связано только с повышением концентрации анионов кислоты и катионов основания. Если реакция протекает количественно, то концентрации этих ионов равны между собой и линейно возрастают. После точки эквивалентности электропроводность раствора остается практически постоянной. Ограничения связаны с гидролизом образующихся солей. В результате гидролиза в растворе снижаются равновесные концентрации анионов кислоты и катионов основания. При этом кривые титрования закругляются вблизи точки эквивалентности. Кондуктометрическое определение [c.161]

    Примером значительного влияния давления на равновесие в жидкой фазе является смещение ионного равновесия и связанное с ним изменение электропроводности растворов при высоких давлениях. Чтобы судить о влиянии давления на ионное равновесие, необходимы данные о парциальных ионных объемах (на моль диссоциированного электролита). Однако определить абсолютную величину парциальных ионных объемов в настоящее время не представляется возможным. Если же принять, например, величину в водном растворе при 25 и 1 атм равной нулю, то можно вычислить относительные парциальные объемы других ионов в тех же условиях по величинам парциальных мольных объемов электролитов в бесконечно разбавленных водных растворах. Так, по значению парциального мольного объема полностью диссоциированной соляной кислоты можно найти г с1- (считая ун+= 0), затем, проведя такое же измерение с раствором хлористого натрия, найти [c.53]

    Эквивалентная электропроводность водного раствора сильного электролита при 25°С равна 109.9 См-см -моль при концентрации 6,2-10" моль-л" и 106,1 См-см -моль при концентрации ],5-10 моль-л . Какова эквивалентная электропроводность раствора при бесконечном разбавлении  [c.119]

    Таким образом, следует считать, что электропроводность растворов гексафторидов во фтористом водороде должна отвечать равновесному состоянию согласно приведенной схеме. В этом случае электропроводность будет определяться только водой, в форме гидроксония. Такая электропроводность может быть сравнена с соответствующей электропроводностью для раствора воды во фтористом водороде, что дает возможность установить концентрацию воды в реакции. Это условие нами было использовано в методе расчета констант гидролиза. [c.99]


    Электропроводность раствора электролита при высоком напряжении увеличивается с возрастанием напряженности поля. Это явление происходит, когда скорость миграции иона становится сравнимой со скоростью образования ионной атмосферы. Это обусловливается, во-первых, увеличением числа ионов в растворе, вызывающим уменьшение константы устойчивости любого присутствующего комплекса, и, во-вторых, увеличением ионных подвижностей. Онзагер [55] показал, что при данной температуре и диэлектрической постоянной константа устойчивости Р1(Х) незаряженного комплекса ВА в электрическом поле напряженности X может быть связана с константой устойчивости в поле нулевой напряженности, с X, с валентностями и эквивалентной электропроводностью групп А и В. Таким образом, [c.375]

    Величина электропроводности растворов имеет большое значение для протекания электрохимических процессов. На ее основе можно сделать рациональный выбор состава электролита, при котором непроизводительные затраты электроэнергии будут минимальными. Знание электропроводности растворов необходимо при составлении энергетических и тепловых балансов электролизеров и химических источников тока. С величиной электропроводности связана рассеивающая способность гальванических ванн, т. е. возможность получения равномерного осадка металла на участках покрываемого изделия, различно удаленных от анода. Однако использование данных по определению электропроводности не ограничивается только электрохимией. Кондуктометрия находит самое широкое применение как метод химического анализа, производственного контроля и научного исследования. Она обладает рядом преимуществ перед химическими методами анализа, так как позволяет определить содержание индивидуального вещества в растворе простым измерением электропроводности раствора. Для этого нужно только иметь предварительно вычерченную калибровочную кривую зависимости электропроводности от концентрации вещества. Кроме того, в процессе измерения электропроводности анализируемый раствор практически не изменяется, благодаря чему можно проводить повторные измерения и, сохранив его, в любое время проверить полученные результаты. [c.104]

    Вскоре после открытия Вина Дебай и Фалькенгаген предсказали существование еще одного эффекта. Сущность его заключается в увеличении электропроводности растворов электролитов с частотой приложенного электрического поля. Этот эффект называется эффектом Дебая — Фалькенгагена или дисперсией электропроводности. Возможность его появления также обусловлена существованием ионной атмосферы. Действительно, при высоких частотах ионы в растворе не перемещаются, а лишь совершают колебательные движения в направлении, параллельном направлению поля. Центральный ион при этом не успевает выйти за пределы ионной атмосферы, которая также не успевает заметно разрушиться, а в каждый данный момент только колеблется в направлении, обратном движению центрального иона. В этом случае силы, связанные с разрушением и с созданием ионной атмосферы, т. е. релаксационные тормозящие силы, проявляются в меньшей степени и электропроводность раствора растет. При высоких частотах она достигает значения, которое отличается от электропроводности при бесконечном разведении на величину Яь поскольку релаксационный эффект исчезнет Яп = 0, а электрофоретическое торможение сохранится. В этом случае [c.128]

    Диффузионные потенциалы устраняются е помощью мостика, содержащего концентрированный раствор соли, благодаря тому, что ионы этой соли присутствуют в месте жидкостного соединения в большом избытке и, следовательно, они переносят через границу почти весь ток. Создается положение, отчасти подобное тому, которое имеет место в случае, когда один и тот же электролит находится по обеим сторонам жидкостного соединения. Если оба иона имеют приблизительно равные подвижности, т. е. если числа переноса каждого из них для данного раствора составляют около 0,5, то диффузионный потенциал будет невелик [ср. уравнение (37)]. Эквивалентные электропроводности при бесконечном разбавлении для ионов калия и хлора при 25° равны соответственно 73,5 и 76,3 ом -см такие же электропроводности иона аммония и нитрат-иона соответственно равны 73,4 и 71,4 ом -см . Приблизительное равенство этих значений для катиона и аниона в каждом случае объясняет действие растворов хлористого калия и азотнокислого аммония, уменьшающих диффузионные потенциалы. [c.301]

    На электропроводность растворов электролитов оказывает известное влияние диэлектрическая проницаемость е растворителя, поэтому с позиций теории Аррениуса естественно ожидать, что в растворителях с меньшей е СНзСООН должна проводить электрический ток хуже, чем в средах с высоким значением е однако растворы СНзСООН в нитробензоле (8=34,75) —растворителе с высоким значением е, вопреки ожиданию проводят электрический ток хуже, чем в бутил-амине (е=5,3) и в воде (е=78,3). Более того, в бутиламине уксусная кислота проявляет более кислые свойства, чем в воде сам бутиламин, не проводящий тока и характеризующийся слабыми основными свойствами в водной среде, ведет себя в растворе уксусной кислоты как более сильное основание. Это не означает, что степень диссоциации уксусной кислоты в среде бутиламина выше, чем в воде. Понятия о силе электролита в водной среде строятся, как известно, на представлении о полной или частичной диссоциации данного вещества на ионы. Применительно к неводным растворам эти понятия приобретают другой смысл, так как сила кислоты обусловливается способностью электролита проявлять в той или. иной степени протонно-донорные свойства по отношению к растворителю и ионизироваться с образованием промежуточных соединений — ионных пар (подробней см. ниже). [c.9]

    Кажущимся противоречием этому положению является величина электропроводности растворов Сильных электролитов, которая на опыте оказывается меньшей, чем это соответствует полной электролитической диссоциации данного электролита. Между тем известно, что чем больше ионов в растворе, тем больше, при прочих равных условиях, электропроводность раствора. Тот факт, что электропроводность растворов сильных электролитов соответствует меньшему числу ионов, чем их имеется при полной диссоциации, объясняется не соединением части ионов в недиссоциированные молекулы, а изменением скорости движения ионов вследствие оказываемого ими взаимного влияния (электростатическое притяжение или отталкивание ионов). [c.34]

    Характерным свойством растворов является взаимодействие частиц растворенного вещества с растворителем. Растворитель нельзя считать только индифферентной средой, так как электропроводность раствора очень сильно зависит от химической природы растворителя. Растворы электролитов, например хлористого водорода в спирте или эфире, проводят ток значительно хуже, чем водные растворы хлористого водорода той же концентрации (И. А. Каблуков). Растворы хлористого водорода в бензоле, гексане и ксилоле совсем не проводят тока. Это объясняется образованием непрочных соединений растворенного вещества с растворителем. Химическая природа растворения особенно заметна в концентрированных растворах. [c.59]

    Приборы и реактивы. Прибор для сравнения электропроводности растворов. Криоскоп. Стаканы емкостью 50 мл. Сахар (порошок). Хлорид натрия. Хлорид калия. Иодид калия. Нитрат калия. Нитрат натрия. Мрамор (мелкие кусочки). Ацетат натрия. Хлорид аммония. Цинк. Индикаторы лакмусовая бумага, метиловый оранжевый, фенолфталеин Растворы соляной кислоты (2 п. 0,1 н.  [c.85]

    Сосуд для измерения электропроводности раствора — электролитическая ячейка — представляет собой стеклянный сосуд с платиновыми электродами. Электроды жестко закреплены в стенках или в крышке сосуда для того, чтобы расстояние между ними не изменялось. В зависимости от электропроводности анализируемого раствора выбирают ячейку с большим или меньшим расстоянием между электродами, с большей или меньшей поверхностью электродов. Отношение площади электрода к расстоянию между электродами — важная характеристика ячейки, называемая постоянной электролитической ячейки. [c.358]

    Имеется ряд электролитов, электропроводность растворов которых измерена с очень большой точностью и приготовление их растворов точной концентрации не представляет затруднений. Эти вещества (подобно веществам для установления титров в объемном анализе) используют для установления по иим электропроводности растворов других веществ. Чаще всего для этой цели применяют хлорид калия. Удельная электропроводность растворов хлорида калия различной концентрации  [c.359]

    Кондуктометрия основана на измерении электропроводности растворов, Этот метод широко применяется в пpoизвoд tвe и лабораторной практике, В электрохимической промышленности электропроводность играет большую роль при составлении энергетических и тепловых балансов электролизеров и химических источников тока, так как на ее основе можно сделать рациональный выбор состава раствора электролита, при котором электропроводность раствора достаточно велика и непроизводительные затраты электроэнергии минимальны, Кондуктометрия позволяет автоматизировать контроль производства в ряде отраслей промышленности, имеющ,их дело с растворами электролитов или расплавами, определять содержание солей в различных растворах при испарении воды, что имеет, например, значение для контроля качества воды и других жидких сред. [c.267]

    Ассоциация ионов в растворах. Если раствор электролита содержит достаточно большое количество ионов, то между ними возникает электростатическое взаимодействие, влияющее на свойства раствора. Еще в 1890 г. И. А. Каблуковым было обнаружено явление аномальной электропроводности. Обычно с увеличением разведения в растворах слабых и сильных электролитов увеличивается как степень диссоциаций, так и подвижность ионов, т. е. увеличивается электропроводность при уменьшении концентрации электролита. Однако при исследовании растворов хлористого водорода в амиловом спирте И. А. Каблуков обнаружил аномальное увеличение электропроводности раствора при значительном повышении концентрации НС1. Позже этот факт был объяснен обра-зованием сложных комплексных ионов, растворы которых хорошо проводят электрический ток. Таким образом, для растворов характерно не только явление диссоциации, но и обратное ему явление ассоциации — соединение ионов друг с другом, а также ионов с молекулами растворенного вещества. [c.231]

    При нейтрализации NaOll электропроводность раствора линейно понижается, так как уменьшается концентрация высокоподвижиы.х гидроксильных ионов (рис. 17, кривая 4). При титровании слабых основании— аммиака (рис. 17, кривая /) и анилина (рис. 17, кривая 2) происходит повышение проводимости раствора до точки эквивалентности, вызываемое образованием хорошо диссоциирующих солей. На кривой титрования разбавленных растворов анилина вблизи точки эквивалентности наблюдается слабый изгиб кривой вследствие гидролиза получающегося гидрохлорида анилина. Избыток НС1 вызывает резкое увеличение электропроводности раствора. [c.108]

    Кондуктометрриеский метод анализа основан на измерении удельной электропроводности анализируемого раствора. Электропроводностью называют величину, обратную электрическому сопротивлению К. Единицей изме-ренрм электропроводности является Ом , или См (сименс). Растворы электролитов, являясь проводниками П рода, подчиняются закону Ома. По аналогии с сопротивлением проводников I рода сопротивление раствора прямо пропорционально расстоянию между электродами с и обратно пропорционально площади их поверхности [c.817]

    Щелочные ооли некоторых жирных кислот с прямой цепью образуют интересные гели, имеющие большое промышленное значение. Соли кислот с короткой цепью воднорастворимы и ведут себя как нормальные кристаллоидные электролиты. Аномальные свойства обычных мыл появляются только при содержании в цепи более восьми а леродных атомов, увеличиваясь с длиной цепи. Типичным представителем мыл является пальмитат натрия. При низких температурах (0°С) он относительно нерастворим, но очень хорошо растворяется при 100° С. В разбавленных водных растворах его поведение нормально данные о понижении упругости пара и электропроводности говорят об отсутствии или малой степени молекулярной ассоциации соли и о высокой степени электролитической диссоциации (хотя и несколько более низкой, чем у других солей этого типа). При высоких концентрациях и понижение упругости пара и электропроводность ненормально низки в некоторой узкой области концентраций понижение упругости пара уменьшается с увеличением концентрации. Очевидно, что в концентрированных растворах молекулы мыла в высокой степени ассоциированы, образуя так называемые мицеллы коллоидных размеров. Некоторые из этих мицелл заряжены, но в значительной степени они состоят из нейтрального мыла. Выше 70°С эти коллоидные растворы устойчивы, но если температура падает ниже этого предела, то из растворов постепенно выпадает творожистый осадок, образованный фибриллами, состоящими в основном из сильно гидратированного нейтрального мыла. При дальнейшем понижении температуры весь концентрированный раствор превращается в мутную творолшстую массу, в которой промежутки между частицами заполнены остатком раствора мыла или его гелем. При температуре 0 С все мыло находится в состоянии творожистого осадка, концентрация же его во внешней жидкости очень мала. В этой области температур растворы в определенных условиях могут быть получены и в форме гелей, которые в отличие от относительно мутных творожистых осадков прозрачны и однородны. [c.246]

    Электролит может содержать самые разнообразные соединения, которые образуют проводящий раствор. Электропроводность раствора должна быть, конечно, достаточно высокой, чтобы исключить потери электрической энергии обусловленные выделением тепла. Можно ирименя1ь водные и неводные растворы. Наиболее распространенными электролитами являются растворы серной кислоты, соляной кислоты, едкого натра и едкого кали и растворы солей неорганических и органических кислот. В качестве неводных сред применяются ледяная уксусная кислота и метиловый спирт. [c.322]

    Электропроводность раствора того или иного электролита (сильного или слабого) зависит от многих факторов, в числе которых важнейшими являются концентрация электролита в растворе, природа растворителя и температура раствора. Найдем зависимость, удельной и килоэквивалентной электропроводностей раствора электролита от концентрации его в растворе.( ельная электропроводность раствора измеряется величиной тока, протекающего через проводник длиной 1 м с поперечным сечением 1 м при разности потенциалов на концах проводника 1 в. Действительно, если сопротивление раствора, заключенного между электродами, и напря-ж ие, приложенное к ним, соответственно равны и и, то величина тока, протекающего по раствору, согласно закону Ома, равна [c.270]

    Сила тока зависит от скорости диффузия электроактивных ионов к микроэлектроду (в отсутствии перемещивания, при избытке инертного электролита). В определенных условиях скорость диффузии пропорциональна кон центрации Сила диффузиоино го тока изменяется с изменением концентрации восстанавливающегося вещества. В точке эквивалентности наблюдается скачок силы тока Потенциал электрода, изготовленного из специального материала, может меняться с изменением концентрации вещества в растворе Электропроводность раствора зависит от числа и природы присутствующих в рас творе ионов [c.29]

    Так как Ag I выпадает в осадок, а замена ионов Ag+ на ионы К+ слабо отражается на электропроводности, то электропроводность раствора мало меняется (уменьшаясь только вследствие разбавления раствора) до тех пор, пока не будут полностью удалены из раствора ионы Ag+. Дальнейшее же прибавление раствора КС1 будет повышать общее количество электролитов в титруемом растворе, а следовательно, и электропроводность последнего. Таким образом, в точке, отвечающей эквивалентности количества имевшегося AgNOs и прибавленного КС1, на кривой электропроводности будет перелом. [c.270]

    Измерения начинают с определения Гна или Гсон при обратимом водородном потенциале. Для этого тщательно отмытый и высушенный в атмосфере водорода непосредственно в ячейке исследуемый электрод вводят в контакт с раствором, насыщенным водородом. Изменение концентрации кислоты или щелочи, вызванное образованием ДЭС, находят кислотно-основным титрованием [1, 2, 11, 12] или по электропроводности раствора [22]. Величины Гна или Гсон при других потенциалах можно найти, определяя разницу в концентрациях кислоты или щелочи в растворах, контактирующих с электродом при обратимом водородном потенциале и при заданном потенциале. В растворах с добавками солей можно непосредственно определить Гд и Гс +, если имеется достаточно точный и надежный аналитический метод определения концентраций аниона или катиона. Метод применим к электродам с развитыми поверхностями. [c.58]

    При этом титровании ионы Н" " соляной кислоты постепенно связываются ионами ОН щелочи с образованием недиссоциированных молекул воды. Ионы же Na щелочи постепенно накапливаются в растворе, замещая таким образом ионы Н . Но так как скорость движения последних при электролизе значительно больше, чем скорость движения ионов Na , указанное замещение связано с понижением электропроводности раствора. В точке эквивалентности все ионы Н соляной кислоты окажутся замещенными ионами Na, и электропроводность раствора будет иметь наименьшую величину. При добавлении же избытка щелочи она будет снова возрастать вследствие накопления в растворе ионов Na и ОН . Если несколько раз измерить электропроводность раствора во время титрования при недостатке щелочи и при ее избытке и полученные величины нанести на график, то две прямые У и 2 (рис. 29) дадут точку пересечения, которая будет соответствовать точке эквивалентности. Опустив из этой точки перпендикуляр на ось абсцисс и измерив отрезок ab, можно узнать объем раствора. NaOH, израсходованного на нейтрализацию НС1, [c.210]

    Положительным фактором для растворов, содержащих больтие количества поваренной соли, является также то, что электро.тда з Hiix протекает при гораздо меньшей затрате электроэнергии вследствие возрастания электропроводности раствора и понижения в связи с этим напряжения на электродах. Как видно из нршеденного графика (рис. 218), расход электроэнергии па получение 1 кг активного хлора резко снижается при увеличения содерлгания соли в растворе, примерно, до 10%-ной концентрации. При дальнейшем увеличении содержания соли в растворе расход электроэнергии снижается незначительно. [c.299]


Смотреть страницы где упоминается термин сгь растворов электропроводность растворов: [c.437]    [c.235]    [c.52]    [c.77]    [c.357]    [c.34]    [c.34]    [c.60]    [c.210]    [c.243]    [c.91]    [c.116]    [c.228]    [c.370]    [c.153]   
Справочник химика Изд.2 Том 3 (1964) -- [ c.657 , c.659 , c.660 , c.665 , c.684 , c.697 , c.699 ]




ПОИСК





Смотрите так же термины и статьи:

Электропроводность растворов ПАВ



© 2025 chem21.info Реклама на сайте