Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Функциональные группы нуклеиновых кислот

    Гетероциклические ядра составляют основу для построения многочисленных гомологических рядов, содержащих углеводородные остатки в виде боковых цепей, а также всевозможные функциональные группы. К гетероциклическим соединениям относятся, кроме упомянутых, также многие другие важные природные вещества. Это, например, алкалоиды — азотсодержащие растительные физиологически активные вещества. Среди них есть и сильные яды (стрихнин, никотин), и важные лекарственные препараты (хинин, резерпин). Гетероциклические ядра составляют основу многих антибиотиков, например пенициллина, тетрациклина витаминов. (витамины группы В п др.). Пуриновые и пиримидиновые основания входят в состав нуклеиновых кислот — материальных носителей наследственности, играющих важнейшую роль в процессах биосинтеза белков. [c.340]


    Функциональные группы нуклеиновых кислот [c.126]

    Установление химического типа белков (и только белков ) является для чисто химических методов принципиально неразрешимой задачей, так как белки не являются классическими объектами органической химии. Они обладают практически неограниченной химической потенцией, и их исключительность состоит не в особой склонности к тем или иным, вполне определенным и характерным только для них химическим реакциям, а, напротив, в их универсальности. Химическое поведение белков характеризуется необозримо широким спектром действия, несопоставимым по своему функциональному многообразию с действиями любого другого класса молекул живой и неживой природы или соединений, синтезированных человеком. Именно благодаря универсальным биохимическим свойствам белков назначение генетического аппарата любого живого организма сведено только к их синтезу. В органической химии аналитические методы основаны на эмпирическом тестировании реакций, на выявлении тех химических особенностей, которые присущи лишь данному типу молекул или атомных групп. Со времени Бутлерова считалось незыблемым, что такому условию удовлетворяют все синтезируемые соединения. Не явились исключением здесь и жиры, углеводы и нуклеиновые кислоты. Поэтому определение типов их молекулярного строения на чисто химической основе не встретило непреодолимых осложнений. Подчеркнем, что сказанное относится ко всем природным и синтетическим полимерам, в том числе и к ближайшим искусственным аналогам белков -полиаминокислотам. Таким образом, предпринятые после Фишера попытки решить с помощью органической химии структурную задачу белков не достигли и не могли достичь цели. История химии белка данного периода скорее свидетельствует об обратном - имевшее место увеличение количества химических данных о белках сопровождалось ростом неопределенности в понимании их химического строения. Изучение на такой основе белков не приближало, а, напротив, уводило в сторону от решения этой типичной по своей постановке для синтетической органической химии задачи. [c.65]

    Высокий уровень структурной и функциональной организации живой материи в первую очередь обеспечивается участием особых биополимеров — белков и нуклеиновых кислот. Для каждого индивидуального биополимера характерен определенный порядок чередования разнотипных мономерных звеньев, образованных в случае белков двадцатью различными аминокислотами, а в случае нуклеиновых кислот — четырьмя различными нуклеотидами. Это создает основу неисчерпаемого многообразия таких биополимеров. Кроме того, полимерные цепи обеих групп биополимеров содержат большое число простых связей, и поэтому каждый индивидуальный биополимер может существовать в виде неисчислимого множества конформеров. Однако в результате многочисленных нековалентных взаимодействий, в которых участвуют как фрагменты остова полимера, так и различные боковые радикалы, в условиях существования живых организмов предпочтительным оказывается ограниченное число конформаций. Поэтому каждый биополимер обладает не только уникальной последовательностью чередования мономерных звеньев, но и уникальной пространственной структурой или небольшим набором таких структур. [c.9]


    Понятие информация обычно ассоциируется с радио, телевидением, газетами, печатной продукцией, вычислительными центрами и т. д., поскольку мы привычно связываем информацию с деятельностью человека. В данной главе речь будет об информации, которая передается и перерабатывается в процессах совершенно иного рода, а именно в процессах воспроизводства живых организмов. В настоящее время уже установлено, что запись и передача информации в биологических объектах осуществляются посредством нуклеиновых кислот, таких, как ДНК, РНК и т. п. В информационных высокомолекулярных соединениях такого рода статистическая информация определяется последовательностью элементов структуры. Высокая сложность процессов передачи информации требует участия в них большого числа веществ сигнализаторов , функциональных агентов (ферменты, носители и т.п.), матриц записи. Главную роль играют белки, поскольку именно последовательность аминокислот в белках (первичная структура) является основой записи информации. Использование записанной информации определяется формой и характеристиками белковых молекул (распределение электрического заряда, наличие гидрофобных групп и т.д.). Процессы, связанные с передачей информации посредством белков, очень интересны, но мы их рассматривать не будем, а уделим все внимание некоторым специальным вопросам функциональности полимеров в системах передачи информации. [c.178]

    А. Н. Белозерским [4] с сотрудниками было убедительно показано, что в нуклеопротеидах, помимо ионной связи между нуклеиновой кислотой и белками, существуют другого типа связи, повидимому, за счет функциональных групп белков, с одной стороны, и функциональных групп нуклеиновых кислот, с другой стороны. Это имеет место в так называемых истинных нуклеопротеидах , которые не удается обычными способами расфракционировать иа нуклеиновые кислоты и белки. [c.349]

    Для исследования функциональных свойств нуклеиновых кислот особое значение имеют реакции гетероциклических оснований нуклеиновых кислот с реагентами нуклеофильного типа. Если рассмотренные до сих пор реакции сводились либо к замещению атомов водорода гетероциклической системы, либо к присоединению по двойной связи гетероциклического ядра, то при реакции с нуклеофильными агентами наблюдается замещение имеющихся в ядре функциональных групп (заместителей), а именно аминогрупп. Наряду с непосредственным замещением аминогруппы в случае пиримидиновых оснований происходит также и присоединение по двойной связи с последующим замещением аминогруппы. [c.342]

    Иную природу имеют межплоскостные взаимодействия оснований. Гетероциклические основания нуклеиновых кислот достаточно гидрофобны, т. е. в водном растворе им выгоднее расположиться друг над другом и тем самым уменьшить контакт с молекулами воды. При образовании таких стопок во взаимодействие вступают функциональные (С=0 и С—ЫНг) группы одного основания и я-элект-ронные системы соседнего с ним по вертикали основания. Поэтому стэкинг-взаимодействия оснований (в двойной спирали ДНК, например) зависят как от состава комплементарных пар, так и от их последовательности (рис. 13). [c.26]

    Напротив, для исследования первичной структуры нуклеиновых кислот модификация формальдегидом не может иметь большого значения из-за неустойчивости первичных продуктов реакции и крайне медленного образования устойчивых продуктов типа X . Гораздо большие перспективы в этом отношении имеет взаимодействие нуклеотидов с альдегидами, содержащими дополнительные функциональные группы, взаимодействие которых с гетероциклическим ядром может приводить к стабилизации продукта реакции. Примером использования такого подхода при разработке специфических реагентов для химической модификации нуклеиновых кислот может служить исследование взаимодействия компонентов нуклеиновых кнслот с а-окисью акролеина XI Этот реагент способен гладко реагировать при pH 10,0 с гуанозином и дезоксигуанозином , в то время как другие обычные нуклеозиды [c.412]

    Координационные свойства природных соединений. Накопление функциональных групп в органических молекулах, которые могут выступать как лиганды, особенно в соединениях полимерного характера (полисахариды, полипептиды, белки, нуклеиновые кислоты и др.), сильно осложняет картину комплексообразования с ионами и солями металлов. Это происходит в результате того, что свойства функциональной группы будут зависеть от расположения в сложной молекуле, от конформации этой молекулы и от стерического экранирования реакционного центра окружающими фрагментами молекул. Эта ситуация создает много трудноразрешимых затруднений для физико-химического исследования такого комплексообразования и для его термодинамического описания. [c.179]

    Мы уже познакомились с такими жизненно важными биомолекулами как белки, углеводы, нуклеиновые кислоты. Это подлинные биомолекулы, каждая из которых отличается своеобразным строением и специфической функцией. В то же время названные биомолекулы имеют общие характеристики они состоят из стандартных блоков, объединенных в биополимеры, содержат разнообразные функциональные группы и проявляют многостороннее биологическое действие. В этом смысле липиды представляют собой совершенно особую, уникальную группу природных соединений, в которую входят и низкомолекулярные вещества, и очень сложные белково-липидные и гликолипидные комплексы. [c.95]


    В книге не излагаются специально вопросы синтетической химии нуклеиновых кислот и их мономерных компонентов. Наличие ряда монографий по этому разделу и желание ограничить объем книги делают нецелесообразным рассмотрение обширной литературы по методам синтеза нуклеозидов и нуклеотидов крайне сжато рассмотрены лишь вопросы синтеза полинуклеотидов. Тем не менее многие разделы книги тесно соприкасаются с вопросами синтеза и могут быть, по нашему мнению, полезны химику-синтетику, который найдет здесь материал о реакционной способности функциональных групп, входящих в состав нуклеозидов и нуклеотидов, а также описание отдельных реакций, весьма полезных для синтетических целей. [c.11]

    По своему химическому поведению аминогруппа в компонентах нуклеиновых кислот наиболее близка, по-видимому, к аминогруппе ароматических аминов, содержащих сильные электроноакцепторные заместители, например к аминогруппе п-нитроанилина. Дополнительное осложнение состоит здесь, однако, в том, что даже простейшие производные данного ряда (нуклеозиды) содержат также и другие функциональные группы, способные вступать в реакцию с электрофильными реагентами. Это атомы азота пиридинового типа в гетероциклическом ядре, гидроксильные группы остатка моносахарида. При переходе от нуклеозида к нуклеотиду проведение реакции осложняется еще больше за счет появления в молекуле функциональной группы с сильными нуклеофильными свойствами — остатка фосфорной кислоты — создается возможность новых побочных реакций. При реакциях с олиго- и полинуклеотидами вследствие таких побочных реакций могут возникать три-замещенные производные фосфорной кислоты, в которых крайне облегчена атака нуклеофильных агентов на атом фосфора, что может приводить к расщеплению полимерной цепи. Поэтому подбор оптимальных условий проведения реакции по экзоциклическим заместителям ядер на полинуклеотиде является обычно достаточно трудной задачей. [c.402]

    В предыдущих главах были описаны химические реакции, характерные для основных и большей части редких компонентов нуклеиновых кислот. Однако некоторые редкие компоненты обладают необычными химическими свойствами, обусловленными присутствием в их молекуле функциональных групп, отсутствующих в других нуклеозидах. Эти реакции, выходящие за рамки принятой в данной книге классификации, кратко рассматриваются в данной главе. [c.605]

    Не случайно природу наследственности определяют именно гетероциклические компоненты нуклеиновых кислот. Их функциональные группы и геометрия таковы, что азотистые основания могут образовывать пары, соединяясь возникающими между ними водородными связями. Анализ ДНК, например, показывает, что аденин и тимин присутствуют в ней в соотношении 1 1. Это дает основание полагать, что они каким-то образом спарены в ДНК. [c.422]

    Предлагаемая монография является первой и единственной по данному вопросу. Наряду с подробным описанием методики измерений и современной автоматической аппаратуры (кстати говоря, созданной авторами книги), в ней описываются преимущества и особенности метода кругового дихроизма по сравнению с вращательной дисперсией, кратко даны результаты теории оптической активности и др. Две первые общие главы, а также заключительная теоретическая глава позволяют понять физический смысл кругового дихроизма, а разбор ряда исключений из эмпирического правила октантов дает пример осмысленного применения последнего в сложных случаях. Это особенно необходимо иметь в виду, чтобы избежать формального применения метода. В главах, посвященных использованию метода для изучения структуры молекул различных классов соединений, можно встретить весьма простые и эффективные решения конкретных задач с помощью метода кругового дихроизма. Показано, что к числу важных исследуемых функциональных групп относятся главным образом карбонильная группа и сопряженные группы других типов, а в число содержащих их молекул попадают стероиды, различные красители, витамины, а также важные полимерные молекулы — полипептиды и белки, полинуклеотиды и нуклеиновые кислоты, нуклеопротеиды. [c.6]

    Н. Д. Зелинский и Н. И. Гаврилов [6] убедительно показали значение дикетопиперазинового цикла в структуре микромолекулы белка. Дикето-пиперазиновый цикл является основным структурным элементом, формирующим полипептидные цепи в структуре белковой молекулы. Не исключена возможность, что дикетопиперазиновый цикл через функциональные группы азотистых оснований нуклеиновых кислот образует молекулу нуклеопротеида. В литературе не описаны соединения, содержащие в своем составе дикетопиперазиновые и пиримидиновые циклы. [c.354]

    В полиамфолитах и, следовательно, в биополимерах возможно образование солевых связей между катионными и анионными группами в одной цепи или в разных цепях. Исследования строения и свойств биополимеров обязательно должны учитывать их полиамфолитную природу, а, значит, pH и ионную силу среды. Структура нативных (т. е. биологически функциональных) молекул белков и нуклеиновых кислот в значительной мере определяется электростатическими, ионными, взаимодействиями. Не менее важны взаимодействия с малыми ионами окружающей среды. Взаимодействие белков с ионами К+, Na+, Са++, Mg+ определяет важнейшие биологические явления, в частности, генерацию и распространение нервного импульса и мышечное сокращение. Функциональная структура нуклеиновых кислот и их участие в биосинтезе белка также связаны с катионами щелочных и щелочноземельных металлов. [c.86]

    В течение 80 лет после открытия Мишера нуклеиновые кислоты в химическом отношении оставались почти неизученными. Этому едва ли приходится удивляться, поскольку четкие представления об их биологической роли начали формироваться лишь в середине 40-х годов XX в. Многое изменилось в конце 40-х - начале 50-х гг., когда работы Тодда и его группы позволили выяснить основные характеристики первичной структуры нуклеиновых кислот - строение мономеров и характер связей между ними. Последующие полтора десятилетия принесли дальнейшие успехи в этой области - появление модели двойной спирали и вслед за тем накопление огромного объема сведений о функциональной роли нуклеиновых кислот, хотя при этом практически отсутствовала структурная информация — в химическом смысле этих слов. Решительный перелом наступил в 1965 г., когда появилась работа Р, Холли по выяснению первичной структуры фенилаланиновой тРНК дрожжей. Это была выдающаяся работа автор дал основные принципы и методы исследований в этой сложной области выделение индивидуальных нуклеиновых кислот, использование специфических эндонуклеаз для расщепления попинуклеотидной цепи, выяснение [c.5]

    Еще более вероятным кажется предположение, что при связывании остатка нуклеозида субстрата с некоторым участком фермента происходит конформационная перестройка последнего, в результате чего формируется конформация активного центра, необходимая для ферментативной реакции. Наконец, возможно, что необходимой предпосылкой для образования фермент-субстратного комплекса является такая конформация НДФС, при которой гетероциклическое ядро нуклеозида и остаток сахара сближены, и гетероциклическое ядро непосредственно участвует в ферментативной реакции. Такое участие может быть связано со способностью оснований нуклеиновых кислот выступать в качестве доноров или акцепторов протона или восстанавливаться (служить акцепторами гидрид-иона). Функциональные группы нуклеиновых оснований могут образовывать водородные связи с гидроксильными группами остатка сахара, что приводит к стабилизации определенных конформаций последнего и к созданию благоприятных стереохимических условий для определенных химических процессов. [c.184]

    Первый раздел включает цветные реакции, характерные для отдельных функциональных групп. Кроме того, некоторые классы природных соединений объединены по характерным для них цветным реакциям. Такая компоновка отражает либо какую-то определенную особенность строения, характерную для всех соединений данного класса (например, наличие остатка дезоксисахара в стероидных гликозидах и нуклеиновых кислотах), либо относится к молекуле в целом (например, реакции на стероидное ядро). Сводка ограничена пробирочными реакциями, при которых используется не более 1—2 мг вещества. Во многих случаях это количество может быть уменьшено без потери чувствительности. В частности, для экономии вещества во многих случаях можно с успехом применять капельные пробы по Файглю [198]. Достоверность любой цветной реакции резко повышается, если параллельно проводить в стандартных условиях реакцию с веществом, заведомо дающим эту же цветную реакцию, а также контрольную реакцию со смесью используемых реагентов. Цветные и некоторые другие характерные реакции на различные функциональные группировки суммированы в табл. 1.2. [c.51]

    Очень часто при описании методов синтеза и свойств пептидов не рассматриваются аналогичные методы синтеза и свойства не менее важных соединений — фосфодиэфиров. Действительно, стратегия синтеза и проблемы, которые при этом возникают (например, использование ДЦГК, защитные группы, синтез на полимерном носителе и т. д.), весьма похожи, если не одинаковы, хотя никогда не обсуждаются параллельно. Восполнить этот пробел— вот цель настоящей главы. При этом, как и ранее, проводится сравнение с биосинтезом фосфатной связи. Следовательно, в настоящей главе сравниваются химические и биологические (биоорганические) свойства двух функционально важных классов макромолекул белков и нуклеиновых кислот. Разумеется, мы дополним эту картину, рассмотрев свойства еще двух мононуклеотидов, играющих важную роль в биологических процессах,— нук-леозидтрифосфатов и циклических нуклеотидов. Это показывает, что, подобно аминокислотам, для биологических систем важны не только полимерные молекулы. Рассматривая этот вопрос, мы вновь проведем сравнение химического и биологического путей синтеза. Освещаются результаты исследований, опубликованные в литературе, включая 1980 г. [c.104]

    Третье издание значительно переработано по сравнению с предыдущим (2-е издание вышло в 1967 г.). В нем расширены главы, касающиеся реакций функциональных групп полимеров и деструкции полимеров включены сведения о ряде новых поли.иеров уделено внимание термостойким полимерам существенно дополнены разделы, посвященные полисахаридам, нуклеиновым кислотам и белкам [c.2]

    Из схемы 9.1 очевидно, что фундаментом всей органической химии являются углеводороды. От алканов происходят все остальные классы углеводородов. Из углеводородов в результате химических реакций замещения Н-атома С-Н-связи и присоединения реагентов по л-связям возникают основные классы функциональных производных углеводородов — галогенопроизводные, сульфопроиз-водные, нитросоединения, спирты, простые и сложные эфиры, альдегиды, кегоны и карбоновые кислоты. Дальнейшее химическое преобразование (химический дизайн) этих производных за счет замещения или химического видоизменения функциональных групп создает все труднообозримое многообразие полифунк-ционапьных органических соединений, в том числе аминокислоты, пептиды, и белки, жиры и углеводы, гетероциклы различной сложности, витамины, гормоны, нуклеотиды и нуклеиновые кислоты, ферменты. [c.317]

    Фундаментальную роль в пространственной организации отдельных клеток и живых организмов и в протекании биохимических процессов играет способность молекул белков и нуклеиновых кислот к опознаванию строго определенных партнеров, которая выражается в резко преимущественном образовании комплексов именно с этими партнерами. Возможность высокоспецифичного образования комплексов обеспечивается наличием у биополимера набора функциональных групп, предназначенных для взаимодействия с адекватным набором групп в узнаваемой молекуле. Пространственная структура биополимера обеспечивает взаимное расположение этих функщюнальных групп, оптимальное для такого взаимодействия. [c.9]

    До недавнего времени считалось, что обязательным компонентом всех ферментов являются белки. Был накоплен огромный материал, свидетельствующий, что именно белки способны опознавать определенные субстраты, обеспечивая тем самым высокую специфичность биологического катализа. Кроме того, многочисленные данные демонстрировали, что белки обеспечивают оптимальную ориентацию субстратов относительно функциональных групп фермента, осуществляющих химическое превращение. Этими группами в случае кислотного, основного и нуклеофильного катализа чаще всего являются группы, входящие в состав белка. В случае электрофильного и окислительно-восстановительного катализа в химическом превращении, как правило, участвуют специальные кофакторы — ионы металла или сложные органические молекулы. Но в этом случае белковая часть фермента организует работу кофактора так, чтобы обеспечивалась свойственная ферменту специфичность и одновременно с Высокой эффективностью реализовался каталитический потенциал кофактора. Однако в начале 80-х годов были от крыты и стали объектом интенсивных исследований ферменты, построенные из молекул рибонуклеиновых кислот (рибозимы). Интерес к этой группе ферментов резко усилился в связи с разработкой методов молекулярной селекции нуклеиновых кислот, позволившей, в частности, начать направленное конструирование рибозимов с разнообразными типами каталитической активности. [c.11]

    Однако для большого числа, а возможно, и для большинства функционально активных белков и нуклеиновых кислот могут проис.чодить и глубокие изменения конформации, приводящие к новой структуре с резко отличающимися от ис.чод-ной свойствами, в том числе способностью выполнять определенные биологические функции. Такие изменения могут существенно повлиять на взаимное расположение групп, участвующих в узнавании специфического лиганда, либо усиливая, либо ослабляя взаимодействие с этим лигандом. Одним из таких изменений является денатурация биополимера, что, как правило, приводит к полностью неактивным молекулам, причем нередко это Изменение оказывается необратимым. Однако это может быть и пере.чод в новую определенную структуру, достаточно резко отличающуюся от исходной, но имеющую свой структурный облик, подвер- [c.114]

    За последпие годы нолучены новые экспериментальные материалы, которые в некоторой степени проливают свет на эту сложную проблему — регуляцию синтеза белка на клеточном уровне. Эти достижения связаны прежде всего с исследовательской группой Mono и Жакоба, работающей в Пастеровском институте. В регуляции белкового синтеза на клеточном уровне нуклеиновые кислоты, видимо, также играют решающую роль. Прежде всего, было найдено, что различные участки молекулы ДНК функционально неоднородны и одна молекула ДНК может определять синтез большого числа функционально и химически различных белков клетки. Эти участки ДНК обозначают термином цистрон или, учитывая, что он обусловливает специфическую структуру этого белка — структурный цистрон . Таким образом, на структурных цистронах, как на матрице, могут синтезироваться молекулы информа- [c.91]

    Существует также большое число шестичленных гетероциклов, содержащих атомы азота и кислорода или атомы азота и серы. Эти гетероциклические соединения не обладают ароматическим характером и по своим химическим свойствам напоминают ациклические соединения, содержащие аналогичные функциональные группы. Некоторые представители этого класса гетероциклических соединений кратко рассмотрены в разд. 7.6. Настоящая глава посвящена в основном ароматическим диазинам и трназинам. Пиримидин, важный фрагмент нуклеиновых кислот, и родственный ему пурин рассматриваются в разд. 7.3. [c.299]

    Задание 15.3. В состав нуклеиновых кислот входит О-рибоза в р-фу-ранознон форме. Напишите структуру р-О-рибофуранозы и укажите, за счет каких функциональных групп открытой формы О-рибозы образуется фураиозиый цикл. [c.391]

    При создании полимерных лекарственных веществ первоначально полагали, что полимеры должны выполнять лишь транспортные функции и бьггь биологически инертными. Однако углубленное изучение их свойств показало, что они сами проявляют разнообразные виды биологической активности, которая существенным образом зависит от наличия в боковых цепях тех или иных функциональных групп [1]. Оказалось [2, 3], что полимеры, несущие положительный или отрицательный заряд (поликатионы или полианионы) взаимодействуют кооперативно с мембранами клеток, природными макромолекулами - белками, нуклеиновыми кислотами, проявляя биологическую активность на молекулярном уровне и воздействуя на организм в целом. Следует подчеркнуть, что мономеры, из которых построены биоактивные синтетические макромолекулы, такой активностью не обладают. [c.164]

    В производных нуклеиновых кислот наиболее исследованы реакции первой группы — ацилирование и алкилирование по гидроксильной группе остатка сахара, а также реакции присоединеншг к олефинам с поляризованной двойной связью, например, к виниловым эфирам. Эти реакции применяются для определения концевых групп в олигодезоксирибонуклеотидах (см. гл. 1), а также для изучения вторичной структуры и функциональных исследований в ряду полирибонуклеотидов, особенно тРНК. Очень важное значение имеют реакции такого типа для мономерных компонентов нуклеиновых кислот нуклеозидов и нуклеотидов, где они [c.511]

    Целлюлозными ионитами называют такие производные целлюлозы, которые содержат кислые или основные функциональные группы, нерастворимы и ограниченно набухают в водных растворах кислот и щелочей. В 1956 г. они были предложены Петерсоном и Собером [1] как сорбенты для разделения белков хроматографическим методом. С тех пор целлюлозные иониты нашли широкое применение для хроматографии не только белков, по и высших полипептидов, нуклеиновых кислот, олигонуклеотидов, пуклео-протеинов и других природных высокомолекулярных соединений. [c.206]

    Азотсодержащие органические соединения представлены в бытовых сточных водах белками и продуктами их гидролиза — пептидами и аминокислотами. Белки по химическому строению являются естественными полимерами — продуктом конденсации аминокислот. Молекулярная масса белков изменяется от десятков тысяч до нескольких миллионов. Количество звеньев аминокислот колеблется от нескольких десятков до сотен тысяч. В образовании белков участвуют аминокислоты различного строения с алифатическим, ароматическим или гетероциклическим радикалами и содержащие, кроме того, другие функциональные группы. Это обусловливает разнообразие строения белковых молекул, их сложность и различную биологическую активность. Белки, содержащие только остатки аминокислот, называются протеинами. Если же в молекуле наряду с белковыми группами содержится небелковая часть, то такие соединения называются протеидами. К протеидам относятся глико- и мукопротеиды, которые представляют собой соединения белков с углеводами фосфопротеиды, содержащие фосфор липопротеиды, содержащие кроме белковой части липидные группы нуклеопро-теиды — соединения бе.лков с нуклеиновыми кислотами. В воде белки образуют коллоидные растворы, устойчивость которых зависит от pH, присутствия электролитов, температуры. Повышение температуры, действие ультрафиолетовых лучей, ионизирующего излучения, некоторых химических веществ способствует биологической инактивации белков и уменьшению их растворимости в воде. [c.164]

    Поскольку нелинейные молекулы, состоящие из я атомов, обладают (Зп — 6) колебательными степенями свободы, то большинство б1Юлогически активных соединений должны поглощать многие частоты инфракрасного диапазона. В первую очередь это относится к нуклеиновым кислотам, белкам и полисахаридам, которые обладают столь огромным числом колебательных степеней свободы, что точная интерпретация их инфракрасных спектров практически невозможна. Однако даже для таких сложных молекул, как белки, из инфракрасных спектров можно извлечь некоторую полезную информацию, поскольку одни и те же функциональные группы поглощают излучение в специфических областях инфракрасного спектра независимо от того, входят ли они в состав малых или больших молекул. Например, переход, известный под названием колебания амид I, который обусловлен в основном продольными колебаниями карбонильной группы, расположенной по соседству с амидной группой, приводит к интенсивному поглощению при 1650 см в таких простых амидах, как Ы-метилацетамид, и в таких сложных молекулах, как р-лактоглобулин А [30]. Характеристические частоты колебаний различных групп можно найти во многих учебниках органической химии [31, 67]. Области частот валентных колебаний некоторых наиболее интересных для биохимиков связей приведены в табл. 9.3. [c.509]

    К нелетучим или слабо летучим компонентам, выделяемым из растительных и животных тканей, относят аминокислоты, другие органические кислоты и сахара. Перед проведением анализа методом ГЖХ следует увеличить давление их паров и уменьшить полярность, удаляя или заш,ищая функциональные группы путем окисления, ацетилирования, алкилирования или другими методами. После этого, проводя хроматографическое разделение в паровой фазе, можно получить о данных соединениях такую полную информацию, какую только удается собрать относительно более летучих соединений. Кроме того, усовершенствуя этот метод, можно определить состав и в меньшей степени строение некоторых продуктов конденсации, а именно белков, полисахаридов и гликозидов. До сих пор не появилось сообщений о нуклеотидах и нуклеиновых кислотах, но почти с уверенностью можно сказать, что метод ГЖХ. будет неоценимым при анализе фосфатных и сахарных компонентов, а вероятно, и азотсодержащих оснований, входящих в эти соединения. [c.528]

    Существенная разница между полимерами и поликонденсатами состоит в том, что последние содержат наряду с радикалами К функциональные группы (—0—, —ОСО—, N1100—) в самой цепи. В этом смысле важнейшие биологические полимеры (белки, нуклеиновые кислоты) сходны с синтетическими поликонденсатами. [c.18]

    На протяжении всего изложенного выше обсуждения внимание читателя обращалось на инактивирование ферментов, гормонов, токсинов и вирусов путем химического их изменения. Определение тех свободных функциональных групп в аминокислотных. остатках, которые имеют важное значение для проявления биологической активности, представляет собой одну из главных целей химической модификации белков и является одним из основных достижений в этой области исследования. В каждом из разделов этой статьи, посвященных различным химическим реакциям, приводятся отдельные классические примеры. Полная сводка их имеется в последующих томах настоящего сборника. Однако необходимо еще раз подчеркнуть, что параллелизм между удалением какой-либо функциональной группы белка и потерей активности вовсе не является необходимым следствием существенной связи между ними или ее доказательством. Упоминавшееся выше инактивирование вируса табачной мозаики формальдегидом является только одним из большого числа примеров, доказывающих, что лишь небольшая часть определенных функциональных групп белка связана с его биологической активностью. Кроме того, исследование реакций этого вируса с иодом, кетеном, фенилизоцианатом, карбобензоксихлоридом, п-хлорбензоилхлори-дом, бензосульфохлоридом и динитрофторбензолом показало, что его активность обусловлена не только аминогруппами, но также некоторыми фенольными и индольными группами. Однако Найт [106] отмечает, что, несмотря на эти интенсивные исследования, ни в одном из случаев не удалось найти такую функциональную группу, которая специфически или преобладающим образом определяла бы активность указанного вируса. В самом деле, в случае таких нуклеопротеидов, как вирус табачной мозаики, ролью нуклеиновой кислоты, входящей в их состав, почти полностью пренебрегают. [c.351]


Смотреть страницы где упоминается термин Функциональные группы нуклеиновых кислот: [c.12]    [c.518]    [c.171]    [c.410]    [c.332]    [c.526]    [c.200]   
Смотреть главы в:

Биохимия ТОМ 1 -> Функциональные группы нуклеиновых кислот




ПОИСК





Смотрите так же термины и статьи:

Группа С как кислота,

Нуклеиновые кислоты

Функциональные группы



© 2025 chem21.info Реклама на сайте