Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение ИК-спектроскопии в количественном анализе

    Инфракрасная спектроскопия. Так как все органические соединения имеют полосы поглощения в инфракрасной области спектра, то данный метод находит ограниченное применение для количественного анализа химических веществ, мигрирующих из полимерных материалов. [c.19]

    Применение метода абсорбционной спектроскопии не ограничивается только определением концентраций веществ. В результате поглощения излучения энергия систем з1 меняется настолько незначительно, что это не приводит обычно к нарушению целостности молекул поглощающего вещества. Однако в результате смещения химического равновесия в растворе под влиянием различных факторов его поглощающие свойства могут изменяться весьма значительно. На этом основано применение метода абсорбционной спектроскопии для изучения равновесий в растворах, реакций гидролиза и полимеризации, определения состава комплексных соединений, их констант устойчивости и т. п. . В данной главе рассматривается только метод абсорбционной спектроскопии как один из методов количественного анализа. [c.458]


    В этой главе рассматривается не столько сам метод, сколько его применение к решению проблем химии нефти. Это относится к применению инфракрасной спектроскопии и спектров комбинационного рассеяния для изучения химического строения углеводородов и углеводородных смесей. Несмотря на то значение, которое имеет качественный и количественный анализы индивидуальных соединений, основное внимание уделяется характеристическим частотам, наблюдаемым в спектрах веществ с определенной молекулярной структурой. Оценивается возможность количественного определения содержания углеводородов данного типа или данных структурных групп. В главе обсуждаются лишь основные вопросы спектроскопии комбинационного рассеяния света и инфракрасной спектроскопии, а вопросы, относящиеся к рассмотрению природы колебательных спектров или интерпретации колебательных частот, рассматриваются лишь частично. [c.313]

    Применение Н ЯМР-спектроскопии к анализу нефтяных фракций не получило столь широкого развития, как газо-жидкостной хроматографии или масс-сПектрометрии, что связано со спецификой метода. Так, в сложных смесях,— учитывая и без того небольшой интервал значений характеристических величин, в данном случае химических сдвигов (всего 20 м. д. для протонов из всех возможных классов органических соединений) — близкие по структуре соединения дают лишь уширение сигналов. Дальнейшее усложнение спектров происходит за счет спин-спинового взаимодействия Н-атомов. Применение ПМР-спектров для количественной оценки тех или иных групп обычно затруднено. Так, определить интенсивности сигналов протонов различных алифатических групп трудно в виду их перекрывания. Определение интегральных интен- [c.140]

    Практической целью методов атомной спектроскопии при анализе вещества является качественное, полуколичественное или количественное определение элементного состава анализируемой пробы. Еще 25—30 лет назад эти задачи решались, по существу, лишь одним из методов — атомно-эмиссионным методом спектрального анализа в оптическом диапазоне спектра, В настоящее время достаточно широкое применение получили также методы анализа по атомным спектрам поглощения и флуоресценции в оптическом диапазоне, а также по эмиссионным и флуоресцентным спектрам в рентгеновском диапазоне. Во всех случаях в основе этих методов лежат квантовые переходы валентных или внутренних электронов атома из одного энергетического состояния в другое. [c.53]


    Применение ЯМР-спектроскопии не ограничивается установлением или же подтверждением химического строения молекул. ЯМР дает возможность решать ряд проблем стереохимии, количественного анализа смесей, кинетики и механизмов быстрых химических реакций, в том числе протонного обмена, таутомерных превращений и другие вопросы. Целые разделы органической и неорганической химии обязаны своим стремительным развитием именно применению спектроскопии ЯМР- Данные спектров ЯМР считаются такими же надежными критериями в оценке структуры, в распознавании и отождествлении химических соединений, как и сведения других физических методов исследования. [c.10]

    Области применения фотометрии. Фотометрический анализ характеризуется высокой избирательностью и малыми затратами времени на его осуществление. Величина средней квадратичной ошибки фотометрических методов анализа составляет 2—5% (отн.). Благодаря этим преимуществам фотометрические методы очень широко используют. Некоторыми типичными примерами применения этого метода являются количественный анализ смесей (например, изомеров [63]), определение примесей в сплавах или минералах и породах [73] или же решение задач клинического анализа. Далее, фотометрические методы применяются при изучении кинетики реакций или для непрерывного аналитического контроля технологических процессов. Ввиду значительно больших молярных коэффициентов поглощения методы фотометрии в ультрафиолетовой области в общем обладают большей чувствительностью, чем методы инфракрасной спектроскопии [уравнение (2.3.7)]. Поэтому фотометрию в ультрафиолетовой и видимой областях предпочитают использовать при определении следовых количеств веществ [74], при контроле степени чистоты веществ, сочетая при необходимости фотометрические методы с подходящими способами выделения и концентрирования.  [c.248]

    В современном качественном и количественном анализе широко используются методы ИК-спектроскопии, хотя с момента открытия ИК-лучей (1800 г.) и практически до самого конца XIX в. они не находили применения в анализе. [c.44]

    Ранее уже указывались некоторые пути использования УФ-спектроскопии в химии. Дальше более подробно рассматривается применение спектрофотометрии для количественного анализа в химической кинетике и для определения констант ионизации кислот и оснований и констант комплексообразования. [c.24]

    Явление ядерного магнитного резонанса (ЯМР), открытое в 1945 г. Ф. Блохом и Э. Перселлом, ныне лауреатами Нобелевской премии, легло в основу создания нового вида спектроскопии, который в очень короткий срок превратился в один нз самых информативных методов исследования молекулярной структуры и динамики молекул, межмолекулярных взаимодействий, механизмов химических реакций и количественного анализа веществ в различных агрегатных состояниях. Начиная с 1953 г., когда были выпущены первые спектрометры ЯМР, техника ЯМР непрерывно совершенствуется, лавинообразно нарастает поток исследований, возникают новые и расширяются традиционные области применения в химии, физике, биологии и медицине. В соответствии с этим быстро расширяется круг специалистов, активно стремящихся овладеть этим методом. [c.5]

    Быстрому развитию науки в этой области способствовало широкое применение новейших методов анализа и разделения смеси веществ, основанных на использовании бумажной, колоночной и газожидкостной хроматографии, фракционного осаждения, инфракрасной спектроскопии, электрофореза, ионообменной хроматографии, гельфильтрации и др. Большое значение в этой области также имел накопленный опыт по синтезу специальных свидетелей для количественной хроматографии, особенно частично метилированных сахаров с известным расположением метоксильных групп. [c.6]

    Приведите основной закон, используемый для количественного анализа, и области его применения в ИК- и КР-спектроскопии. [c.200]

    Книга американского ученого, представляющая собой подробное справочное руководство по применению метода ИК-спектроскопии в аналитических целях — для качественного и количественного анализов различных классов химических соединений и их сложных смесей. Приводятся многочисленные примеры использования метода в промышленных лабораториях, в частности при анализе многокомпонентных систем, для контроля производственных процессов, при анализе промышленных загрязнений. [c.4]

    Применение ИК-спектроскопии в количественном анализе [c.232]

    Для иллюстрации возможностей применения ИК-спектроскопии при решении широкого круга задач из литературы выбран ряд примеров количественных определений. Условия проведения этих анализов не обязательно оптимальны при использовании приемов, ранее обсуждавшихся в этой главе, в некоторых случаях могут быть получены лучшие результаты. Многие примеры количественного анализа методом ИК-спектроскопии никогда не были опубликованы, так как они связаны с запатентованными методами и соединениями. [c.276]


    ИК-спектроскопия представляет собой один из самых распространенных инструментальных методов анализа. Основными областями ее применения являются установление строения, идентификация и количественный анализ. [c.41]

    Ввиду аналитической направленности книги теоретические вопросы изложены в ней в такой степени, чтобы читатель только почувствовал основы молекулярной динамики. Для получения из спектра максимальной информации важно иметь хорошую технику. Однако даже применение ЭВМ не исключает случайностей и небрежностей как в ходе приготовления образца, так и при работе на спектрофотометре, и этим вопросам уделено очень большое внимание. Важно также, чтобы всякий, кто имеет дело со спектральным прибором, понимал, как он работает с этой целью рассмотрены основные принципы конструкций существующих спектрофотометров. Представляются полезными списки ссылок на каталоги спектров и обзоры, посвященные специальным вопросам. Как мне кажется, количественный анализ методами ИК-спектроскопии используется недостаточно широко и понимается не всегда правильно, поэтому в книге ему отведено центральное место и для иллюстрации многообразия его возможностей приведено несколько примеров. Рассмотрены факторы, влияющие на групповые частоты, но групповые частоты отдельных функциональных групп не обсуждаются — по следующим причинам во-первых, имеются превосходные книги, посвящен- [c.7]

    Изменение концентрации вещества также приводит к изменению интенсивности его характеристических полос поглощения. Зависимость интенсивности поглощения от концентрации лежит в основе количественного анализа по инфракрасным спектрам. Этот метод анализа основан на применении закона Бугера—Ламберта—Бера А = ес/. Чаще всего здесь используют метод калибровочного графика. В ИК-спектроскопии, в отличие от электронной спектроскопии, затрудняется применение метода молярного коэффициента поглощения из-за рассеяния, сплошного поглощения и других эффектов. Из-за этих эффектов трудно определить положение линии 100 %-ного пропускания, т.е. интенсивность светового потока, прошедшего через образец без анализируемого компонента. С этой целью с помощью метода базовой линии определяют коэффициент пропускания как отношение [c.187]

    Растворы находят ограниченное применение в инфракрасной спектроскопии, поскольку все органические соединения имеют полосы поглощения в инфракрасной области. Тем не менее для тщательного исследования частей спектров или для количественного анализа, где требуются лишь величины поглощения для нескольких длин волн, подходящий выбор растворителя делает эту методику практически удобной. В некоторых случаях влияния слабых полос поглощения растворителя можно избежать введением поправочных множителей при использовании однолучевого прибора или прямой компенсацией при двухлучевом приборе. [c.253]

    С бутадиеном [119], S-98 — г< с-1,4-изомер в 1,4-полиизопрене [119], S-77 — полиакрилонитрил в покрытиях [3] и S-119 [34] —анализ смесей неопрена, бутилкаучука, SBR и натурального каучука. В табл. 43 приведен ряд ссылок на литературу, относящуюся к применению инфракрасной спектроскопии для количественного анализа полимеров. [c.275]

    Спектроскопия ЯМР используется в основном для изучения структуры органических соединений, но этот метод применяется также и для количественного анализа. На основании обзорных статей и монографий составьте обзор основных типов аналитических применений ЯМР. [c.217]

    Среди применяемых методов важное место занимает ИК-спектроскопия, которая используется для идентификации органических примесей. Высокая эффективность метода связана с его избирательностью как известно, не существует двух разных по строению соединений с одинаковыми ИК-спектра-ми, кроме оптических изомеров, поэтому часто ИК-спектр молекулы называют ее отпечатком пальцев . Помимо этог о ИК-спектры имеют характеристические полосы (области) поглощения для отдельных группировок атомов, повторяющихся в разных многоатомных молекулах.. Это свойство спектров часто позволяет определить класс, к которому относится неизвестное органическое соединение, если не удается его идентифицировать полностью. Как правило, интенсивности полос поглощения пропорциональны концентрации вещества, что обеспечивает возможность количественного анализа. Важной особенностью метода является возможность его применения к объектам в разных физических состояниях для анализа газообразных, жидких и твердых образцов. [c.152]

    Применение метода инфракрасной спектроскопии дает возможность анализировать довольно сложные органические вещества. Описана методика определения изомеров ксилола и этилбензола и некоторых других ароматических углеводородов. Дается описание одной методики количественного анализа твердых образцов. [c.4]

    Широкое применение получил метод спектров комбинационного рассеяния для определения состава бензинов. Здесь следует указать на работу, совместно проведенную сотрудниками Комиссии по спектроскопии, Физического института им. Лебедева и сотрудниками Института органической химии АН СССР. Ими разработан метод количественного анализа углеводородов [1]. [c.53]

    Метод ЯМР-спектроскопии наряду с другими физико-химическими методами широко применяется для целей СГА [1—11]. Была показана возможность применения метода ЯМР для количественного анализа состава фракций нефтей [6]. Проведено отнесение и выделение аналитических областей сигналов ядер и С в различных структурных фрагментах компонентов углеводородных смесей [6, 7, 10]. На основании экспериментальных данных по распределению атомов Н и С, подучаемых из спектров ЯМР, рассчитываются по различным схемам структурно-групповые (СГ) параметры средней молекулы [6—11]. В предлагаемых схемах расчета используются также дополнительные данные об элементном составе, средней молекулярной массе и другие физико-химические характеристики. На основе стехиометрических соотношений углеводородных соединений в наиболее распространенных нефтях и с использованием ряда допущений выведены системы уравнений, по которым определяют широкий набор структурны параметров степень ароматичности, количество и размеры ароматических блоков, количество и размеры циклических блоков, среднюю степень их замещения и др. Этот подход получил название интегральный структурный анализ (ИСА) [12, 13]. [c.138]

    Область применения ультрафиолетовых спектров поглощения для идентификации углеводородов и качественного и количественного анализа их смесей ограничена в основном аренами (ароматическими углеводородами), поскольку лишь последние обладают достаточно характерными спектрами. В этом смысле возможности ультрафиолетовой спектроскопии значительно уже возможностей инфракрасной спектроскопии и спектроскопии комбинационного рассеяния, не ограниченных определенным классом углеводородов. В пределах же указанной области применения особенности ультрафиолетовых спектров поглощения представляют определенные преимущества и позволяют разрешать ряд вопросов, решение которых с помощью колебательных (инфракрасных и комбинационных) спектров менее удобно и надежно либо невозможно. [c.397]

    Интенсивное применение в течение последних двух десятилетий физических методов, в частности спектроскопии в ультрафиолетовой и инфракрасной областях, а позднее ЯМР-спектроскопии, способствовало большому прогрессу и, возможно, даже произвело революцию в области установления структуры органических молекул, особенно молекул природных соединений. В противоположность указанным выше методам масс-спектрометрии уделяли очень мало внимания как в химии природных соединений, так и в органической химии в целом, несмотря на то что за последние десять лет начали выпускаться масс-спектро-метры очень высокого качества. Такое положение создалось, вероятно, частично потому, что масс-спектрометры благодаря высокой точности и хорошей воспроизводимости масс-спектров являются превосходными точными приборами для количественного анализа и их широкое ирименение для этих целей не стимулировало поисков новых областей применения метода. Большинство химиков-органиков до сих пор еш е рассматривает масс-спектрометрию как метод количественного анализа газообразных или низкокипящих углеводородов, определения стабильных изотопов в газообразных продуктах деградации и, конечно, как метод определения молекулярных весов. [c.300]

    В процессах производства, капролактама, где исходным сырьем является циклогексан, получаемый гидрированием бензола, образуются в качестве промежуточных продуктов многокомпонентные смеси углеводородов, нитросоединений, кетонов, спиртов, моно- и дикарбоновых кислот и других органических соединений, состав которых и чистоту целевых продуктов, как правило, трудно определить классическими аналитическими методами. В этом случае наиболее эффективным методом является газо-жидкостная хроматография, особенно в сочетании с инфракрасной спектроскопией. Комбинированное применение указанных методов оказалось весьма полезным при исследовании состава продуктов производства капролактама, а для их количественного анализа и заводского контроля рекомендованы простые и надежные методы газовой хроматографии. [c.297]

    Метод инфракрасной спектроскопии может применяться для идентификации различных химических соединений. Поскольку полосы поглощения непосредственно отражают состояние связей и наличие в молекуле различных атомных груп-пнроврк, можно получать весьма ценную информацию о структуре данного вещества. Интенсивность полосы поглощения в ИК-спектре любого химического соединения пропорциональна количеству исследуемого вещества, и это обстоятельство лежит в основе еще одного важного направления применения инфракрасной спектроскопии — количественного анализа. [c.334]

    Ценность специфичности метода ИК-спектроскопии. Основной характеристикой ИК-спектроскопии, определяющей плодотворность ее применения в количественном анализе, является избирательность поглощения веществ в ИК-области. Это свойство часто позволяет проводить анализ почти без всякой или с очень небольшой предварительной подготовкой образца. Компоненты, мешающие определению друг друга при обычных химических методах, могут оказаться независимыми по отношению к ИК-анализу. Благодаря специфичности ИК-спектроскопии становится возможным анализ, чрезвычайно трудно осуществимый какими-либо другими методами. ИК-спектроскопия применяется для определения относительного содержания коиформационных изомеров, таутомеров и других молекулярных форм веществ, чрезвычайно близких по своему химическому и физическому поведению. Именно ИК-спектроскопия явилась тем инструментом, который позволил впервые обнаружить существование подобных тонких различий. [c.206]

    Возможность применения инфракрасной спектроскопии для количественного анализа смесей углеводородов обусловила быстрое совершенствование техники и распространение ее в годы второй мировой войны. Инфракрасная спектроскопия дает быстрые и точные методы анализа смесей углеводородов, важных для производства авиационного топлива, синтетического кауч ка и пластмасс, В дальнейшем разработанные методы использовались также для анализа бензинов (в сочетании с ректификацией), нашли применение при анализе аренов в процессах нефтепереработки и др. В настоящее время возможен анализ углеводородов С —Се и частично Сд для смссей алканов п алканов и цикланов Сг—Св и частично Сц—Се для алкенов Се—С для аренов. [c.498]

    Применение спектроскопии для качественного и количественного анализов получило в настоящее время очень широкое распространение как по числу выполняемых анализов, так и по разнообразию аналитических объектов. Наибольшее значение имеют абсорбционный и эмиссионный анализ в оптической области спектра. Одновременно все больше практическое применение для аналитических целей получают и другие виды спектроскопии в оптической, рентгеновской и радиовол-новой областях. Рассмотрим кратко физическую основу этих методов, их аналитические возможности и аппаратуру. [c.338]

    Основы теории и практика ангшитического применения физикохимических и физических методов излах аются в разделе курса аналитической химии, специально посвященном этим методам и включающем преимущественно их приложение в количественном анализе. Здесь же ограничимся лишь краткой характеристикой применения некоторых из обсуждаемых методов в качественнолг анализе, дающей более или менее общее представление об их принципиальных возможностях. Исключение составляет рассмотрение методов ИК-спектроскопии, широко применяемых в качественном фармакопейном анализе, — эти методы излагаются более подробно (хотя, конечно, далеко не исчерпывающе). [c.515]

    Инфракрасная — ИК-спектроскопия. Спектры поглощения в инфракрасной области соответствуют колебаниям различных функциональных групп и связей, составляющих молекулу. К сожалению, особенности поглощения света в этом участке спектра таковы, что существенно осложняют количественную интерпрета-цию в соответствии с законом Ламберта — Бера. Инфракрасные спектры редко используют для количественного анализа. Основная сфера применения инфракрасной спектроскопии — это установление структуры индивиду-альных органических соединений, обнаружение в сложных смесях органических соединений тех или иных индивидуальных веществ или специфических функциональных групп. Благодаря тому, что ИК-спектр представляет собой набор большого числа узких линий, положение и интенсивность которых строго индивидуальны для каждого соединения, он является визитной карточкой органического соединения. Совпадение ИК-спектров в настоящее время считается одним из наиболее убедительных доказательств идентичности веществ. Для записи ИК-спектров обычно применяют кюветы из поваренной соли ЫаС1, прозрачной в этой области. Спектр записывают в координатах пропускание (поглощение), % — частота (или длина волны). Частоту чаще всего выражают в см , длину волны — в микронах или миллимикронах. На рис. 18 в качестве примера приведены ИК-спектры л- и л -ксилолов. [c.133]

    Интегрирование спектров с целью получения информации о площадях пиков одиа из самых обычных процедур протопион спектроскопии ЯМР. Ее точность вполне достаточна для определения числа протонов, дающих вклад в какой-либо пик. Было бы очень заманчиво использовать эту процедуру для других задач, требующих определения относительных количеств каких-либо соединений в растворе, например для экспериментов по кинетике или для количественного анализа смесей. Но если точность в 10-15%, вполне достаточная для определения числа протонов, достигается довольно легко, то точность, требующаяся для других количественных применений (допустим, лучше 1-2%), может оказаться недостижимой, В этом разделе мы коротко рассм )трим те причины, которые затрудняют использование спектроскопии ЯМР и особенно фурье-спектроскопни ЯМР для строгого количественного анализа, Эта тема подробно излагается в других руководствах по практическому ЯМР, но она настолько важна, а ожидания химиков настолько преувеличены, что, пожалуй, имеет смысл наложить здесь некоторые наиболее существенные моменты, [c.240]

    С помощью масс-спектрометрии как аналитического метода решают громадное число качественных и количественных задач. Качественные исследования заключаются в определении структуры неизвестного соединения, в частности, природных веществ, метаболитов лекарственных препаратов и других ксенобиотиков, синтетических соединений. Масс-спектрометрический анализ дает важную информацию для определения молекулярной массы, молекулярной формулы или элементного состава и структуры молекул. Масс-спектрометрия является наиболее чувствительным спектроскопическим методом молекулярного анализа по сравнению с другими рассмотренными методами, такими, как ЯМР- и ИК-спектроскопия. Для количественного анализа масс-спектрометрию используют при разработке арбитражных методов и методов сравнения, при количественном определении, например, полихлордибензодиоксинов (ПХДД) и наркотических препаратов. Масс-спектрометрия сегодня развивается очень быстро, охватывая все более широкие области применения, например анализ биомакромолекул (разд. 9.4.4). [c.255]

    Ядерный магнитный резонанс на ядрах применяется для количественного анализа эластомерных смесей. Для изучения вулканизатов смесей БСК, СКБ и НК использован метод ЯМР С с вращением под магическим углом, который сравним по своим возможностям с методом ИК-спектроскопии, однако не требует применения стандартных образцов. Тем не менее для повышения точности рекомендуется использование калибровочных кривых. Метод ЯМР более предпочтителен в тех случаях, когда вулканизаты с трудом поддаются 1шролизу (например, при пероксидной вулканизации), а также при определении содержания НК(СКИ) в смеси, составляющего менее 5%. [c.571]

    Все вышесказанное делает метод спектроскопии БИК очень удобным для качественного и количественного анализа как жидких, так и твердых крупно- и мелкодисперсных образцов. В 1968 году этот метод бьш впервые применен для определения содержания белка, жира и влаги в бобах сои. В настоящее время он щироко используется для контроля продуктов и сырья в сельскохозяйственной и пищевой промышленности, контроля производственных процессов в химической, нефтехимической, фармацевтической промьдшленности, ветеринарии, биологии и медицине. [c.478]

    В сборнике дано подробное описание оригинальных и усовершенствованных аналитических методов, подвергнутых тщательной экспериментальной проверке метод анализа индивидуального состава бензинов путем газо-жидкостной капиллярной хроматографии, компонентный микроанализ нефтей и битумов, групповой микрохроматографический. анализ средних и высших фракций нефти. Описываются методы группового выделения сульфидов в виде сульфоксидов из фракций нефти, разделение и характеристика смесей сульфидов ц их производных аналитической и препаративной тонкослойной хроматографией в сочетании с газо-жидкостной хроматографией и анализом стереомоделей изомеров. Разработана аппаратура и метод полуавтоматического экспресс-анализд на серу и галоген. Приводится методика определения азота, углерода и водорода с газохроматографическим окончанием анализа, а также метод количественного извлечения азотистых оснований из нефти и их получение в виде концентратов. Сборник содержит данные по применению спектроскопии (ИК-, КРС- и УФ-) к исследованию структурно-группового состава масел и к изучению насыщенных, непредельных и ароматических сульфидов и их смесей. [c.2]


Смотреть страницы где упоминается термин Применение ИК-спектроскопии в количественном анализе: [c.19]    [c.8]    [c.475]    [c.475]    [c.41]   
Смотреть главы в:

Прикладная ИК-спектроскопия -> Применение ИК-спектроскопии в количественном анализе

Прикладная ИК-спектроскопия Основы, техника, аналитическое применение -> Применение ИК-спектроскопии в количественном анализе




ПОИСК





Смотрите так же термины и статьи:

Анализ количественный

Анализ применение

Количественный анализ в ИК-спектроскопии

Применение спектроскопии для целей качественного и количественного анализа

Спектроскопия применение в анализе ПАВ

ЭПР-спектроскопия применение

спектроскопия анализ

спектроскопия количественный



© 2024 chem21.info Реклама на сайте