Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение природных полимеров

    РАЗДЕЛЕНИЕ ПРИРОДНЫХ ПОЛИМЕРОВ А. Природные смолы [c.331]

    Все расширяющееся использование реакций па полимерах обусловлено не только возможностями варьирования их свойств путем изменения природы функциональных групп, но и перспективами получения полимеров для совершенно новых областей применения, например для разделения веществ, синтеза электропроводящих материалов и др. С помощью модификации полимеров можно достигнуть их гидрофильности, что необходимо для использования их в водных системах. Кроме того, целенаправленно синтезированные полимеры могут заменить продукты, получаемые из натурального сырья, например желатин. Важным возобновляемым источником полимерного сырья являются полисахариды химическая модификация этих и других природных полимеров может привести к разработке новых технологических методов и до сих пор неизвестных возможностей их химических превращений. [c.9]


    Хотя стандартные методики ГЖХ применимы к большинству природных смесей липидов, наибольший прогресс в этой области достигнут в случае анализа липидов первичного экстракта плазмы [713—718] и отдельных классов липопротеинов [714, 719]. Это объясняется удачным распределением компонентов, смеси по их молекулярным массам и их относительным содержанием в смеси. Наиболее успешное разделение липидов первичного экстракта методом ГЖХ было получено на коротких неполярных колонках с силоксаном, первоначально использовавшихся для разделения природных триацилглицеринов [551]. Довольно удобными для такого рода разделений оказались колонки из нержавеющей стали или стеклянные (от 30 до 50 см длиной и внутренним диаметром от 0,2 до 0,3 мм), заполненные 1— 3% метилсилоксана или эквивалентными силиконовыми полимерами для высокотемпературной ГЖХ, нанесенными на внутренний инертный носитель. Колонки предварительно выдерживали в течение 2—3 ч при температуре 350 °С и проверяли их на способность необратимо сорбировать вещества. В зависимости от состава липидов использовали линейный градиент температуры в пределах 175—350 °С (со скоростью нарастания температуры 4—8°С/мин). Метод ГЖХ также широко применяется при анализе смесей нейтральных липидов плазмы [721—723]. [c.208]

    Однако такие фазы всегда имеют заметную каталитическую активность, что приводит к превращениям или необратимой адсорбции природных полимеров (белков, ферментов и т. д.) [13]. При использовании в качестве элюентов водных растворов компоненты пробы адсорбируются на таких материалах по принципу обращенных фаз (см. гл. VI, разд. Г) и разделение только по молекулярной массе становится невозможным. Применяя органические радикалы с полярными функциональными группами, можно получить химически связанные фазы, которые так же, как, например, силикагель, смачиваются водой. Часто используют [20, 21] фазу с такой функциональной группой  [c.209]

    Со времени опубликования в 1953 г. классического труда Флори по химии полимеров произошло два важнейших события, которые оказали глубокое влияние на всю область химии полимеров. Во-первых, были разработаны методы синтеза стереорегулярных виниловых полимеров. Это расширило область изучения свойств макромолекул в растворе, причем большее внимание стало уделяться методам, позволяющим характеризовать стереорегулярность образца. Оно также послужило стимулом для более тщательного теоретического анализа конформаций цепных молекул. Вторым важным событием явилось открытие существования систем, цепные макромолекулы которых принимают в растворе строго определенные спиралевидные конформации. В результате исследований переходов спираль — клубок в изолированных цепных молекулах было показано, что эти переходы являются одномерным аналогом процесса плавления. Теоретическое значение этого факта выходит за пределы макромолекулярной химии. Это открытие сыграло и другую важную роль. После того как было установлено, что строго определенные конформации в растворе принимают не только биологические макромолекулы, считавшееся ранее само собой разумеющимся разделение природных и синтетических макромолекул стало абсурдным и превратилось в серьезное препятствие на пути развития химии полимеров. Поэтому цель данной книги заключается в том, чтобы привлечь внимание химика, имеющего дело в основном с синтетическими макромолекулами, к необычным данным, полученным при исследованиях белков и нуклеиновых кислот. В ней сделана попытка поднять такие вопросы, как возможность получения синтетических полимеров, обладающих особым сродством к малым молекулам или способностью действовать в качестве сугубо специфических катализаторов. [c.7]


    Потери в-ва в препаративных колоннах малы, что позволяет щироко использовать ПХ для разделения небольших ксш-в сложных синтетич. и природных смесей. Газовую ПХ применяют при получении чистых углеводородов, спиртов, карбоновых к-т и др. орг. соед. (в т. ч. хлорсодержащих), жидкостную - при получении лек. ср-в, полимеров с узким ММР, аминокислот, белков и др. [c.317]

    Ни конифериловый спирт, ни его конденсационный полимер при этанолизе не дают кетонов Гибберта, которые получают как из природного лигнина, так и из DHP. Поэтому реакция этанолиза может служить специфической пробой для установления, был ли предшественник лигнина введен в его молекулу или он превратился в конденсационный полимер. Возможно, конечно, что вводимый кониферин превращается в растении в DHP, не входя в природный лигнин. В этом случае разделение обоих видов лигнина также невозможно и оба они окажутся природным лигнином. [c.838]

    Предварительное фракционирование с помощью полиакриламидного геля дает такие же результаты, как и гель-фильтрация на сефадексе. В отличие от природного декстранового геля, каким является сефадекс, полиакриламидный гель представляет собой гель синтетического полимера, обладающий чрезвычайно малыми абсорбционными свойствами. Поэтому разделение на полиакриламидном геле можно провести практически без потерь фракционируемого материала. Молекулярный вес фракционируемых веществ также очень существен для разделения на полиакриламидном геле. Чем ниже молекулярный вес компонентов разделяемой смеси, тем меньше индекс биогеля, который целесообразно использовать для фракционирования. [c.228]

    Высокомолекулярные соединения, как природные, так и синтезируемые в лабораториях и па производстве, содержат набор макромолекул разной длины разделение которых по массам представляет большую трудность вследствие малой разности в физических свойствах полимергомологов. Однако представим, что мы выделили из образца полимера большое (но вполне определенное) число фракций с различной молекулярной массой и определили их весовое содержание. Тогда распределение по молекулярным массам внутри этого. образца полимера можно представить графически, в виде весовой интегральной кривой распределения, т. е. кривой зависимости суммарной весовой доли всех фракций от их молекулярной массы. [c.221]

    Процесс развития жидкостной хроматографии проходил неравномерно в соответствии с уровнем развития ряда других научных дисциплин сейчас жидкостная хроматография играет важную роль в самых разных исследованиях. Например, ионообменная хроматография тесно связана с разделением редких земель, ситовая хроматография-с фракционированием природных соединений, белков и синтетических полимеров. Распределительная хроматография, особенно в виде хроматографии на бумаге, представляет собой ценный метод изучения биохимических систем, а ее более современный аналог - хроматография в тонком слое - развивалась наиболее быстро в области фармакогнозии и фармацевтики. До недавнего времени жидкостная хроматография, однако, не играла заметной роли в области промышленного органического анализа. В опубликованных монографиях и статьях главным образом рассматриваются теоретические основы жидкостной хроматографии, и ни одна из этих книг не может служить практическим руководством для аналитиков-органиков, занятых в промышленности. [c.7]

    В книге изложены физико-химические особенности методов разделения компонентов газовых смесей, жидкостей и коллоидных систем, основанных на использовании селективных (полупроницаемых) полимерных мембран. Описаны технология получения мембран из природных и синтетических полимеров и применяемое оборудование. Рассмотрены основные типы полимерных мембран, их характеристики, назначение и области применения. [c.2]

    Наиболее важная область использования О. а. п. в настоящее время — разделение с их помощью оптич. изомеров методами жидкостной и газовой хроматографии. В качестве сорбентов испытаны многочисленные природные и синтетич. О. а. п., полученные модификацией оптически недеятельных полимеров или полимеризацией активных мономеров. Наиболее перспективными в этом плане оказались хелатообразующие О. а. п., пригодные для хроматографии рацемич. лигандов. [c.245]

    В отличие от гетерогенных процессов фракционирование смеси вещества в однофазной системе основывается не на перераспределении веществ при установлении равновесия, а на кинетике перемещения компонентов в силовом поле (электрическом, гравитационном) или при наличии градиента концентрации. На этих принципах основаны методы электрофореза, седиментации и диффузии. Если рассматривать сочетание аналитического и препаративного фракционирования, то наибольшее внимание следует уделить электрофорезу. Сложные смеси веществ могут быть с успехом разделены на основе использования этого метода. Во многих случаях он является равноценным по сравнению с лучшими вариантами хроматографии, а для некоторых систем даже превосходит хроматографические методы по эффективности. Особенно важным оказалось использование электрофореза при фракционировании смесей белков и нуклеиновых кислот в колонке, заполненной гелями как природных, так и синтетических полимеров. Степень разделения зон веществ при фракционировании методом электрофореза определяется отношением подвижностей компонентов в электрическом поле. Увеличение высоты колонки здесь также приводит к лучшему разделению компонентов, как и при хроматографии, хотя при электрофорезе нет многократного повторения элементарных актов межфазного переноса. [c.9]


    Биохимики разработали некоторые микрохимические методы анализа этих простых продуктов периодатного окисления. Они особенно ценны при использовании вместе с хроматографическими методами разделения природных полимеров, а также для расщепления веществ, которые синтезированы in vivo пз соединений, меченных С. Этим путем был выяснен механизм фотосинтеза углеводов. Кроме того, йодную кислоту можно использовать для исследования микроскопической структуры клеточной ткани. Например, в тонком срезе дерева можно разрушить целлюлозу, в то время как места, занимаемые лигнином, останутся нетронутыми. [c.94]

    ДЭАЭ-целлюлоза благодаря своей функциональной группе — диэтиламиноэтильному остатку — обладает свойствами слабого анионообменника. Ее используют главным образом для разделения природных высокомолекулярных полимеров, особенно чувствительных к резким изменениям pH и температуры, т. е. в первую очередь для фракционирования белков. Хроматография на ДЭАЭ-целлюлозе отличается высокой разрешающей способностью. Этот ионообменник пригоден как для аналитического, так и- для препаративного фракционирования белков на колонках соответствующего размера. [c.204]

    Исследование химической и физической неоднородности макромолекул лигнина — одно из важных направлений в химии этого природного полимера Известно, что молекулярная масса (ММ) лигнинов, выделенных из различных видов растений, неодинакова Даже для одного и того же вида она зависит от места локализации лигнина и метода его выделения Это связано с деструкцией макромолекул лигнинов при выделении или разделении по фракциям, пофешностями методов определения ММ, обусловленными полидисперсным характером лигнина, неопределенностью поведения его в растворах, осложняюшими калибровку Все указанные факторы затрудняют сравнение опубликованных результатов [108, 110] [c.150]

    Кроме четырех обычных оснований в ДНК (главным образом в ДНК бактериофагов) найдено шесть так называемых минорных оснований. Еще больше — до 35 минорных оснований (табл. 37.3)—встречается в РНК, главным образом в тРНК. Минорные компоненты можно получить лишь расщеплением природных полимеров, так как они образуются в результате ферментативной модификации уже готовых полинуклеотидов, т. е. в результате модификации на макромолекулярном уровне. Кроме того, в работах по изучению структуры и функций нуклеиновых кислот имеют дело с производными компонентов нуклеиновых кислот, т. е. с нуклеозидами, несущими защитные группы, или с аналогами оснований и нуклеозидов, например с азапиримидинами [14]. Разделение таких соединений также было предметом исследования в работе [15]. [c.37]

    В ТОМ же году с другим природным полимером, а именно с гелем агара, работал Полсон [51]. Он также отметил, что способность молекул белка проникать в гель зависит от размеров молекул и концентрации геля. Однако, поскольку у природных полисахаридов крахмала и агара обнаружились многие недостатки, их применение в качестве сред для разделения ограничилось двумя вышеприведенными случаями. [c.24]

    Фракционирование проводили на образцах с молекулярными весами от 18 до более чем 1 ООО ООО. В водных растворах было проведено разделение весьма разнообразных соединений олиго-и полисахаридов [109,127,128,131 — 134], пептидов [23, 33, 95, 102, 103, 113, 135, 136], белков [38, 50, 73, 86, 96-100, 102-104, 107, ИЗ, 137-143], ферментов [71, 104, 105, 123, 144, 145], нуклеиновых кислот и нуклеотидов [40, 70, 71, 125, 146—149], продуктов ферментативного гидролиза [23, 25, 30, 31, 36, 81, 124, 148, 150—153] или химической деструкции биологических макромолекул [132, 144], даже составных частей пива [106] и экстрактов кофе [117]. Опубликованы данные по фракционированию полистирола [154—162], полибутена [163], полипро-пиленгликоля [157] и других полимеров [156, 157], природных полимеров fl63] в неводных растворителях. Фракционированию подвергали также небольшие молекулы молекулярного веса 50—1200 [164—166]. [c.113]

    Нейтрализованные гумусовые кислоты растворяли в 2М растворе хлористого натрия и пробы, содержащие 3,33 мг/мл каждого образца, разделяли на колонке с сефадексом дистиллированной водой. Разделение проводили на колонках длиной 32 см (сефадекс G-25), 42 см (сефадекс G-50) и 52 см (сефадекс G-100), диаметр колонки во всех случаях равнялся 4,1 см [30]. Во всех случаях достигали разделения на две основные фракции а и б, окрашенные в коричневый цвет. На сефадексе G-25 выделяли третью фракцию, меньшую по размерам, желтовато-коричневого цвета. Фракции а и б после повторного разделения исходной пробы упаривали до 20—30 мл при температуре ниже 45 °С. Фракции подкисляли 0,2— 0,3 мл 5 н. раствора НС1, после чего проводили центрифугирование. Осадки отмывали дваз сды порциями по 10 мл 0,1 н. НС1. Гумусовые кислоты высушивали под вакуумом и хранили при, комнатной температуре. Пробы высушенных и измельченных гумусовых фракций растворяли в NaOH, растворы доводили до рН=7,0 и записывали спектры поглощения. Коэффициенты экстинкции рассчитывали для растворов с концентрацией 1,0 мг/мл и по ним получали информацию о молекулярной массе. Аналогичные исследования, в ходе которых в качестве элюента использовали растворы солей, проведены также в работах [35—38]. Хотя гель-проника-ющая хроматография на сефадексах и других типах гелей широко используется для фракционирования и характеристики сложных природных полимеров, необходима разработка более эффективных систем фракционирования гумусовых кислот, чтобы достаточно глубоко изучить свойства гумусовых кислот и фульвоколлоидов в почве. [c.279]

    В связи с развитием ряда биохимических методов исследования большое значение также приобрели целлюлозиониты (стр. 255) они имеют низкую степень замещения (на 4—8 остатков глюкозы обычно вводят одну ионогенную группу) и при надобности могут быть использованы в виде ткани или бумаги. Так как макромолекулы их практически полностью выпрямлены и не связаны между собой в трехмерной сетке, диффузия крупных частиц к ионогенным группам полимера происходит значительно быстрее, чем у обычных ионитов. Это позволяет применять повышенные скорости фильтрации при хроматографическом выделении, разделении и очистке таких природных полимеров, как белки, нуклеиновые кислоты и полисахариды на колоннах. Подобные методы, несмотря на свою простоту, превосходят по эффективности электрофорез и ультрацентрифугирование они могут быть использованы в клинической практике для обнаруживания патологических изменений в организме. [c.450]

    При разделении макромолекул используют модифицированные природные полимеры, которые по ионообменной емкости и другим свойствам обычно более пригодны для этой цели, чем искусственные смолы. В случае декстрана и агарозы можно контролировать степень их поперечного связывания и размеры частиц, регулируя тем самым сжатие и набухание ионообменников и обеспечивая их высокую емкость для макромолекул при высоких и средних скоростях потока. [c.198]

    Особое место занимают методы жидкостной хроматографии, используемые для разделения и анализа высокомолекулярных соединений, синтетических и природных полимеров (эксклю-зионная, или гель-хроматография), очистки, селективного анализа белков ферментов (аффинная, или биоспецифическая, хроматография).  [c.13]

    Что касается нефти и природного газа, которые являются сырьем для нефтехимических производств и получения полимеров, то мы имеем здесь дело с очень сложными многокомпонентными смесямп. Поэтому для получения отдельных компонентов из нефтяного или газового сырья применяют различные способы разделения смесей и очистки выделяемых компонентов. Эти способы разделения и очистки веществ приобретают особо важное значение, когда необходимая степень чистоты очень высокая. [c.302]

    Эти процессы приводят к образованию рацемических смесей. Однако считается, что при спонтанной кристаллизации происходило разделение смесн. Наиболее вероятно, что разделение проходило случайным образом. Видимо, определяющую роль в разделении оптически активных соединений путем селективного комплексоебразования одного определенного стереоизомера играли минералы, как, например, природные асимметричные кристаллы кварца, и ионы металлов. В конце К01Щ0В, стереоселективная полимеризация олефинов на поверхности металлов (катализаторы Циглера — Натта) представляет собой хорощо изученный промышленный процесс для получения изотактических полимеров. Известно также, что связывание ионов металлов весьма важно для многих биохимических превращений. Такое связывание существенно для поддержания нативной структуры нуклеиновых кислот и многих белков и ферментов. Процесс отбора оптических изомеров мог происходить вследствие других физических явлений, например взаимодействие с радиоактивными элементами, радиация или космические лучи. Недавно проведенные эксперименты с стронцием-90 показывают, что D-ти-роэин быстрее разрушается, чем природный L-изомер. Весьма заманчиво привлечь эти факторы для объяснения происхождения диссимметричности в процессах жизнедеятельности. [c.186]

    Последние годы ознаменовались огромными успехами в изучении строения и функций важнейших биологически активных полимеров. Благодаря развитию новых методов разделения н очистки веществ (различные методы хроматографии, электрофореза, фракционирования с использованием молекулярных сит) и дальнейшему развитию методов рентгеноструктурного анализа и других физико-химических методов исследования органических соединений стало возможным определение строения сложнейших природных высокомолекулярных соединений. Изучено строение ряда белков (работы Фишера, Сейджера, Стейна и Мура). Установлен принцип строения нуклеиновых кислот (работы Левина, Тодда, Чаргаффа, Дотти, Уотсона, Крика, Белозерского) и экспериментально доказана их определяющая роль в синтезе белка и передаче наследственных признаков организма. Определена последовательность нуклеотидов для нескольких рибонуклеиновых кислот. Широкое развитие получили работы по изучению строения смешанных биополимеров, содержащих одновременно полисахаридную и белковую или липидную части и выполняющих очень ответственные функции в организме. [c.53]

    Сорбционные методы можно применять также для концентрирования, разделения и определения благородных металлов (серебра, золота, металлов платиновой группы — рутения, осмия, родия, иридия, палладия, платины), содержащихся в малых количествах в природных водах и в различных растворах. При этом происходит концентрирование определяемого металла из большого объема раствора в небольшой массе сорбента за счет сорбции соединений этого металла на сорбенте. Сорбентами служат органические полимеры, силикагели, химически модифицированные ионообменными или комгаексообразующими группами (четвертичными аммонийными и фосфониевыми основаниями, производными тиомочевины), привитыми на поверхности силикагеля. [c.236]

    Хроматография. Можно без преувеличения сказать, что современная химия, и в первую очередь химия природных соединений, обязана своими достижениялш прежде всего применению хроматографических методов разделения. Однако хроматография полимеров представляет собой специфическую область, развитие которой связано с определенными трудностями. С одной стороны, даже молекулы однородного полимера, различающиеся молекулярным весом, могут обладать разной хроматографической подвижностью. С другой стороны, различие в растворимости или способности сорбироваться на примененном носителе между разными полимерами может быть недостаточным для хроматографического разделения, которое затрудняется еще больше склонностью разделяемых веществ к межмолекулярной ассоциации и образованию коллоидных растворов. [c.486]

    В последние годы все большее распространение получает хроматографическое разделение веществ по их молекулярному весу, причем первое место среди таких вариантов хроматографии принадлежит гель-фильтрации на сефадексах . Сефадекс представляет собой полусинтетический -сорбент полисахаридной природы, гранулы которого обладают порами определенного размера, так что диффузия внутрь этих гранул возможна только для молекул, величина которых не превышает величину пор. Поэтому сефадекс работает как своего рода молекулярное сито , задерживающее проникающие внутрь гранул низкомолекулярные вещества и не задерживающее полимеры. Гель-фильтрация незаменима для быстрого отделения полимера от низкомолекулярных примесей (неорганических солей, мономеров и т. д.). Ее применяют и для разделения полимеров, причем одновременно можно приблизительно оценить их молек лярный вес, так как существует набор сефадексов, различающихся величиной пор. Есть все основания полагать, что в химии полисахаридов этот перспективный метод будет находить все большее применение. Особенно интересным является использование сефадексов для разделения высоко- и низкомолекулярных осколков, образующихся при расщеплении биополимеров различными реагентами , и для выделения полисахаридов из различных природных источников Хроматография на модифицированных сефадексах, обладаюш.их ионообменными свойствами, например на диэтиламиноэтилсефадексе, также может служить эффективным приемом фракционирования полисахаридов . [c.487]

    Большинство продуктов, выпускаемых химической, нефтехимической и смежными отраслями промышленности, выделяется из смесей — синтетических или природных. Поэтому методы разделения смесей играют важнейшую роль в химической технологии, а зачастую и в затратах труда и энергии на производство продукции и решающим образом влияют на стоимость последней. Особенно велика роль процессов разделения смесей в технологии органических веществ, так как практически никогда в результате синтеза продукт не получается в чистом киде. Его приходится выделять из смесей с другими веществами. С развитием химии, особенно промышленности по производству полимеров, требования к чистоте органических веществ резко возросли и возникли задачи тонкой очистки соединений от сопутствующих им примесей. [c.5]

    Исследование гидрофобных полимеров развивалось вначале менее успешно, чем изучение природных водорастворимых полимеров. Попытки использовать сополимер стирола и дивинилбензола оказались малоперспективными [58, 59], однако Бреверу [60] удалось осуществить разделение углеводородов на каучуке, набухшем в толуоле или гексане. Разделение полистиролов на сшитом полиметилметакрилате [61] также дало хорошие результаты, однако из-за технических трудностей удалось разделить лишь олигомеры с молекулярным весом до 2500. [c.25]

    Применение мембран. Мембраны для разделения газовых смесей м. б. изготовлены пз весьма ограниченного числа синтетич. полимеров, обладающих высокой нропицаемостью. Разработаны плоские монолитные Р. м. из фторироваппого сополимера этилена с пропиленом (тефлон FEP) толщиной 10 мкм, а также из армированного тканью кремнийорганич. каучука СКТ толщиной 50 МК.М. Асимметричные Р. м. по (учепы из поли-винилтриметилсилана с минимальной толщиной монолитного слоя 0,2 МКМ. Использование Р. м. из тефлона FEP в диффузионных газоразделительных аппаратах позволяет получать пз природного газа (0,45% гелия) продукт с содержанием гелия более 70%. С помощью Р. м. пз поливинилтриметилсилана удается повысить [c.137]

    В димии диссимметрических (й, I) и полисимметрических соединений действует открытый еще Пастером принцип невозможности направленного получения форм с определенным типом асимметрического пространственного строения, без явного или скрытого участия асимметрических агентов. Ими могут быть реагенты, растворители, кристаллические затравки с асимметрическим строением. Широкое распространение получает разделение диссимметрических форм с помощью газо-жидкостной хроматографии, основанное на применении асимметрических разделяющих фаз. Этот же принцип распространяется на адсорбцию и катализ. В одних случаях пространственная асимметрия строения катализаторов может быть явной, макроскопической, проявляясь в левом и правом вращении поляризованного света. В других случаях она скрытая — микроскопическая. У катализаторов первого типа асимметричен кристалл в целом, вся его поверхность или поверхность одной из фаз у двух- или полифазных катализаторов. Такие системы встречаются как среди неорганических, так и среди органических твердых тел. Примером первых могут служить левовращающие или право-вращающие образцы кварца. В качестве примеров органических оптически активных веществ назовем природный шелк и искусственные органические полимеры, способные вращать плоскость поляризации света. [c.43]

    Попытаемся оценить все материалы с хорошо развитой пористой поверхностью для разделения перманентных газов вне зависимости от их природы и происхождения. Так, активированный уголь или графитированная сажа [10—14], силикагель [11, 15, 16], алюмосиликагель [17], окись алюминия [18], природные или синтетические цеолиты [18—25], различные активированные окислы, подобные трехвалентному окислу хрома или трехвалентной окиси железа [26], могут служить примером неорганических адсорбентов. В настоящее время с большим успехом используются для этих целей синтетические макропористые органические полимеры типа иорапаков и полисорбов [25, 27—32]. Было также описано разделение перманентных газов методом газо-жидкостной хроматографии 33—35]. Без сомнения, любые другие материалы с хорошо развитой пористой структурой должны давать прекрасные результаты нри разделении перманентных и подобных газов. [c.269]

    Пористые полимеры. В последние годы в газовой хроматографии применяют не только минеральные и природные адсорбенты, но и полимерные адсорбенты, синтезированные с такой структурой пор и химией поверхности, что они оказались пригодными для высокоэффективного разделения многих сложных смесей [9]. Эти адсорбенты различных типов прочно вошли в практику газовой хроматографии, в особенности для анализа газов [10], в том числе и агрессивных, водных смесей, смесей -низкомолекулярных спиртов, кислот, аминов и других высокополярных соединений [10]. Пока Для газохроматографического разделения применяют пористые полимеры на основе сополимеров стирола, этилстирола и ди-винилбензола. Стирол и дивинилбензол, смешанные в определенных соотношениях, полнмеризуются в инертном растворителе с образованием трехмерного пространственного полимера по схеме [c.103]

    Первыми мембранами, используемыми для исследовательских работ, были, естественно, природные материалы (например, бычий пузырь). Основы создания искусственных мембран были заложены Фиком, получившим пленку из нитрата целлюлозы и проведшим в середине прошлого века свои всемирно известные исследования по диффузии [2]. Десять лет спустя Грэм [3] описал разделение смеси газов с помощью мембран из вулканизованного каучука. При этом он высказал ряд соображений относительно механизма разделения. В конце XIX века были предприняты попытки использовать резиновые мембраны для разделения компонентов воздуха [4, 5]. Процессы мембранного разделения детально исследовал Бехгольд [6, 7] в начале двадцатого столетия. Заслуга Бехгольда заключается в том, что он впервые осуществил формование мембран с регулированием их характеристик. Поскольку теоретические основы переработки полимеров в то время еще не были разработаны, подходы к получению мембран носили в основном эмпирический характер. Бехгольд был первым, кто использовал уравнение Кантора для определения размеров максимальных пор в мембранах. Он же впервые ввел термин ультрафильтрация . [c.5]

    Одной из первых задач, встающих перед хнмиком-органиком, является очистка и разделение органических соединений. Особое значение приобрела проблема очистки мономеров — исходных продуктов для получения высокополимерных соединений, так как ничтожные примеси затрудняют, а иногда и приостанавливают процесс полимеризации, что приводит к ухудшению технических свойств полимеров. Одновременно с давно известными способами очистки и разделения, как кристаллизация и разгонка, широкое применение в лабораторной практике и в промышленности получили адсорбционные методы адсорбционная и распределительная хроматография, хроматография на бумаге. Метод адсорбционной хроматографии (открытый русским ученым М. С. Цветом, 1904 г.) оказался единственным и дал блестящие результаты при очистке и разделении сложных природных соединений (хлорофилла, каро-тиноидов, стероидов). При анализе и разделении смесей органических соединений (продуктов нефтяной и нефтехимической промышленности, эфирных масел, компонентов запахов пищевых продуктов) незаменим метод газо-жидкостной хроматографии, на котором в большей степени основывается контроль и автоматизация в химической и нефтехимической промышленности. [c.9]

    С высоким сродством к электронам устраняет необходимость калибровки при детектировании и сводит к минимуму очистку образцов перед их хроматографическим определением, что особенно важно при анализе природных продуктов. ]У1етиловые эфиры ДНФ-производных были использованы для идентификации аминокислот, образующихся при гидролизе полипептида грамицидина А [58] (рис. 10). Аланин, валин, глицин, лейций и изолейцин определялись количественно с точностью до 2 % при хроматографическом разделении на двухметровой колонке с силиконовой жидкой фазой ЗЕ-ЗО. Наиболее полное разделение некоторых нейтральных алифатических и дикарбоновых аминокислот в виде фенилтиоги-дантоинов и метиловых эфиров ДНФ-производных получено при анализе на колонке с фторированным силиконовым полимером РР-1 и низким содержанием стационарной жидкой фазы [59]. [c.268]


Смотреть страницы где упоминается термин Разделение природных полимеров: [c.207]    [c.46]    [c.62]    [c.54]    [c.70]    [c.282]    [c.60]    [c.238]    [c.261]    [c.180]   
Смотреть главы в:

Аналитическая химия полимеров том 2 -> Разделение природных полимеров




ПОИСК





Смотрите так же термины и статьи:

Полимеры природные



© 2024 chem21.info Реклама на сайте