Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теории образования водородной связи

    Как известно, устойчивость гидрофильных коллоидов обычно выше предсказываемой теорией ДЛФО, учитывающей молекулярное протяжение и электростатическое отталкивание. Однако лишь в последнее время удалось установить прямую связь между устойчивостью гидрофильных коллоидов и толщиной граничных слоев воды, оцененной независимыми методами. Для дисперсий кремнезема и алмаза экспериментально прослеживается влияние на их устойчивость pH дисперсионной среды и температуры. Причиной этого влияния является изменение дальнодействия структурных сил отталкивания, стабилизирующих дисперсию. Стабилизация дисперсий при низких pH связана с увеличением числа поверхностных ОН-групп, способных к образованию водородных связей с молекулами воды, что ведет к росту сил структурного отталкивания. Повышение температуры вызывает ослабление сетки направленных водородных связей в воде, что уменьшает дальнодействие структурных сил и приводит к снижению устойчивости дисперсий. Наблюдающаяся обратимость температурной зависимости устойчивости свидетельствует об обратимости структурной перестройки граничных слоев. [c.168]


    Первая часть посвящена теории межмолекулярных сил. Теория межмолекулярных взаимодействий в неэлектролитах в течение многих лет выдвигала на первый план дипольные и дисперсионные силы. Недооценивалась роль реактивного взаимодействия полярных молекул, весьма существенная в жидких средах. При описании слабых сил химического типа обычно огра1шчивались некоторыми, наиболее ярко выраженными случаями образования водородной связи. Но водородная связь — лишь одна из бесконечного множества форм слабых химических взаимодействий, сопровождающихся перераспределением электронной плотности. В последние десятилетия изучение этих взаимодействий стало особенно интенсивным. Рассказать о них необходимо потому, что их исследование имеет большое значение для химии и ряда областей физики. [c.6]

    Таким образом, есть основание считать, что изотопные разности энергии водородной связи при замещении водорода дейтерием вызваны преимущественно изменениями энергии колебаний атомов, принимающих участие в образовании водородной связи. Эти примеры указывают на важность исследований изотопических эффектов для теории межмолекулярных взаимодействий. Учет изменений энергии характеристических колебаний атомов при образовании Н-связи полезен для выяснения вопроса, куда расходуется энергия, требующаяся для разрыва водородной связи. [c.68]

    Теории образования водородной связи 197 [c.197]

    ТЕОРИИ ОБРАЗОВАНИЯ ВОДОРОДНОЙ СВЯЗИ [c.197]

    Теории образования водородной связи 199 [c.199]

    Теории образования водородной связи 201. [c.201]

    Соколов [32] развил квантовомеханическую теорию водородной связи, исходящую из представлений о существовании донор-но-акцепторной связи, обусловленной обобществлением неподе-ленной пары электронов. В системе А—Н---В связь А —Н занимает промежуточное положение между ионной А Н+ и ковалентной. Отвлекаясь от электростатического взаимодействия, отметим, что здесь возникают два новых фактора. Во-первых, вследствие уменьшения электронной плотности вблизи атома Н уменьшается и отталкивание, присущее системе гомеополярная связь А—Н и атом В. Во-вторых, появляется дополнительное притяжение между Н и В, вызываемое перераспределением электронной плотности атома В в поле атома Н, сходное с донорно-акцепторными взаимодействиями. На основе этих представлений получено количественное истолкование спектроскопических проявлений водородной связи. В цитируемой работе было показано, что первой стадией процессов межмолекулярного или внутримолекулярного перехода протона, в частности таутомерных превращений (см. стр. 85), всегда является образование водородной связи. Водородные связи формируют структуру воды и определяют ее свойства. [c.202]


    В лекциях 9—11 была дана количественная интерпретация на основе молекулярно-статистической теории адсорбции и полуэмпирической теории межмолекулярных взаимодействий адсорбат — адсорбент термодинамических характеристик адсорбции при нулевом заполнении поверхности. Перейдем теперь к большим заполнениям поверхности, при которых проявляются также и межмолекулярные взаимодействия адсорбат — адсорбат, т. е. к интерпретации изотермы адсорбции и состояния адсорбированного вещества при малых п средних заполнениях, ограничиваясь адсорбцией на однородной поверхности инертного адсорбента. Адсорбция различных адсорбатов даже на однородной плоской поверхности графитированной термической сажи (см. лекции 1, 7—10) зависит от природы адсорбата и адсорбента, характера межмолекулярных взаимодействий адсорбат — адсорбент и адсорбат — адсорбат. На рис. 12.1 сопоставлены зависимости дифференциальной теплоты адсорбции д от адсорбции Г, а на рис. 12.2 — соответствующие изотермы адсорбции паров воды, этанола, бензола и н-пентана на поверхности ГТС при комнатной температуре (см. также рис. 1.4, 1.5, 7.4, 7.6, 8.8, 8.9). Межмолекулярное взаимодействие с ГТС неспецифическое, поэтому способность молекул воды, этанола и бензола к специфическим межмолекулярным взаимодействиям, в частности к образованию водородных связей, при взаимодействии с ГТС не реализуется. [c.222]

    Вместе с тем рассмотренная теория не может описать всех явлений, связанных с образованием водородной связи. Так, увеличение интенсивности полосы ИК-погло-шения в области основных частот при образовании Н-связи во много раз превосходит то, которое может быть объяснено электростатической теорией (93—95]. [c.17]

    По теории Соколова, при образовании водородной связи в системе А — Н...В происходит перераспределение электронной плотности электроотрицательного атома В. Для того чтобы пара электронов от В переместилась к акцептору электронов — атому Н, необходимо, чтобы последний обладал остаточным положительным зарядом [100, 102]. Необходимо было допущение того, что в процессе образования водородной связи происходит также смещение электронного облака от Н к атому А. Таким образом, атом Н как бы освобождает свою 5-орбиту для приема пары электронов атома В. [c.18]

    Адгезия, или прилипание тел друг к другу, — одно из сложнейших явлений. Для ее объяснения существует довольно много различных теоретических подходов, но ни один из них самостоятельно полностью не решает всех проблем адгезии. С химической точки зрения адгезию можно объяснить химическими взаимодействиями между телами различной природы. Химические связи легко образуются на поверхности пластмасс, которые всегда содержат активные функциональные группы, способные химически взаимодействовать с металлами или с покрывающими поверхность металлов оксидами. Молекулярная теория объясняет явление адгезии проявлением на межфазной поверхности межмолекулярных сил, взаимодействием типа ион — диполь или образованием водородных связей. Этим, например, объясняют слипание при высыхании мокрых травленых пленок полиэтилена. Электрическая теория полагает, что при контакте двух тел образуется двойной электрический слой, препятствующий раздвижению тел [c.38]

    Мы писали Водородную связь с упором на физические и химические факты, преследуя в первую очередь три цели. Во-первых, собрать и суммировать экспериментальные данные, создав тем самым основу для предсказания и объяснения поведения тех соединений, способность которых к образованию водородной связи еще не изучена. Во-вторых, критически рассмотреть существующие теории этой связи и ее влияние на физические и химические свойства тел. В-третьих, собрать библиографию (исчерпывающую, включая 1956 г.), которая поможет читателям в поисках соответствующей литературы. [c.7]

    Величина поверхностного натяжения является мерой интенсивности молекулярно-силового поля в поверхностном слое. Поскольку поверхностное натяжение является результатом нескомпенсированности меясмолекулярного взаимодействия в разных фазах, оно определяется разностью интеисивности взаимодействия молекул внутри каждой фазы (когезии) и взаимодействия молекул различных фаз (адгезии). Интенсивность молекулярных взаимодействий внутри ф .зы в теории поверхностных явлений обычно обозначают термином полярность . Полярность вещества в очень больш(л1 степени связана с такими ее параметрами, как дипольный момент молекул, диэлектрическая проницаемость, поляризуемость молекул, способность к образованию водородной связи меясду молекулами. Существенную роль играют также плотность (молярный объем) вещества, геометрия строения ьолекул, ориентация молекул в поверхностном слое, определяющая направление силовых полей, возможная взаимная растворимость граничащих фаз, их химическое взаимодействие. [c.189]


    Полученные данные позволяют предположить, что основным механизмом адсорбции олефинов является взаимодействие между молекулой олефина и кислотной гидроксильной группой с. образованием водородной связи. Используя представления теории комплексов, образующихся с переносом заряда, этот процесс можно представить следующим образом  [c.256]

    Специфичность ферментов связана с комплементарностью структуры их активного центра со структурой субстратов. Активный центр, как правило, располагается в полости макромолекулы фермента и формируется из различных участков цепи белковой глобулы. Согласно теории Кошланда, эта комплемен-тарность является индуцированной субстрат в момент взаимодействия с активным центром вызывает такое изменение геометрии фермента, которое соответствует оптимальной для данной реакции ориентации групп, непосредственно участвующих в химическом превращении субстрата (каталитических групп). В случае объемных субстратов происходит многоцентровая сорбция в активном центре за счет дисперсионных, гидрофобных и электростатических взаимодействий и водородных связей. Малые молекулы, такие как О2, N2 и Н2О, вступают в непосредственное взаимодействие с атомами переходных металлов. Однако и в этом случае связывание обычно носит много-центровый характер, например в биядерных комплексах или с участием безметальных групп. Так, в случае комплексования молекулы О2 в гемоглобине с ионом Fe " " происходит образование водородной связи с протонированным гистидиновым остатком в районе активного центра. [c.550]

    Основывая свою работу на теории образования водородных связей в процессе растительного дубления, Липситц и Лоллар [90] приготовили несколько производных лигнина, модифицированных с целью повышения их дубящих свойств. [c.499]

    Это взаимодействие обыкновенно называют водородным мостиком или водородной связью. Особенность такого взаимодействия заключается в том, что водород, образующий мостик между дву.мя гидроксилами, в виде протона обменивается между молекулами. Таким образом, наряду с силами, действующими между ненарушенными или также деформированными молекулами, имеет значение еиде и обменная энергия, проявляющаяся при столкновениях, следствием которых является обмен протона между ДВУМЯ гидроксилами. Во всех отношениях удовлетворительной теории образования, .водородной связи до сих пор еще нет . Тем ие менее оказывается целесообразным пользоваться понятием водородного мостика. [c.183]

    Согласно Пешли, гидратные (точнее, структурные) силы могут возникать как на гидрофильных поверхностях с гидратированными полярными или ионными группами, так и на поверхностях, которые вначале не являются гидрофильными, но могут изменяться при адсорбции гидратированных форм и вести себя как гидрофильные ( вторичная гидратация ) [121]. В основе теории гидратных сил лежит положение о поверхностной адсорбции гидратированных ионов. Анализ явления показывает, что действие гидратных сил определяется не только плотностью адсорбированных катионов, но и изменением свободной энергии, связанным с замещением катионом иона Н3О+. Силы гидратации проявляются в достаточно концентрированных растворах (более 10 моль/л), и их величина определяется положением ионов в лиотропном ряду. Этот механизм, согласно которому взаимодействие гидратированных катионов приводит к возникновению сил отталкивания между поверхностями с достаточно высокой плотностью поверхностного заряда и слабой способностью к образованию водородных связей, может объяснить высокие пороговые концентрации, необходимые для коагуляции амфотерных частиц латекса полистирола [501] и золя SIO2 [502]. [c.173]

    Это допущение является грубым, и об этом не следует забывать при оценке сопоставления теории с опытом. Однако, во-первых, в общих чертах оно правильно, особенно при цепной ассоциации с -образованием водородных связей, энергия которых постоянна или мало зависит от длины цепи ассоциированных молекул, и, во-вторых, оно полезно, поскольку оно позволяет получить уравнение двухмерного состояния ДАВГ с максимальным числом констант. [c.237]

    Н. Д. Соколов, разработавший квантовомеханйческую теорию водородной связи на основе ВС-метода. Согласно Соколову [32], [к-31], при образовании водородной связи помимо чисто электростатического, ориентационного, эффекта происходит делокализация электронного заряда, т. е. частичный перенос заряда от молекулы донора В—Кг к молекуле акцептору К]—Н. Такой перенос электронного заряда дополнительно понижает энергию системы и приводит к образованию комплекса. Для упрощения рассмотрим только мостик А—Н ..В. В связи А—Н положительный заряд на самом атоме Н мал. Но в процессе образования Н-связи электронный заряд с Н-атома перетекает на атом А, тем самым высвобождая х-орбиталь водорода для приема от атома В электронного заряда неподеленной пары, который и свяжет атомы Н и В водородной связью. При этом высвобождение. -орбитали атома Н оголяет протон. Поле протона велико, и притяжение им электронного заряда атома В весьма эффективно, в то же время других своих электронов около протона нет, и поэтому отталкивание молекулы ВК от К1АН в области атома Н сильно понижается. Оба эти результата [c.268]

    Таким образом, электростатическая модель Ингольда-Хьюза качественно правильно предсказывает влияние растворителя на скорость нуклеофильного замещения у насьпценного атома углерода. Однако она учитьшает лищь электростатическую ориентацию растворителя относительно реагентов и совершенно игнорирует специфическое донорно-акцепторное взаимодействие или образование водородных связей с молекулами растворителя, которые вместе составляют наиболее важную особенность процессов ион-дипольного и диполь-дипольного взаимодействия. Кроме того, эта теория рассматривает только одну составляющую свободной энергии активации АО, а именно энтальпию активации ЛВ, не принимая во внимание изменение энтропии активации ЛЗ, чей вклад может бьпъ очень значителен. [c.114]

    Исключительна роль водорода и в химическом отношении. Если ато.мы всех остальных элементов (кроме химически инертного ге тя) под валентной оболочкой имеют электронный остов предыдущего благородного газа и размеры их положительных ионов не намного меньше размеров нейтральных атомов, то иои Н+ представляет собой просто протон, размеры которого примерно в 10 раз меньше размеров атома. Поэтому положительно поляризованный атом водорода обладает исключительно сильно выраженным поляризуюи им действием, что является одним из ос1ювных мотивов в химии этого элемента. С этим связаны такие особые свойства элемента, как образование водородных связей, ониевых соединений (оксоний, аммоний и т. и.), протолитические реакции, протонная (бренстедовская) теория кнс ют и оснований и нр. [c.96]

    Теория реакционного поля может объяснить далеко не все возможные взаимодействия в системах растворитель — растворенное вещество , в частности явление образования водородных связей. Если растворитель содержит полярные группы, а в растворенном веществе имеются атомы водорода с дефицитом электронной плотности, то в такой системе наблюдается образование водородной связи (ВС). Детальное объяснение величин и направления ХС водородных протонов дал Александров на примере гидроксильной группы ОН. Им было показано, что основной вклад в изменение ХС протона вследствие образования ВС обусловлен в первую очередь изменением полярности связи О—Н, растяжением связи О—Н, а также влиянием образования донорно-акцепторного взаимодействия, повыщаю-щего электронную плотность на протоне. В результате учета всех факторов суммарная плотность уменьшается приблизительно на 15%. [c.73]

    Арранз [79] обнаружил, что значение автокаталитического эффекта т не зависит от количества щелочного катализатора, и это, по его мнению, противоречит идее Сакурада о локальной концентрации катализатора. Арранз предложил другую теорию автокаталитического эффекта, согласно которой облегчение нуклеофильной атаки на карбонильный атом углерода вызвано образованием водородной связи между гидроксильной группой и карбонилом соседней эфирной группы  [c.78]

    Важнейшую роль в понимании механизма удерживания з обращенно-фазовой хроматографии сыграли работы Хорвата и его школы [201—203]. Суть теории Хорвата заключается в следующем. Существует принципиальное различие между процессами сорбции на полярных поверхностях из относительно неполярных растворителей ( нормально-фазовый режим ) и сорбции из воды либо сильнополярных растворителей на поверхностях неполярных (обращенно-фазовый режим). В первом случае между молекулами сорбатов и неподвижных фаз образуются ассоциаты за счет кулоновских взаимодействий или водородных связей. Во втором случае причиной ассоциации на поверхности являются так называемые сольвофобные- взаимодействия в подвижной фазе. Для полярных подвижных фаз, в особенности содержащих воду, характерно сильное кулоновское взаимодействие и образование водородных связей между молекулами растворителей. Все молекулы в таких растворителях связаны довольно прочно межмолекулярными силами. Для того чтобы поместить в эту среду молекулу сорбата, необходимо образование полости м.ежду молекулами растворителя. Энергетические затраты на образованиё такой полости лишь частично покрываются за счет взаимодействия полярных групп в молекуле сорбата с полярными молекулами растворителя. В аналогичном положении по отношению к растворителю находятся и неполярные молекулы неподвижной фазы. С энергетической точки зрения более выгодно такое положение, когда поверхность раздела между полярной средой (растворителем) и неполярными фрагментами неподвижной фазы и молекул сорбата минимальна. Уменьшение этой поверхности и достигается при сорбции (рис. 4.1). [c.52]

    Исходя из представлений теории трехточечного взаимодействия Далглища, Пиркл [151] объяснил столь успешные результаты разделений, проведенных на этом сорбенте, одновременным действием тг—х-взаимодействий и образованием водородных связей в неполярном растворителе, выполняющем роль подвижной фазы [151]. Предложенная модель распознавания при взаимодействии сорбат—сорбент показана на рис. 7.15. [c.148]

    Элюирующая сила. Относительную способность какой-либо подвижной фазы вытеснять данный компонент образца из неподвижной фазы по отнощению к другой подвижной фазе обычно обозначают как элюирующая сила . Элюирующая сила зависит от многих факторов, включая природу функциональных трупп в каждом растворителе, полярность растворителя, ди-ттольный момент, способность к образованию водородных связей, многообразие специфических и дисперсионных молекулярных сил и другие параметры, описывающие физико-химическую природу каждого компонента подвижной фазы (см. работы [40— 43, 47, 138—139] и ссылки, цитированные в них). Поскольку это те же параметры, которые используют для объяснения растворяющей способности растворителей по отнощению к данному соединению, то, очевидно, что элюирующая сила и растворимость тесно связаны. Не обращаясь к сложным теориям и таблицам параметров, хроматографист часто может на основе знаний растворимости и взаимодействий функциональных групп предсказать элюирующую силу подвижной фазы и селективность в данной системе разделения. [c.87]

    Сырников воспользовался методом теории графов для вычисления статистической суммы для жидкой воды [172]. Этот топологический метод позволяет учесть состояния как свободных молекул, так и соединенных водородными связями. Метод оказывается применимым к исследованию влияния растворенных веществ. Полные количественные расчеты требуют знания вероятностей образования водородных связей, которые пока неизвестны. Тем не менее метод Сырникова представляется многообещающим. [c.206]

    Растворы ПАВ молекулярно-дисперсны вплоть до ККМ, что четко подтверждается результатами измерений осмотического коэффициента [И]. Коллигативные свойства растворов ПАВ также вплоть до ККМ отклоняются от свойств идеальных одноодновалентных электролитов не более чем на 5% [12]. Но, как показали измерения эквивалентной электропроводности [11, 13], некоторые ПАВ образуют димеры. Процесс димеризации, не очень распространенный в растворах ПАВ, сильно зависит от их молекулярной структуры. Если углеводородная цепь достаточно длинна, свободная энергия системы в результате димеризации уменьшается. Для того чтобы уравновесить электрическое отталкивание при сближении двух ионных групп и уменьшение энтропии поступательного движения примерно на 20 э. е., необходима большая площадь контакта между двумя углеводородными цепями и достаточная концентрация молекулярно-диспергированного вещества. Поэтому димеризация облегчается с ростом длины углеводородной цепи. Содержание димера возрастает с увеличением объемной концентрации вплоть до ККМ, оставаясь при дальнейшем росте концентрации почти неизменным. Димериза-цию не следует рассматривать как начало мицеллообразования, так как образование димера из мономера является результатом образования водородных связей аналогично тому, что имеет место для уксусной кислоты в газовой фазе. Когда пар становится насыщенным, начинает выделяться жидкая уксусная кислота, находящаяся в равновесии с мономером и димером. Образование мицелл можно рассматривать подобно этому процессу разделения фаз [14], за исключением того, что в мицеллах объединяется конечное, а не бесконечно большое число частиц. На такой модели основываются многие теории мицеллообразования, причем в соответствии с таким представлением активность ПАВ выше ККМ должна быть практически постоянной. Это подтверждает зависимость поверхностного натяжения от концентрации, ясно показывающая, что выше ККМ активность ПАВ действительно постоянна. При этом в уравнении изотермы адсорбции Гиббса [c.15]

    При пиролизе разрыв наиболее слабой связи (о) приводит к образованию олефина и кислоты, так как атом водорода, участвующий в образовании водородной связи, останется, скорее всего, у более отрицательного атома кислорода, а не у углеродного атома. Позднее эта теория была подвергнута критике (34) в связи с тем, что не известно ни одного случая образования водородной связи с участием атома углерода, и термин водородная связь был заменен более осторожным термином взаимное влияние . Недавно было показано [-591, что распад винилизопропилового зфнра на пропилен и ацет-аль тегид протекает через аналогичные промежуточные продмсть  [c.228]

    Согласно теории Гильдебранда, различия во внутреннем давлении обусловливают главным образом отклонения свойств растворов от законов Рауля. Однако в дальнейшем оказалось, что особенности в растворимости и отклонения растворов от законов Рауля обусловливаются в значительной степени способностью смешиваемых веществ образовывать водородные связи между подобными и разнородными молекулами. Если положение Гильдебранда о том, что мерой идеальности является близость внутренних давлений, подтверждало афоризм подобное растворяет подобное , то современные данные показывают, что очень часто, наоборот, различие в свойствах, и особенно способность образовывать химические соединения, является одной из главных причин взаимной растворимости. Исследования Коплея, Эвеля и Гаррисона, Палита и других показали, что растворимость прежде всего обязана способности веществ образовывать водородные связи. На основании потенциальной способности к образованию водородной связи, они создали классификацию жидкостей. По способности жидкостей к образованию водородных связей оказалось возможным создать классификацию отклонений от законов Рауля и предвидеть возникновение азеотропных смесей, главной причиной появления которых является образование новых водородных связей и разрушение старых при смешении. [c.26]


Смотреть страницы где упоминается термин Теории образования водородной связи: [c.116]    [c.28]    [c.154]    [c.123]    [c.464]    [c.558]    [c.375]    [c.375]    [c.9]    [c.42]    [c.193]   
Смотреть главы в:

Водородная связь -> Теории образования водородной связи




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь водородная, Водородная связь

Связь теория

Теория водородной связи



© 2025 chem21.info Реклама на сайте