Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ХИМИЧЕСКИЕ РЕАКЦИИ В НЕВОДНЫХ РАСТВОРИТЕЛЯХ

    Реакция нейтрализации протекает не только в водных, но и в неводных растворах. Химическая природа неводного растворителя влияет на состояние ионов в растворе и на степень диссоциации. Одно и то же вещество может быть в одном растворителе солью, в другом кислотой, в третьем основанием. Например, ацетат аммония в воде — соль, в аммиаке — кислота, в уксусной кислоте — основание. Хлорид аммония в воде вследствие гидролиза является слабой кислотой (и солью), в жидкой фтористоводородной кислоте — основанием, в жидком аммиаке — сильной кислотой. Амид калия в уксусной кислоте — слабое основание, в воде — сильное основание, в жидком аммиаке — очень сильное основание. Амид калия в жидком аммиаке — более сильное основание, чем гидроокись калия в воде. [c.444]


    Известно, что реакции, протекающие с участием органических растворителей, зависят от способности последних к координации. Исходя из этого, растворители можно рассматривать либо как доноры, либо как акцепторы. Подобная химическая классификация неводных растворителей в зависимости от наличия у них донорных или акцепторных свойств была предложена Гутманом [c.129]

    Единая схема диссоциации электролитов см., например, монографию Н. А. И з м а ft-ло и а. Электрохимия растворов. Изд. ХГУ, Харьков, 1959) позволяет рассматривать химические реакции, происходящие в различных растворителях, с общей точки зрения. Ниже приводится сопоставление некоторых реакций, протекающих в водных растворах, с аналогичными реакциями в неводных средах. [c.409]

    Если появление первых исследований химических реакций в-неводных растворах относится к началу столетия, то бурное развитие теории и практики титрования в неводных средах наблюдается лишь в последние два десятилетия. Это находит отражение в быстро растущ,ем числе публикаций. Следует отметить, что препаративное применение растворителей предшествовало их использованию в аналитических целях оно стимулировало разработку различных теорий кислот и оснований применительно к неводным средам, расплавам солей, а также реакциям кислотно-основного взаимодействия, протекаюш.им в отсутствие растворителей. Развитие теории в свою очередь послужило основой аналитических исследований. [c.337]

    Неводные растворители могут быть использованы прежде всего для получения безводных соединений, особенно таких, которые при обезвоживании склонны вступать в реакции гидролиза или разложения. Особым классом неводных сред, в которых можно проводить химические реакции, являются расплавы солей. [c.556]

    Работы по созданию химических источников тока, использующих неводные растворители, по электросинтезу ряда веществ и электроосаждению металлов в неводных средах вызвали интерес к исследованию структуры двойного слоя и кинетики реакций в неводных растворителях. Измерения в неводных растворах позволяют решить и ряд теоретических проблем, например выяснить роль взаимодействия металл — растворитель, роль адсорбции атомов водорода и кислорода в структуре двойного слоя и др. [c.389]

    Некоторые важные, находящиеся в стадии активной разработки направления электрохимии органических соединений были лишь кратко освещены или только упомянуты в данной книге. К ним относится, например, использование нестабильных промежуточных продуктов в электросинтезе. Вступая в химические реакции с веществами, добавляемыми в раствор, эти продукты могут приводить к образованию новых ценных веществ, получить которые другими методами либо чрезвычайно трудно, либо вообще невозможно. Принципиально новые возможности открывает электросинтез органических соединений с использованием электрохимически генерируемых сольватированных электронов. Одним из эффективных способов интенсификации процессов окисления и восстановления органических соединений является применение катализаторов-переносчиков, которые позволяют окислять или восстанавливать органические соединения, не обладающие электрохимической активностью либо реагирующие на электроде с образованием нежелательных продуктов. Сравнительно мало внимания в книге было уделено электродным процессам в неводных средах, число которых увеличивается вместе с расширением ассортимента органических растворителей, применяемых в качестве среды при проведении электрохимических реакций. [c.304]


    О влиянии растворителей на потенциалы полуволн имеется еще мало экспериментальных данных, но и они говорят о том, что следует учитывать изменение характера восстановления и изменение состояния вещества под влиянием растворителей. Изменение потенциала полуволн в неводных растворах зависит от изменения нормального потенциала восстанавливающего вещества изменения падения потенциала в растворе с изменением сопротивления раствора изменения pH раствора изменения потенциала анода или межфазового потенциала, если полярографирование ведется с вынесенным анодом изменения характера восстановления в связи с различием в химических реакциях между восстанавливающимся веществом и фоном, в частности растворителем, а также в связи с влиянием растворителя на равновесие различных форм восстанавливающегося вещества. [c.466]

    В связи с широким применением неводных растворителей применение единой шкалы кислотности приобретает большую роль. Кислотно-основные процессы получили распространение в химической промышленности (нейтрализация, гидролиз, травление металлов и т. п.). Регулированием кислотности добиваются увеличения скоростей реакции и изменения их механизма. В этом состоит, например, сущность кислотно-основного катализа. Величина кислотности стала одной из важных характеристик, используемых для автоматического контроля и регулирования большого числа процессов. [c.291]

    Во многих неводных растворителях ионы появляются не в результате электролитической диссоциации, а в результате других химических реакций, когда молекулы потенциального электролита и растворителя обмениваются протонами, ионами или электронами. Приведем несколько примеров. Диссоциация азотной кислоты, растворенной в безводной уксусной кислоте, протекает в результате протолитической реакции  [c.414]

    В настоящее время наряду с водой в качестве растворителей применяют и другие жидкости, называемые неводными растворителями, например жидкий аммиак, диоксид серы, уксусную кислоту, бензол, хлороформ и др. В зависимости от растворителя меняются многие свойства веществ, в том числе константы равновесия химических реакций, состав комплексов, степень окисления атомов и ионов и др. Путем подбора растворителя можно управлять химическими процессами, подавлять свойства мешающие и усиливать нужные. [c.30]

    Жидкие растворы играют громадную роль в жизнедеятельности организмов. Они находят самое различное применение в практике в технологии получения полупроводников и полупроводниковых приборов, в очистке веществ, в гальванических процессах получения и очистки металлов, в работе химических источников тока, в процессах травления металлов и полупроводников и т. д. Для нас особое значение будут иметь водные растворы электролитов. Но и неводные растворы играют большую роль в теории и практике. Неводные растворители применяют для обезжиривания и для удаления всяких органических загрязнений с поверхности полупроводников и металлов перед их травлением, перед осаждением покрытий и т. д. Такими растворителями являются спирты, ацетон, трихлорэтилен и др. В природе, в лабораториях, в заводской практике постоянно приходится иметь дело с растворами. Чистые вещества встречаются гораздо реже. Громадное число реакций протекает в жидких растворах. [c.148]

    В неводных растворах может протекать сольво-лиз химических веществ (подобно гидролизу в водных растворах) — обменная реакция взаимодействия растворителя с растворенным веществом. Например, сольво-лизу подвергается сульфат калия в безводном фториде водорода  [c.105]

    Растворителям принадлежит существенная роль в создании гомогенных растворов, при электролизе которых протекает реакция получения тех или иных химических продуктов. Для проведения электрохимических реакций используются как водные, так и неводные растворители, а также их смеси. [c.25]

    Огромное большинство химически. процессов протекает в растворе, причем растворителей очень много, вода —лишь один из них. Растворитель может превратить кислоту в основание, ускорить или замедлить реакцию в миллионы раз, резко повысить выход продукта и т. д. В книге описано влияние неводных растворителей на свойства растворенного ве-ш,ества, на характер протекающих в растворе процессов. Второе издание (1-е изд.— 1976 г.) дополнено главами, посвященными электролитам в неводных растворах и управлению химическими процессами посредством растворителя. [c.2]

    В 60-х годах были обнаружены необычные координационно-химические свойства макроциклических соединений способность образовывать довольно прочные комплексы с ионами щелочных металлов, ранее считавшихся инертными, возможность избирательно связывать в комплексы многочисленные ионы переходных металлов Полученные металлокомплексы хорошо растворялись в неводных растворителях, проявляли каталитическое действие во многих реакциях и т д. [c.8]


    Среди различных неводных растворителей чаще других используются бензилбензоат, пропиленгликоль, глицерин, этилолеат, полиэтиленгликоли, диметилацетамид, сульфолан. Наблюдается тенденция к полной или частичной замене растительных масел синтетическими растворителями. Это связано со многими недостатками, присущими маслам большой вязкостью, аллергическими реакциями, слабой растворимостью в них лекарственных субстанций, химической нестойкостью и т.д. [c.348]

    В данном случае ион аммония является кислым ионом, а амид-ион — основным. В электролитных неводных растворителях также происходит сольватация, и в них протекают многие химические реакции. [c.218]

    Электрохимическое поведение бериллия в неводных средах изучено весьма поверхностно. Наблюдается далеко идущее сходство с электрохимическим поведением алюминия в органических растворителях (см. параграф 2.3.5). По полярографическим данным для обоих металлов характерно наложение на реакцию переноса заряда мешающего влияния адсорбции, и химических реакций. Катодное восстановление идет одноступенчато до металла [742, 989, 848, 1039]. [c.84]

    Для характеристики химических реакций в неводных растворах, как правило, применяют как классификацию Бренстеда, так и Льюиса. По специфическому взаимодействию растворителя с анионами и катионами Д. Паркер [12] предлагает делить растворители на диполярные апротонные и протонные. Протонные растворители способны образовывать водородные связи с ионами растворенного вещества, в го время как диполярные апротонные растворители таких связей не образуют. Поэтому процессы сольватации ионов в таких растворителях существенно отличаются. [c.6]

    Взаимодействие двух веществ А и В в растворителе 8 — наиболее часто встречающийся вариант проведения химических реакций. Большей частью при этом растворитель считают индифферентным, хотя эта предпосылка соблюдается относительно строго лишь в тех случаях, когда энергия взаимодействия между А и В значительно превышает энергию взаимодействия каждого из этих веществ с растворителем. Это условие в водных растворах вследствие специфических особенностей воды соблюдается редко. Поэтому исследование взаимодействия двух веществ в индифферентном растворителе может быть с известной степенью приближенности реализовано лишь в случае неводных растворов. [c.418]

    Истинная химическая форма комплексов в растворах может быть в действительности изменена вследствие гидролитических равновесий. Указания на возможные кинетические осложнения могут быть найдены в литературе, указанной в таблице. Основные ссылки представляют собой наиболее достоверные исследования отдельных реакций, и в них можно найти ссылки на другие исследования тех же систем. В очень немногих случаях использовались неводные растворители. [c.129]

    Варьирование условий реакции представляет особый интерес для неорганической электрохимии, так как позволяет исследовать влияние сольватации и диссоциации. При изучении органических электрохимических реакций, которые обычно являются реакциями сочетания, можно подбирать растворители с определенной кислотностью или, если нужно, растворители, способные подвергаться ионным или свободно-радикальным реакциям. Из разнообразия электрохимического применения неводных растворителей видно, что идеального растворителя не существует. Однако имеется ряд физических и химических свойств, которые следует учитывать при выборе растворителя. Эти свойства различны для разных соединений, и, следовательно, для определенной цели один растворитель может подходить больше, чем другой. [c.23]

    Добавление к раствору солей и кислот вызывает увеличение капелек, вводимых в пламя, что соответственно затрудняет испарение растворителя. Время (/), необходимое для полного испарения капли, зависит от ее первоначального диаметра в соответствии с равенством (11 = а (где С — постоянная, зависящая от температуры пламени, точки кипения растворителя и теплопроводности паров растворителя). Место в пламени, куда попадают сухие частицы после испарения растворителя, и, следовательно, место излучения зависят как от этих факторов, так и от скорости восхождения горячих газов. Если элементы вносятся в пламя в виде неводных растворов, интенсивность эмиссии возрастает. Это можно связать с одновременным действием ряда факторов влияние органического растворителя на эффективность атомизации, облегчение испарения растворителя, химические реакции в пламени. [c.86]

    Количество информации по химическим реакциям в неводных растворителях постоянно возрастает, что может быть использовано в качестве основы для предсказания возможного влияния замены растворителя на химическую реакцию. [c.312]

    Титриметрические методы обычно делят на группы по типу используемой химической реакции. Существует четыре основных типа титрования кислотно-основное, комплексометрическое, окислительно-восстановительное и по методу осаждения. Все более широкое использование неводных растворителей привело к появлению новой группы методов, объединенных под названием титрование в неводных средах . [c.316]

    Основные научные исследования относятся к электрохимии растворов. Первые работы были посвящены изучению адсорбции на твердых адсорбентах. Исследовал (1940—1948) кислотно-основное взаимодействие в неводных растворителях. Развил (1949) теорию кислотно-основных реакций, согласно которой взаимодействие кислот и оснований в растворах происходит путем образования промежуточных комплексов и ионных пар с незавершенным переходом прогона. Разработал количественную теорию диссоциации электролитов в растворах и объяснил дифференцированное действие растворителей на силу электролитов. Вывел общее уравнение для константы диссоциации электролитов, включающее ряд частных уравнений, предложенных другими исследователями, в том числе И. Н. Брён-стедом. Создал новые методы фи-зико-химического анализа применительно к неводным растворам. Развил теорию действия стеклянных электродов. Разработал адсорбционные методы выделения алкалоида морфина из мака. [c.207]

    Температура - один из самых мощных факторов воздействия на химические реакции. Как правило, скорость большинства реакций экспоненциально возрастает с повыщением температуры. Между тем уже найдены реакции, скорость которых, наоборот, увеличивается при понижении температуры [1—3]. Для ряда процессов установлено, что перевод системы в режим низких температур коренным образом меняет механизм реакции. Для консервации и длительного хранения биологических объектов и живых организмов приходится применять так называемые криопротекторы, в качестве которых выступают неводные растворители одноатомные и [c.156]

    Предлагаемая вниманию читателя книга написана известным австрийским химиком Викторолг Гутманом. В качестве растворителей автор рассматривает лишь так называемые молекулярные жидкости расплавленные соли и металлы не упоминаются в этой работе. Следует отметить оригинальный подход к изложению проблемы — растворители рассматриваются главным образом с точки зрения координационной химии. Автор предлагает химическую классификацию неводных растворителей в зависимости от наличия у них донорных или акцепторных свойств и при этом подчеркивает специфику растворителей, содержащих способные к диссоциации протоны. Для количественной характеристики растворителей автор предлагает так называемое донорное число — взятую с обратным знаком величину энтальпии реакции присоединения даннох молекулы к пентахлориду сурьмы. Эта характеристика донорных молекул широко используется по всей книге. [c.5]

    Для получения надежных результатов при кондуктометрическом титровании следует иметь в виду, что удельная электропроводность, изменяющаяся в процессе химической реакции, является аналитическим сигналом, зависящим от многих факторов, которые надо учитывать констант образования (диссоциации) всех участников химической реакции, константы автопро-толиза растворителя, подвижности ионов, ионной силы раствора и др. Использование неводных органических растворителей значительно расширяет возможности кондуктометрического метода анализа. [c.105]

    Таким образом, несмотря на различия в способах измерения количества продукта реакции, между отдельными методами первой группы имеется много общего в вопросах методики изучения и использования химической реакции значение произведения растворимости осадков в весовом анализе аналогично значению констант диссоциации окрашенных соединений в колориметрии много общего также в вопросах влияния кислотности раствора, неводных растворителей, посторонних реагирующих и не реагирующих веществ, постоянства состава продукта реакцип и т. д. Иногда колориметрический анализ необоснованно относят к другим группам, например к ( )изико-химиче-ским или к аппаратурным . Однако очевидно, что колориметрически анализ не более физичен по своей сущности, чем весовой (или объемный), а аппаратура колориметрического анализа обычно не более сложна или точна, чем аналитические весы. [c.24]

    Образование ионов в неводных растворителях в зависимости от свойств растворителей может протекать по механизму про-толитической диссоциации или в результате других химических реакций. Электролитическая диссоциация возникает в полярных протонных и апротонных растворителях, молекулы которых содержат неподеленные электронные пары. Протонные растворители, благодаря наличию гидроксильных и аминных групп, обладают также протондонорными свойствами и образуют водородные связи как между молекулами растворителя, так и с растворенным веществом. Все это способствует растворению и диссоциации электролита и сольватации ионов. Действие полярных апротонных растворителей, например, диметилсульфоксида, [c.413]

    Наконец, известен обширный круг реакций, в которых неводный растворитель принимает участие как химический агент. Так, синтез амидов многих металлов может быть осуществлен лишь в жидком аммиаке. Почти все галогениды металлов при соответствующих условиях дают амиды или амидогалогениды  [c.83]

    Определения Аррениуса явились первой научной системой представлений о кислотах и основаниях, которая до сих пор лежит в основе химической номенклатуры этих соединений. Ог-раниченно- ть определений Аррениуса состоит в том, что они связаны лишь с одним растворителем - водой, в то время как существует множество реакций, подобных указанной выше, которые протекают в неводных растворителях [c.246]

    Кондуктометрическое титрование успешно грименяется для определения индивидуальных соедакзний и анализа многокомпонентных смесей в водных,неводных ы смешанных растворителях с нижней границей определяемых содержаний, до 10" моль.л при относите ной опшбке определений 2%. Ценнш достоянством метода является возможность использования нестехиометрических и обратимых химических реакций. Метод недостаточно избирателен. [c.35]

    Лаблюдаемый в последнее время быстрый научный и техниче- ский прогресс в области химии м химической технологии органических и неорганических веществ вызывает острую необходимость дальнейшего развития аналитической химии и разработки новых более эффективных химических, физических и физико-химических методов анализа, соответствующих современным требованиям науки и производства. Одним из перспективных путей развития аналитической химии является направление, которое связано с разработкой теории и практики методов анализа, основанных па использовании реакций, протекающих в неводных растворах [1—26]. Основное преимущество использования неводных растворителей в качестве сред для определения различных веществ состоит в том, что в среде неводных растворителей можно дифференцированно (раздельно) титровать смеси электролитов, которые в водном растворе характеризуются близкими значениями р/С, например смеои изомеров, смеси соединений одного гомологического ряда, смеси кислот, оснований и т. д. [c.5]

    Соотношение между этими направлениями зависит от того, вступают ли радикалы, образовавшиеся в одноэлектронной стадии, в химическую реакцию (гетерогенная рекомбинация или электрохимическая десорбция) или успевают отдать второй электрон и перейти в карбониевый ион. Проведенные исследования показали, что как в водных, так и в неводных растворителях на электродах из обычного поликристаллического графита реакция идет в основном через промежуточное образование карбониевого иона с получением продуктов двухэлектронного окисления спиртов, эфиров, олефинов [207—210] [c.157]

    Понимание структуры жидких растворителей и растворов становится еше более затруднительным по мере того, как усложняются молекулы, появляется их полифункциональность, растет число возможных конформаций. Многообразие структур жидких растворов непосредственно отражается в сложности химических реакций и физико химических процессов, имеющих место в растворах, и требует применения всего арсенала методов исследования. В области химии растворов, как в никакой другой области химии, необходимо проведение обширных систематических исследований в широком структурном шшне, т.е. с по]шой вариацией растворителей, растворенных в них электролитов и неэлектро штов. Такие исследова1Шя, проводимые в нескольких научных центрах страны, развернулись в Институте химии неводных растворов АН СССР под руководством члена-корреспондента АН СССР Г.Л. Крестова. [c.3]


Смотреть страницы где упоминается термин ХИМИЧЕСКИЕ РЕАКЦИИ В НЕВОДНЫХ РАСТВОРИТЕЛЯХ: [c.10]    [c.254]    [c.250]    [c.68]    [c.25]   
Смотреть главы в:

Аналитическая химия неводных растворов -> ХИМИЧЕСКИЕ РЕАКЦИИ В НЕВОДНЫХ РАСТВОРИТЕЛЯХ

Физическая химия неводных растворов -> ХИМИЧЕСКИЕ РЕАКЦИИ В НЕВОДНЫХ РАСТВОРИТЕЛЯХ




ПОИСК





Смотрите так же термины и статьи:

Неводные растворители



© 2025 chem21.info Реклама на сайте