Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные реакции в неводных растворителях

    Интерметаллиды в воде не растворяются, но некоторые из них (подобно некоторым металлам) способны растворяться в неводных растворителях, в частности в жидком аммиаке. При этом они ведут себя как электролиты, т. е. при растворении дают ионы, вступают в реакции двойного обмена  [c.278]

    Важной характеристикой растворителя, влияющей на механизм реакции, является диэлектрическая проницаемость, от которой в первую очередь зависит состав частиц, на которые распадаются вещества-электролиты в растворе (разд. 34.2.4). Кроме того, диэлектрическая проницаемость растворителя влияет на процесс диссоциации, а также кислотно-основное равновесие. Так, рекомбинация ионов в нейтральные молекулы происходит преимущественно в растворителях с низким значением диэлектрической проницаемости г, а увеличение е способствует их диссоциации. Выбор подходящего растворителя или их смеси позволяет получить любое значение е среды, в которой протекает реакция. Этим широко пользуются при титровании в неводных растворителях (разд. 39.9). [c.457]


    Во многих неводных растворителях ионы появляются не в результате электролитической диссоциации, а в результате других химических реакций, когда молекулы потенциального электролита и растворителя обмениваются протонами, ионами или электронами. Приведем несколько примеров. Диссоциация азотной кислоты, растворенной в безводной уксусной кислоте, протекает в результате протолитической реакции  [c.414]

    В настоящее время наряду с водой в качестве растворителей применяют и другие жидкости, называемые неводными растворителями, например жидкий аммиак, диоксид серы, уксусную кислоту, бензол, хлороформ и др. В зависимости от растворителя меняются многие свойства веществ, в том числе константы равновесия химических реакций, состав комплексов, степень окисления атомов и ионов и др. Путем подбора растворителя можно управлять химическими процессами, подавлять свойства мешающие и усиливать нужные. [c.30]

    Реакция нейтрализации протекает не только в водных, но и в неводных растворах. Химическая природа неводного растворителя влияет на состояние ионов в растворе и на степень диссоциации. Одно и то же вещество может быть в одном растворителе солью, в другом кислотой, в третьем основанием. Например, ацетат аммония в воде — соль, в аммиаке — кислота, в уксусной кислоте — основание. Хлорид аммония в воде вследствие гидролиза является слабой кислотой (и солью), в жидкой фтористоводородной кислоте — основанием, в жидком аммиаке — сильной кислотой. Амид калия в уксусной кислоте — слабое основание, в воде — сильное основание, в жидком аммиаке — очень сильное основание. Амид калия в жидком аммиаке — более сильное основание, чем гидроокись калия в воде. [c.444]

    Наряду с влиянием pH и ионной силы раствора механизм электродных процессов зависит и от природы растворителя.- Неводные растворители в вольтамперометрии органических соединений используются не только для повышения их растворимости, но и для устранения ряда факторов, осложняющих электродный щ)оцесс. Для этого, как правило, применяют апротонные полярные растворители ДМФА, ДМСО, ацетонитрил, тетрагидрофуран, ацетон и некоторые другие. В таких средах практически полностью подавляются реакции протонизации и ступени на вольтамперограммах соответствуют переносу электрона в более чистом виде . Кроме того, в неводных средах существенно уменьшается влияние адсорбционных эффектов, порой осложняющих форму поляризационных кривых. [c.474]


    В 60-х годах были обнаружены необычные координационно-химические свойства макроциклических соединений способность образовывать довольно прочные комплексы с ионами щелочных металлов, ранее считавшихся инертными, возможность избирательно связывать в комплексы многочисленные ионы переходных металлов Полученные металлокомплексы хорошо растворялись в неводных растворителях, проявляли каталитическое действие во многих реакциях и т д. [c.8]

    В неводных растворителях область устойчивости соединений, конечно, меняется. Величина реакции определяется энергией ионизации (отрыва электрона) и энергией сольватации ионов или молекул. От относительного вклада того и другого вида энергии зависит окислительно-восстановительная способность веществ. Влияние неводных растворителей на редокс-системы еще недостаточно изучено. [c.184]

    Наиболее важной аналитической реакцией тиоцианатов.является их взаимодействие с солями Ре(1И) в кислой среде, в результате которой в зависимости от концентрации аниона образуется ряд комплексных соединений [31, 1264] сравнительно малой устойчивости. В растворе могут существовать и сосуществовать комплексные ионы с координационным числом от 1 до 6 [Fe(S N)] Куст = = 3-10-3) [Fe(S N)2] (1,4-10-2) Fe(S N)з (4-10- ), [Fe(S N)4]-(1,6-10 ), [Fe(S N)5P- (7-10- ). Красные комплексные соединения экстрагируются неводными растворителями, что значительно повышает ценность этой реакции, увеличивая ее чувствительность. [c.25]

    Бьша изучена возможность качественного анализа катионов с использованием неводных растворителей, в частности, в среде безводной уксусной кислоты или смеси уксусной кислоты с уксусным ангидридом. В этом случае многие цветные реакции и отделения происходят иначе. Например, кроме обычных для водной среды хлоридов РЬ, к% и Н в уксусной среде добавляются еще хлориды Си, N1, Сё. Никель образует диметилглиоксимат и в отличие от водных растворов этой реакции не мешают Ре -ионы. [c.63]

    В данном случае ион аммония является кислым ионом, а амид-ион — основным. В электролитных неводных растворителях также происходит сольватация, и в них протекают многие химические реакции. [c.218]

    Катодное восстановление катионов щелочных металлов в неводных органических растворителях представляет собой в основном одноэлектронный обратимый процесс с образованием соответствующего металла [681, 1153, 988, 1022, 963, 1096, 242, 708, 999, 887, 724, 819, 651, 1233, 987]. Исключение составляет ион лития, который во многих растворителях восстанавливается необратимо благодаря своей высокой способности сольватироваться. Об этом, в частности, свидетельствуют значения полярографического коэффициента Ь, приведенные в табл. 11 приложения (теоретическое значение для одноэлектронного обратимого процесса при комнатной температуре 59 мВ). Образовавшийся на катоде щелочной металл может вступать в различные вторичные реакции с растворителем, следами воды, примесями [861, 414, 1184]. Щелочные металлы могут проявлять свою активность даже в апротонных растворителях. Так, по отношению к ДМСО не активен только литий. При комнатной температуре натрий реагирует с ДМСО достаточно быстро, а калий — бурно, [722]. Катодное восстановление ионов [c.78]

    Для характеристики химических реакций в неводных растворах, как правило, применяют как классификацию Бренстеда, так и Льюиса. По специфическому взаимодействию растворителя с анионами и катионами Д. Паркер [12] предлагает делить растворители на диполярные апротонные и протонные. Протонные растворители способны образовывать водородные связи с ионами растворенного вещества, в го время как диполярные апротонные растворители таких связей не образуют. Поэтому процессы сольватации ионов в таких растворителях существенно отличаются. [c.6]

    Природа растворителя может заметно влиять на скорость окислительно-восстановительной реакции многие реакции, для которых в промежуточных стадиях участниками были ионы и радикалы, генерируемые из молекул воды (ОН , -ОН, -ОаН и др.), замедляются в среде неводных растворителей. Этому же способствует уменьшение диэлектрической проницаемости растворителя. [c.280]

    Варьирование условий реакции представляет особый интерес для неорганической электрохимии, так как позволяет исследовать влияние сольватации и диссоциации. При изучении органических электрохимических реакций, которые обычно являются реакциями сочетания, можно подбирать растворители с определенной кислотностью или, если нужно, растворители, способные подвергаться ионным или свободно-радикальным реакциям. Из разнообразия электрохимического применения неводных растворителей видно, что идеального растворителя не существует. Однако имеется ряд физических и химических свойств, которые следует учитывать при выборе растворителя. Эти свойства различны для разных соединений, и, следовательно, для определенной цели один растворитель может подходить больше, чем другой. [c.23]


    Из электрохимических реакций соединений марганца в неводных растворителях изучены, очевидно, только реакции восстановления Мп(П). Этот ион дает в различных растворителях одну двухэлектронную полярографическую волну, соответствующую восстановлению до металла. В формамиде или М,Н-диметилформамиде какие-либо полярографические волны не наблюдались [49]. [c.419]

    Реакции в неводных растворах для приготовления комплексов металлов нашли широкое применение совсем недавно. Существуют две основные причины, почему иногда необходимы неводные растворители 1) ион металла обладает большим сродством к воде 2) лиганд не растворим в воде. Ионы А1(1П), Fe(III), r(III) имеют большое сродство к воде и образуют сильные связи металл — кислород. Добавление основных лигандов к водным растворам ионов этих металлов обычно приводит к образованию желатинообразных осадков гидроокисей, а не комплекса, содержащего добавленный лиганд. Связи металл — кислород остаются неизменными, а связи кислород — водород рвутся, гидратированные ионы металлов ведут себя подобно кислотам по Льюису. [c.97]

    При рассмотрении поведения координационных соединений в растворах обычно предполагают, что растворителем является вода но некоторые координационные соединения растворяются в неводных растворителях, которые в последнее время стали широко применять. В этих растворителях ионы металла окружены молекулами растворителя, и реакция комплексообразования заключается в замене молекул растворителя другими лигандами. По существу, равновесие в неводных растворителях аналогично равновесию в водных растворах. Ограниченная растворимость ионов в большинстве неводных растворителей, трудности, связанные с недостаточной диссоциацией солей (спаривание ионов) в них, и удобство водных систем приводят к тому, что большинство исследований равновесий проводят в водных средах. Ниже будут рассмотрены равновесия в водной среде кроме того, с некоторыми изменениями аналогичная трактовка будет применена к другим растворителям. [c.131]

    Ионные произведения неводных растворителей (например, ледяной уксусной кислоты и жидкого аммиака), согласно реакциям автопротолиза [c.123]

    Образование ионов в неводных растворителях в зависимости от свойств растворителей может протекать по механизму про-толитической диссоциации или в результате других химических реакций. Электролитическая диссоциация возникает в полярных протонных и апротонных растворителях, молекулы которых содержат неподеленные электронные пары. Протонные растворители, благодаря наличию гидроксильных и аминных групп, обладают также протондонорными свойствами и образуют водородные связи как между молекулами растворителя, так и с растворенным веществом. Все это способствует растворению и диссоциации электролита и сольватации ионов. Действие полярных апротонных растворителей, например, диметилсульфоксида, [c.413]

    Работы по изучению сольватации ионов в неводных растворителях методом химического сдвига ЯМР еще сравнительно малочисленны. Достаточна указать, что первые систематические исследования химических сдвигов, вызываемых ионами в водно-неводных смесях и органических растворителях стали появляться менее десяти лет назад [А. F г а t i е 11 о, D. С. Douglass, 1963 R. L. В и с-kson, S. G. Smith, 1964]. Тем не менее изучение химических сдвигов весьма перспективно для решения проблем теории растворов (характеристика избирательной сольватации, константы ассоциации электролитов, коэффициенты диффузии, кинетика реакций и т. д.). [c.194]

    Мысленно можно представить следующий процесс. Сначала происходит перенос гидратированного протона из воды в неводный растворитель, например в спирт, гидратная оболочка заменяется на сольватную, а затем происходит реакция обмена протона, т. е. процессы идут в обратном порядке сначала ион гидроксония выносится из воды и теряет свою гидратную оболочку, ион гидроксония вносится в неводный растворитель, например в спирт, и сольватируется, после чего происходит обмен молекулы воды на молекулу спирта и образуется сольватированный ион — ион этоксония. [c.200]

    Оксихинолин проявляет свойства слабой кислоты, вступая в реакцию с ионами металлов. В результате реакции образуется внутрикомплексное соединение состава А1 (СдНбОЫ)з мало растворимое в воде и хорошо растворимое в неводных растворителях (бензол, хлороформ) [41, [11. Растворы в хлороформе окрашены в желтый цвет Рис. 48. Спектры поглощений 395 нм, 8 = 7,3-10 . Поскольку в СНСЬ  [c.133]

    Благодаря полярности молекул и достаточно высокой диэлектрической проницаемости жидкий аммиак является хорошим неводным растворителем. Жидкий аммиак положил начало химии неводных растворов. Результаты исследования поведения веществ в жидком аммиаке дали возможность построить обобщенную теорию кислот и оснований, открыли перед химией новые пути проведения реакций синтеза ранее неизвестных веществ и т. д. В жидком аммиаке хорошо растворяются щелочные и щелочно-земельные металлы, сера, фосфор, иод, многие соли и кислоты. Вещества с функциональными полярными группами в жидком аммиаке подверга-]отся электролитической диссоциации. Однако собственная ионизация аммиака 2ЫНа(ж) ЫН - -ЫН2 ничтожно мала и ионное произведение [NHi] lNH.r]= 10 - при —50 °С. [c.249]

    Применение разнолигандных комплексов во многих случаях приводит к повышению селективности, контрастности реакций, улучшению экстракционных и других свойств. Приведем несколько примеров. Определение малых количеств тантала в присутствии больших количеств ниобия — очень трудная задача. Однако эта задача была успешно решена с применением экстракционно-фотометрического метода определения тантала в виде ионных ассоцнатов гекса фторид ноге комплекса тантала с основными красителями. Аналогичную трудность испытывали аналитики при определении малых количеств рения в присутствии больших количеств молибдена. Только применение экстракции с трифенилметановыми красителями дало возможность определять очень малые количества рения в молибдене или молибденовых рудах с довольно низким пределом обнаружения. Это же относится к определению осмия в присутствии других платиновых металлов, определению бора и других элементов. Введение второго реагента часто приводит к улучшению экстракционных свойств комплексов и снижению предела обнаружения. Так, дитизонат никеля очень плохо экстрагируется неводными растворителями. Для полной его экстракции тетрахлоридом углерода требуется примерно 24 ч. Если же ввести третий компонент — 1,10-фенантролин или 2,2 -дипиридил, то комплекс экстрагируется очень быстро, а предел обнаружения никеля снижается в пять раз. [c.299]

    В ячейках с диафрагмами реакция на противоэлектроде редко вызывает осложнения В водных растворах на аноде просто выделяется кислород еслн иужно получить анион хлора, рекомендуют добавлять в анодное пространство этанол, поскольку ои реагирует с выделяющимся хчороМ- При окислении наиболее удобной реакцией, протекающей на противоэлектроде, является выделение водорода этот процесс можно реализовать также и в неводных растворителях [23]. Было замечено, что в дихлорметане хлорид-ион, образующийся при восстаиов пении дихлорметана иа противоэлектроде, может диффундировать в анодное пространство и участвовать в последуюшлх реакциях [352]. Этого можно избежать, если в катодное пространство добавить немного уксусной кислоты. [c.230]

    В водных растворах не могут быть достигнуты значения pH ниже -1 н выше 15. В других растворителях интервал pH значительно отличается от указаннсто для воды, поэтому кислотно-основные реакции в неводных средах могут быть полезными для спещ1ального применения. На рис. 4.2-1 приведены ионные произведения некоторых растворителей в сравнении с ионным произведением воды. [c.148]

    В настоящее время влияние растворителя на полимеризацию следует рассматривать не только с точки зрения полярности, но и в рамках координационной модели , развитой для химии ионных реакций в неводных растворителях и характеризующей среду в виде донорных (ВМ) и акцепторных (АМ) чисел 78, 232]. Оптимальная комбинация донорных (сольватация катиона) и акцепторных (сольватация аниона) свойств среды с учетом свойств мономера как растворителя будет благоприятствовать разделению и стабилизации зарядов. Так, например, нитрометан более хороший растворитель, чем хлористый метилен (ОМснзШ2= 2,7, = О, АМснзЫ02 = 20,4, АКсн2С12 0) за счет специфической координации и неспецифической сольватации. Важным свойством среды является вязкость. Она может влиять на наиболее быстрые стадии полимеризации (рост, обрыв). Хотя надежно измеренные кинетические константы при полимеризации изобутилена находятся ниже диффузионного предела, накопление гелеобразного продукта вокруг твердого катализатора может представлять случай диффузионного контроля реакции. [c.95]

    Краткая характеристика комплексных соединений рения с оксимами дана в табл. 13, из которой следует, что наиболее чувствительным реагентом является а-фурилдиоксим (е = 4,0-10 ), а затем а-бензилдиоксим (е = 3,05 -Ю ) применение последнего ограничено из-за его малой растворимости. Окрашенное соединение рения с а-фурилдиоксимом образуется в кислой среде (НС1 или H2SO4) в присутствии Sn lj и ацетона или спирта [381, 385, 1026, 1037, 1217]. Образование окрашенного соединения происходит только в присутствии ионов хлора [1212]. Процесс образования соединения рения с а-фурилдиоксимом в системе вода — неводный растворитель (ацетон или спирт) является сложным. В зависимости от условий реакции наблюдается различная окраска растворов от желтой до малиновой, что связано со ступенчатым комплексообразованием в системе. В интервале кислотности 0,6—1,0 N НС1 Б присутствии Sn lg, при содержании 24% (по объему) ацетона и 50-кратного избытка реагента образуется насыш,енное соединение, окрашенное в малиновый цвет с ьтах = = 530 нм VI 530 = 43 ООО + 200 (рис. 47). Окрашенное соединеиие [c.117]

    Окисление альдегидов проводили в метаноле, этаноле, изопропаноле и бутаноле при кolViнaтнoй температуре и при охлаждении. Реактив в некоторой степени окисляет метанол при комнатной температуре, при температуре же О—3 °С метанол совершенно не окисляется и поэтому, как следует из данных табл. 2.12, он оказывается наилучшим неводным растворителем для некоторых альдегидов. Не рекомендуется в качестве растворителя применять изопропанол и не только потому, что он окисляется даже при О—3°С, но и потому, что продукт его окисления ацетон образует комплекс с ионами ртути. Этанол и бутанол при О—3°С окисляются лишь в незначительной степени. Было найдено, что реакция окисления спиртов меркуралем подчиняется закону действия масс. Поэтому влияние окисления растворителя можно понизить разбавлением реактива дистиллированной водой в отношении 1 1, прибавлением равного количества спирта к холостой пробе и проведением реакции в ледяной бане, компенсируя замедление реакции в результате разбавления реактива и понижения температуры соответствуюш,им увеличением продолжительности реакции. Если образцы спиртов содержат лишь несколько процентов альдегида, погрешность, обусловленная этими изме-мениями, невелика. Образцы, содержаш,ие сложные эфиры, также следует определять в этих условиях, так как гидроксид калия входящий в состав реактива, будет омылять их в спирты. [c.110]

    Мысленно можно представить следующий процесс. Сначала происходит перенос гидратированного протона из воды в неводный растворитель, например в спирт, гидратная оболочка заменяется на сольватную, а затем происходит реакция обмена протона, т. е. процессы идут в обратном порядке сначала ион гидроксония выносится из воды и теряет свок> гидратную оболочку, ион гидроксония вносится в неводный раствори- [c.227]

    Другие исследователи применяют неводные растворы, особенно метанол и (в меньшей степени) нитрометан, и экстраполируют полученные результаты на случай воды. Однако неблагоприятные свойства воды не отсутствуют полностью и у других растворителей. Многие из растворителей полярны (например, спирты), и можно указать иа некоторые факты, свидетельствующие о метанолизе комплексов [132]. Далее, ассоциация ионов более существенна в растворителях с 1шзкой диэлектрической проницаемостью, а в смешанных растворителях может происходить предпочтительная гидратация ионов. Очевидно, что ни воду, ни неводные растворители нельзя рассматривать как нейтральные при реакциях комплексных ионов, и ири интерпретации кинетических результатов это обстоятельство следует принимать во внимание. [c.108]

    Созворт и сотр. [56] исследовали восстановление различных четвертичных аммониевых соединений в воде на ртутном катоде. Алифатические соединения восстанавливаются по реакции, аналогичной реакции (9.34). Эти авторы наблюдали, что при проведении электролиза на ртутном электроде раствор проникает в пространство между ртутью и стенкой ячейки. При определенном потенциале ртутная лужа диспергирует на мелкие части и выделяется газ. Это приписывают образованию амальгамы и ее последующей реакции с водой. Авторы наблюдали это явление при электролизе алифатических четвертичных аммониевых солей на ртутных катодах в ацетонитриле и диметилформамиде. Однако при электролизе в неводных растворителях газ не выделяется. Если потенциал сделать менее катодным, капельки ртути сливаются. При восстановлении четвертичных аммониевых соединений, содержащих ароматические группы, реакция идет с отщеплением ароматического радикала, который в воде образует углеводород, вероятно, за счет отщеплени водорода от воды [56]. Было показано [58], что при реакциях четвертичных аммониевых ионов, имеющих карбонильную группу, связь углерод — азот восстанавливается более легко, чем карбонильная группа. [c.273]

    Полярографическое восстановление ионов водорода в неводных растворителях изучали Эльвинг и Шпритцер [6]. Реакции кислот могут сводиться к восстановлению ионов водорода, а также к окислению или восстановлению других частей молекулы. Мы обсудим восстановление протонов, которое более детально изучено в ацетонитриле и диметилсульфоксиде. [c.405]

    Восстановление. Восстановление нитрат-иона в водных растворах изучали многие исследователи. Обзор по этим реакциям был сделан Кольтгоффом и Лингейном [121]. Образование соединений с более низкой степенью окисления азота, в том числе газообразного N2, зависит от условий опыта. Примеры восстановления нитрат-иона в неводных растворах неизвестны. Изучение этой реакции в некоторых растворителях осложняется плохой растворимостью солей для восстановления нитрат-иона требуется очень отрицательный потенциал. Больщинство солей азотной кислоты, катионы которых на катоде не восстанавливаются — соли щелочных металлов и четвертичного аммония, очень слабо растворяются в ацетонитриле и, вероятно, в других нитрилах. Нитраты растворимы в диметилсульфоксиде на ртутных катодах могут быть достигнуты следующие потенциалы для нитрата натрия —1,91 В, для нитрата тетраэтиламмония —2,74 В и для тетраэтиламмоний перхлората —2,77 В отн. нас. к. э. [2]. [c.452]

    Как и в случае водных растворов, на углеродных электродах в неводных средах могут протекать реакции их собственного окисления и восстановления, а также процессы разложения раствЮ-рителя. В неводных -растворителях, однако, могут достигаться значительно более высокие значения катодных и анодных потенциалов, что обусловливает возможность разряда ионов электролита с образованием соединений внедрения. Совокупность действия этих факторов определяет степень устойчивости углеродных материалов в невидных растворителях. [c.93]

    Соотношение между этими направлениями зависит от того, вступают ли радикалы, образовавшиеся в одноэлектронной стадии, в химическую реакцию (гетерогенная рекомбинация или электрохимическая десорбция) или успевают отдать второй электрон и перейти в карбониевый ион. Проведенные исследования показали, что как в водных, так и в неводных растворителях на электродах из обычного поликристаллического графита реакция идет в основном через промежуточное образование карбониевого иона с получением продуктов двухэлектронного окисления спиртов, эфиров, олефинов [207—210] [c.157]


Смотреть страницы где упоминается термин Ионные реакции в неводных растворителях: [c.399]    [c.117]    [c.20]    [c.21]    [c.32]    [c.118]    [c.223]    [c.20]    [c.21]    [c.26]   
Смотреть главы в:

Равновесие и кинетика реакций в растворах -> Ионные реакции в неводных растворителях




ПОИСК





Смотрите так же термины и статьи:

Неводные растворители

Растворитель ионита



© 2024 chem21.info Реклама на сайте