Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Содержание Соли уксусной кислоты

    На стадии окисления получается 99%-ная терефталевая кислота. Дополнительной очисткой ее получают кислоту, пригодную для прямой этерификации в полиэтилентерефталат (99,99%). Принципиальная схема представлена па рис. 14. Катализатор регенерируется на отдельной установке, куда непрерывно отводится часть реакционной массы. Горячая уксусная кислота с солями брома вызывает интенсивную коррозию реактора, что заставляет использовать аппараты из титана или особого сплава [73]. Можно отказаться от использования брома или других промоторов, но при этом увеличить содержание катализатора до 20—100% от массы -ксилола. Температура процесса и давление понизятся до 100—130 °С и 0,98 МПа, а выход кислоты достигнет 97—98%. В результате регенерации катализатора расход его на 1 т кислоты снижается до 0,9 кг. Смягчив условия окисления и отказавшись от бромсодержащих промоторов, можно использовать обычные нержавеющие стали и в несколько раз уменьшить стоимость блока окисления. [c.78]


    Полученный сложный эфир уксусной кислоты после нейтрализации избытка ангидрида подвергают омылению. По расходу затраченной для омыления щелочи рассчитывают содержание спирта. Часто применяют и другие ацетилирующие смеси, например, смесь уксусного ангидрида и пиридина. Образующаяся в ходе реакции уксусная кислота дает с пиридином нейтральную соль — ацетат пиридина [c.48]

    При исследовании растворов для никелирования с низким содержанием гипофосфита установлено, что изменение концентрации никелевой соли мало отражается на скорости процесса (рис 4) Соли органических кислот (гликолевой, уксусной и лимонной) оказывают большое влияние на процесс восстановления, [c.7]

    Восстановление цинком и уксусной кислотой с последующим титрованием азотнокислым серебром Экстрагирование азотнокислой ртутью (закисная соль) с определением разности содержания серы Экстрагирование азотнокислой ртутью (окисная соль) с определением разности содержания серы Сернистые соединения, остающиеся после проведения всех перечисленных определений [c.263]

    Более подходящим в данном случае является второй способ выделения химических продуктов из паро-газовой смеси. Пользуясь им, можно при малом содержании спиртовых продуктов в сыром газе ограничиться улавливанием смол из газа и последующим выделением из него уксусной кислоты раствором уксусно-кальциевой соли. [c.142]

    Определение кобальта методом изотопного разбавления [1250]. Методика разработана для определения небольших количеств кобальта в сталях и никелевых сплавах. Сталь или никелевый сплав растворяют, как обычно, в азотной и соляной кислотах, прибавляют к полученному раствору соль Со ° с известной удельной активностью и при высоком содержании железа экстрагируют его диэтиловым эфиром в виде хлорида. Из раствора осаждают щелочью гидроокись кобальта, чем достигают отделение от хромата. Осадок растворяют в уксусной кислоте. При этом марганец остается в осадке в форме МпОг. [c.197]

    По-видимому, от описанного способа можно ожидать хороших результатов, лишь используя безводную уксусную кислоту, так как при применении даже высококонцентрированных (96—98%-ных) органических кислот повышается содержание воды в непрореагировавшей кислоте. В этом случае необходимо подкреплять оборотную кислоту до исходной концентрации, что все же проще, чем регенерировать ее из разбавленных водных растворов или растворов ее солей. [c.86]


    Многие органические кислоты находятся в растениях в значительном количестве такова, напр., винная кислота, находящаяся в соке виноградных ягод и в кислом соке многих плодов, 0н 0 такова яблочная кислота, находящаяся не только в незрелых яблоках, но и в более значительном количестве в рябине, ОН 0 лимонная кислота, находящаяся в кислом соке лимонов, в крыжовнике, клюкве и др., С Н 0 щавелевая кислота, С Н О , находящаяся в кислице и щавеле, и множество других. Иногда эти кислоты находятся в растениях в виде свободном, иногда в виде солей так напр., винная кислота находится в винограде в форме соли, известной в аптеках под названием remor tartari, а в нечистом виде называемой винным камнем, С Н КО . Между углекислым газом и этими органическими кислотами существует прямая связь все они, в тех или других обстоятельствах, выделяют углекислый газ все могут быть при посредстве его получены из тел, вовсе не имеющих кислых свойств. Лучшим доказательством этому могут служить следующие примеры уксусная кислота, входящая в состав уксуса С №0 , будучи пропущена в виде паров чрез накаленную трубку (особенно, если в ней находится щелочь), разлагается на углекислый и болотный газы = Q2 -f- С№. Но она может быть получена и обратно из тех составных частей, на которые распадается. Если в болотном газе заменив (косвенным путем) пай водорода натрием и получим тело H Na, то оно поглощает углекислый газ, образуя соль уксусной кислоты, из которой легко уже получить и самую уксусную кислоту H Na + -f- СО = №Na02. Водород болотного газа вовсе не имеет свойства прямо, как в кислотах, замещаться металлами, т.-е. С№ не имеет кислотного характера, но, чрез присоединение элементов углекислого газа, приобретает свойство кислоты. Так точно изучение и всех других органических кислот показывает, что кислотный их характер зависит от содержания в них элементов углекислого газа. Оттого нет истинной органической кислоты, содержащей в частице меньше кислорода, чем в углекислом газе все органические кислоты содержат в частице, по крайней мере, два атома кислорода, как и углекислый газ. Если прибавка СО возвышает основность, то выделение СО ее уменьшает. Так, из двуосновных щавелевой С Н О или фталевой С Н 0 кислот чрез выделе- [c.279]

    Методы количественного определения солей органических кислот довольно разнообразны. Содержание ряда солей можно определять на основе специфических реакций. Например, сали-цилаты хорошо титруются броматометрически в присутствии солей кислот жирного ряда, формиаты перманганатометрически в присутствии солей уксусной кислоты и т. д. [c.101]

    Полиамины обладают рядом интересных свойств. Так, с формальдегидом они дают нерастворп.мые продукты конденсации. Все четвертичные соли растворимы в воде даже ири низком содержании амина. Пол1 амипы образуют полиамиды с уксусной, фталевой, стеариновой и другими кислотами. Соли уксусной кислоты в водном растворе с цианатом калия или роданидом калия образуют мочевитту пли тиомочевину. [c.587]

    Стойкость к набуханию в жидкостях зависит от типа полисилоксана и от содержания наполнителя. Обычные силоксановые вулканизаты, как правило, сильно набухают в неполярных жидкостях и слабо в полярных, а бензомаслостойкие (фтор- и нитрилсилоксановые)—наоборот [3, с. 154—156 33 72, с. 176]. Меньше набухают твердые (более наполненные) вулканизаты. Набухание увеличивается с повышением температуры и сопровождается ухудшением механических показателей, не всегда обратимым, так как некоторые жидкости разрушают сетку вулканизата. Примерами жидкостей, в которых обычные вулканизаты набухают на 100—275%, а бензомаслостойкие на 5—30%, являются ССЦ, хлороформ, толуол, ксилол, циклогексан, фреон-114, керосин, силиконовые масла. В ацетоне, наоборот, первые набухают на 15—25%, вторые на 150—200%. Фторсилоксановые резины разрушаются фреоном-22 и этаноламином. Оба типа вулканизатов стойки к водным растворам солей, кислот и оснований, слабо (на 5—25%) набухают в спиртах, ацетонитриле, ледяной уксусной кислоте, средне (на 40—50%) в дихлорэтане и дибутилфталате, сильно (больше 150%) в бутилацетате. [c.495]

    После осветления коллактивитом гидролизат нейтрализуют з-вестковым молоком таким образом, чтобы почти полностью. нейтрализовать серную кислоту, оставляя несвязанными органические кислоты. Это достигается нейтрализацией до pH 2,8—3,0 более глубокая нейтрализация приводит к образованию растворимых кальциевых солей органических кислот, резко возрастает в нейтра-лизате содержание ионов Са2+, для удаления которых при дальнейшей очистке ксилозных растворов потребуется дополнительное количество катионообменных смол. Кроме того, при упаривании нейтрализатов удаляется значительное количество летучих органических кислот (уксусной, муравьиной), поэтому необходимо, чтобы эти кислоты при нейтрализации не переводились в их нелетучие кальциевые соли. [c.147]

    Окисление проводится в реакторе 1 из нержавеющей стали в интервале температур 160—190 °С и при давлении 4,8 МПа без катализатора или в присутствии солей кобальта, меди, магния, ванадия. Воздух подается в нижнюю часть реактора в таком количестве, чтобы содержание кислорода в отдувочном газе составляло не более 4% (об.). Пары продуктов реакции и непрореагировавшие углеводороды поступают совместно с отработанным воздухом в конденсационную систему 2—4, приспособленную для утилизации теплоты. Отсюда жидкий конденсат возвращается в зону реакции. Отработанный воздух поступает в турбодетандер 5, где охлаждается до —60 °С. Полученный холод используют на установке. Оксидат из реактора поступает в ректификационную колонну 7, в которой отделяются нейтральные кислородсодержащие продукты, возвращаемые на доокис-ление в реактор 1. На колонне 8 происходит отделение воды и кислот С —С4, а тяжелый кубовый остаток, пройдя блок выделения янтарной кислоты 9, поступает на повторное окисление. Вода от кислот отгоняется с помощью азеотропной перегонки (блок 10). Товарные муравьиная, уксусная и пропионовая кислоты выделяются с применением азеотропной и обычной ректификации (блоки 11—13). Суммарный выход кислот С —С и янтарной кислоты в расчете на превращенный бензин находится на уровне 100—110%, причем выход уксусной кислоты составляет 60—75% от товарной продукции и зависит от технологии проведения процесса и используемого для окисления сырья. [c.178]


    Методы определения присадок типа п-фенилендиаминов. Качественное определение присадок этого типа основано на изменении цвета при переходе от основания к соли. Такое определение не представляет затруднений. В делительной воронке емкостью 250 мл смешивают 100—200 мл исследуемого топлива с 5 мл 15%-ной НС1 в течение 2—3 мин. После разделения фаз 3 мл кислотной фазы переводят в реакционную колбу с 1,5—2 мл уксусной кислоты (97%-НОЙ). При этом раствор окрашивается в слабожелтый цвет. Затем раствор смешивают с 20%-ным водным раствором NaOH до появления ярко-красной окраски. Эта реакция позволяет определить наличие присадки при ее содержании в топливе от 0,0005% [170]. Алкилированные фенолы реакции не мешают. Очень важно наблюдать за pH раствора — оно не должно превышать 4—5 в слабо-кислом растворе определение присадки в некоторых топливах может быть затруднено. [c.197]

    В конечном итоге этой реакции добавляемая щелочь заменяется эквивалентным количеством слабоосновной соли, которая влияет на реакцию среды в зиачител11Иой меньшей степени, чем NaOH. Поскольку в результате этой реакции уксусная кислота расходуется, можно было бы ожидать значительного снижения содержания ионов Н+. Однако вместо прореагировавших ионов кислоты Н+ и СНаСОО - за счет потенциальной кислотности образуются новые ионы Н+ и СНзСОО , и активная кислотность смеси (pH) почти не изменяется. [c.213]

    Объяснить этот опыт можно следующим образом. Так как злект-ропроводность раствора элекгролита зависит ог количества заряженных частиц (ионов), то значит, что в растворе гюварснной соли количество ионов строго соответствует количеству добавленной в раствор соли т. к. весь хлорид натрия в растворе по определению полностью диссоциирован на ионы (молекулы ЫаС ие существует ни в растворе, ни в природе вообще при обычных условиях). Содержание же ионов в концентрированном растворе уксусной кислоты меньше, чем в разбавленном, т. е. концентрированный раствор содержит не только ионы СН СОО и Н , но и недиссоциированные молекулы уксусной кислоты, которые распадаются на ионы при добавлении воды (в соответствии с принципом Ле Шателье, см. Часть 1). [c.121]

    Для приготовления эталонных растворов в пять стаканов емкостью по 25—ЗО мл вносят 5 мл ацетатного буферного раствора, стандартный раствор соли кобальта, соответственному 2-му или 3-му ряду (см. стр. 162) в зависимости от содержания кобальта в испытуемом растворе добавляют 0,2 мл раствора перекиси водорода и раствора щелочи (постепенно) до полного образования осадка ( 1 мл). Выпавший осадок гидроокиси растворяют при слабом подогревании в 2 мл уксусной кислоты. К горячему раствору добавляют 1 мл раствора 1-нитрозо-2-нафтола, переносят содержимое стаканчиков в пять делительных воронок, добавляют воды примерно до 20 мл, осталяют стоять 15 мин и экстрагируют образовавшееся соединение кобальта в течение 5 мин двумя порциями хлороформа по 5 мл каждая. Водный слой отбирают пипеткой, используя резиновую грушу, слой хлороформа промывают двумя порциями раствора щелочи по 5 мл каждая. Строят градуировочный график по данным, измерения оптической плотности растворов на фотоэлектроколориметрах ФЭК-56, ФЭК-57 и ФЭК-60 или спектрофотометрах при А, 460 нм. В качестве раствора сравнения используют хлороформ. [c.165]

    Титрования ацетата натрия. Помещают 200—250 мг препарата в бюкс. Отвешивают порции по 70—80 мг в три колбы для титрования. Сушат колбы с образцами 30 мин при 125 С. В каждую колбу вносят по 4 мл ледяной уксусной кислоты. Нагревают до растворения безводной соли. Охлаждают до комнатной температуры. Прибавляют 16 мл бензола и 0,02 мл или меньше раствора кристаллического фиолетового. Титруют хлорной кислотой до перехода окраски раствора в синюю. Заканчивают титровать при зеленоватосиней окраске, добавляя кислоту по каплям. Расчет ведут по затраченному объему H IO4 на грамм образца. Определяют содержание ацетата натрия в анализируемом препарате (в %)  [c.446]

    При достаточной для коррозии влажности определяющее влияние на скорость ее оказьшает загрязненность воздуха примесями. Наиболее существенные примеси в промышленной атмосфере—это двуокись серы, хлориды, соли аммония. В атмосфере могут содержаться также углекислый газ, сероводород, окислы азота, муравьиная и уксусная кислоты, аммиак. Однако их влияние на скорость атмосферной коррозии в большинстве случаев незначительно. Даже при значительном содержании углекислого газа в атмосфере он снижает pH электролита лишь до 5-5,5, и в условиях избытка кислорода при таком значении pH коррозия с кислородной деполяризащ1ей не переходит в процесс с водородной деполяризащ1ей. Сероводород, оксиды азота, хлор, соли аммония и другие соединения в значительных количествах могут присутствовать только в атмосфере вблизи от химических предприятий, в этом случае их наличие в воздухе оказывает влияние на механизм и скорость коррозионного разрушения металла. Особенно существенно влияние сероводорода на атмосферную коррозию промыслового оборудования месторождений сернистых нефтей и газов. [c.6]

    Из второй части нейтрализованного гидролизата удаляли гексозы сбраживанием их спиртообразующими дрожжами при температуре 28—32° С, задавая дрожжи в количестве 1,5 г на 100 мл гидролизата. Брожение заканчивалось через 24—36 ч. Полноту брожения контролировали в трубках Эйгорна. По окончании брожения дрожжи отделяли фильтрованием, фильтрат подкисляли уксусной кислотой, концентрировали, очищали от солей и коллоидов и снова концентрировали до сиропа. Общее количество сахаров определяли по количеству озазонов и по методу Бертрана. Разность между сахарами до и после брожения соответствовала количеству сбраживаемых сахаров. Как показали контрольные опыты, в этих условиях полностью сбраживаются глюкоза, манноза и галактоза. Вычитая из найденного количества сбраживаемых сахаров найденное ранее количество маннозы и галактозы, находили содержание глюкозы. [c.70]

    Методика работы состоит в.следующем. От 0,2 до 3 г анализируемого материала (в зависимости от содержания урана) помещают в стакан емкостью 150—200 мл, добавляют 3—5 мл азотной кислоты (уд. в. 1,40) и 10—20 мл разбавленной серной кислоты (1 1), накрывают часовым стеклом, нагревают до кипения и кипятят до появления паров SO3. Сняв стакан с плитки, к горячему раствору осторожно добавляют 20—30 капель азотной кислоты (уд. в. 1,40) для окисления органических веществ и снова нагревают до появления паров SO3. Если, судя по цвету раствора (бурый, темно-желтый), органические вещества не разрушились, то добавляют азотную кислоту и повторяют нагревание. После этого нагревание продолжают еще 30—40 мин., затем снимают стекло и упаривают раствор до получения почти сухого остатка сшей. По охлаждении осторожно прибавляют 15—20 мл воды, 5—Ю мл концентрированной соляной кислоты и кипятят до растворения солей. Полученный раствор вместе с нерастворившимся остатком разбавляют горячей водой до 50—60 мл, нейтрализуют аммиаком до появления неисчезающей мути, которую растворяют добавлением 2—3 капель концентрированной соляной кислоты и сверх этого добавляют 20—30 капель той же кислоты. Если при нейтрализации раствора обнаружится, что осадок гидроокисей алюминия и железа очень мал, то добавляют 8—10 мл 5%-ного раствора алюминиевоаммонийных квасцов для обеспечения полного соосаждения фосфата уранила, К полученному слабокислому раствору добавляют горячей воды до 100—150 мл, 5 г хлорида аммония, 30%-ного раствора уксусной кислоты по 5—6 мл на каждые 100 мл раствора, нагревают до кипения, добавляют 15—40 мл раствора фосфата натрия и затем отдельными порциями кристаллический ацетат натрия до отсутствия изменения красной окраски бумаги, пропитанной конго красным. Раствор хорошо перемешивают и помещают на кипящую водяную баню для коагуляции осадка фосфатов. Через 20—30 мин., когда раствор над осадком станет прозрачным, проверяют реакцию раствора смачиванием бумажки конго красного, которая при этом не должна изменять своей окраски (pH 4,5—5,0), а в противном случае добавляют еще ацетат натрия. Раствор фильтруют горячим через бумажный фильтр белая лента , осадок промывают 7—8 раз горячим 1—2%-ным раствором нитрата аммония, содержащим 0,5% фосфата натрия, не стремясь перенести весь осадок из стакана на фильтр. Промывание осадка можно заменить переосаждением. В этом случае осадок фосфатов смывают с фильтра водой обратно в стакан, в котором производилось осаждение, и, растворив осадок добавлением нескольких миллилитров соляной кислоты, осаждают вновь, как указано выше. Переосаждение, в особенности, рекомендуется в присутствии тяжелых металлов, ванадия и молибдена. Если необходимо, то переосаждение повторяют еще раз. О присутствии тяжелых металлов (Си, Ni, Со) можно судить по цвету фильтратов. О присутствии ванадия и его количестве заключают по окраске, возникающей при добавлении капли перекиси водорода к кислому раствору. Фильтр с осадком фосфатов развертывают над стаканом, в котором производилось осаждение, и тщательно смывают осадок в стакан 50 мл 10% -ного раствора карбоната натрия. Добавляют 0,05—0,1 г животного угля (для сорбции загрязнений, коллоидной гидроокиси железа, следов тяжелых металлов и т. п.), накрывают стакан часовым стеклом и кипятят раствор до уменьшения его [c.268]

    Выход ТФК 90—95% от теоретического. Сконденоирован-ную уксусную кислоту используют для выделения ТФК из ее калиевой соли, а ацетат калия возвращают в рецикл. Для выбора метода очистки ТФК во ВНИПИМ был выполнен комплекс научно-исследогвательс-ких и опытных работ в частности, была подробно изучена растворимость терефталата калия в водных растворах спиртов, насыщенных аммиаком [106]. Найдено, что в 80%-ном водном растворе этилового спирта, насыщенного аммиаком, растворимость терефталата калня при 15—20 °С не более 0,001%, фталата калия — 5,5%, бензоата калия более — 10%. Поскольку терефталат калия является основным продуктом реакции, а содержание п римесей в нем не превышает 2%, эффективность предложенного метода очистки оказалйсь достаточно высокой. Очищенный терефталат калия содержал 99,55— 99,98% основного вещества, что позволило получить из него чистую ТФК, при годную для синтеза полиэтилентерефталата. [c.125]

    Обращенно-фазовую ТСХ применяют для разделения полярных (на немодифицированных силикагелях возможна необратимая сорбция) и неполярных соединений (удерживаются сильнее при увеличении длины цепи). Наиболее широко в качестве элюентов используют смеси метанол — вода или ацетонитрил — вода. При увеличении полярности вещества для уменьшения удерживания увеличивают содержание воды в элюенте. Однако при увеличении содержания воды более 35% сильно замедляется движение элюента, и пластины перестают смачиваться. Добавление солей (Na l, Li l) в элюент улучшает смачивание. Используются и гидрофобные растворители (метиленхлорид и др.). Для разделения кислот, так же как и на немодифицированном силикагеле, в элюент добавляют небольшие количества слабых кислот (уксусная кислота) для обеспечения значения pH элюента меньше, чем pH разделяемых кислот. Пластины используют также для ион-парной ТСХ с добавкой в элюент противоионов (гидрофобных солей). [c.345]

    Таннер н Браун полагали, что получение пониженных данных по содержанию активного кислорода в продуктах аутоокисления углеводородов связано с образованием при анализе двухфазной системы. Анализ растворов грбг-бутилгидроперекиси, дилауроил- и дибензоплперекнсей в газойле и крекинг-бензине давал хорошие результаты, когда углеводороды растворяли в уксусной кислоте до прибавления соли Мора. Эти авторы отмечают также, что в присутствии воздуха получаются завышенные результаты, а при полном его удалении — заниженные. [c.428]

    Дики и соавторы показали, что ди-грег-бутилперекись не реагирует с солями двухвалентного железа и не выделяет иод из раствора иодистого калия в уксусной кислоте Однако содержание активного кислорода в этой перекиси ожно определить путем нагревания ее в атмосфере инертного газа со смесью уксусной и 56%-ной иодистоводородной кислот при 60°С в течение 45 мин с последующим разбавлением и титрованием. С помощью этого метода определяют общее содержание перекисей, включающее и более реакционноспособные, а также и органические соединения неперекисного характера, способные реагировать с иодистоводородной кислотой. Определение активного кислорода в 2,2-ди-(грег-бутилперокси)-бутане, также медленно реагирующем в обычных-условиях, можно успешно провести при нагревании в течение 5 мин с иодистым натрием, уксусной кислотой и изопропиловым спиртом в атмосфере инертного газа к пробе затем прибавляют небольшое количество концентрированной соляной кислоты, снова нагревают до кипения, после чего разбавляют и титруют. Анализировать ди-грег-алкилперекиси этим способом не удается. [c.431]


Смотреть страницы где упоминается термин Содержание Соли уксусной кислоты: [c.67]    [c.631]    [c.530]    [c.207]    [c.68]    [c.45]    [c.132]    [c.113]    [c.137]    [c.58]    [c.87]    [c.219]    [c.164]    [c.86]    [c.185]    [c.333]    [c.185]    [c.277]    [c.389]    [c.416]    [c.59]    [c.40]    [c.431]    [c.164]    [c.156]   
Смотреть главы в:

Химико-технические методы исследования Том 3 -> Содержание Соли уксусной кислоты




ПОИСК





Смотрите так же термины и статьи:

Содержание Р-соли

Содержание уксусной кислоты

Уксусной кислоты соли



© 2025 chem21.info Реклама на сайте