Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Требования к спину

    Формулы (99.11) и (99.12) справедливы для не очень низких температур. При низких температурах (например, для метана при 40 К) нужно принимать во внимание ядерный спин с учетом требований симметрии. [c.315]

    Пусть наилучшими спин-орбиталями являются такие, которые обеспечивают экстремальность функционала энергии. Уравнения для спин-орбиталей, получающиеся из требования экстремальности функционала знергии, названы уравнениями Хартри - Фока. Исследование характера экстремума (максимум, минимум, седловая точка) представляет собой задачу анализа устойчивости хартри-фоковского решения. [c.76]


    Следует также выяснить, не противоречит ли волновая функция 11)3 принципу Паули. Согласование наблюдается, если при одинаковых значениях п, I и т электроны отличаются спином, вследствие чего общие волновые функции электронов стд становятся антисимметричными. Тогда выполняется требование (разд. 3.6) об антисимметричности волновой функции молекулы водорода [c.85]

    Для линейной молекулы число таких степеней свободы равно Зп —5. Формулы (99.11) и (99.12) справедливы для не очень низких температур-При низких температурах (например, для метана при 40 К) нужно принимать во внимание ядерный спин с учетом требований симметрии. [c.315]

    Отметим, что в рамках более совершенного уравнения вол-новой механики — уравнения Дирака, удовлетворяюш,его требованиям теории относительности, спин электрона получается как вывод, а не как дополнительная гипотеза. [c.450]

    Сразу же отметим, что требование обязательного спаривания электронов с противоположным спином и сведение всех химических связей только к двухцентровым двухэлектронным связям оправдывается только для ограниченного круга соединений. [c.176]

    Правила отбора для многоэлектронного атома менее строги, чем в случае атомов с одним электроном (2.68). Наиболее жестким из них является требование (3.94). По мере увеличения спин-орбитального взаимодействия запрещенные правилами (3.95) и (3.96) электронные переходы могут появиться в спектрах атомов, однако обычно с весьма малой по сравнению с разрешенными переходами интенсивностью. [c.79]

    Позитрон выделяется вследствие перехода протона в нейтрон, но при этом должен выполняться закон сохранения количества движения, а точнее, правило суммы спинов. Каждая элементарная частица характеризуется вращением вокруг собственной оси — спином, сумма моментов которых должна сохраняться при взаимопревращениях этих частиц. В связи с этим требованием в уравнение радиоактивного распада вводится частица с исчезающе малой массой и без заряда — нейтрино V. [c.24]

    В соответствии с этим правилом электроны стремятся избежать одной и той же орбитали насколько это совместимо с энергетическими требованиями, а занимая разные орбитали, имеют одинаковое направление спинов. [c.24]

    Перенос энергии за счет обменных взаимодействий может рассматриваться как особый тип химической реакции, в которой химическая природа партнеров А и О не меняется, а возбуждение переносится от одной частицы к другой. Тогда существует переходное состояние, характеризующееся расстоянием между А и О, не сильно превышающим сумму радиусов газокинетических столкновений, и перенос энергии по обменному механизму, вероятно, имеет место лишь для таких значений г. Как и другие химические процессы, перенос энергии будет эффективным лишь в том случае, если потенциальные энергии исходных и конечных продуктов расположены на непрерывной поверхности, описывающей зависимость потенциальной энергии системы от нескольких межатомных расстояний реакция, протекающая на такой поверхности, называется адиабатической. Другими словами, исходные и конечные вещества должны коррелировать друг с другом и с переходным состоянием. Большинство химических реакций с участием невозбужденных частиц может протекать адиабатически, но для таких процессов, как обмен энергией, когда участвует несколько электронных состояний, требование адиабатичности реакции может налагать ряд ограничений на возможные состояния частиц А,А и 0,0, для которых передача возбуждения эффективна. Так, для атомов и малых молекул необходима корреляция спина, орбитального момента, четности и т. д. Однако в случае сложных молекул низкой симметрии обычно необходима лишь корреляция спина. Для проверки подобной корреляции рассчитывается вероятный суммарный спин переходного состояния сложением векторных величин индивидуальных спинов реагентов (см. разд. 2.5 о сложении квантованных векторов в одиночных атомах или молекулах). Так, для исходных веществ А и В, имеющих спины Зд и 8в, суммарный спин переходного состояния может иметь величины 5а+5в , [c.122]


    В приближении водородоподобных электронов, т. е. при замене отталкивания экранированием, можно пользоваться описанными выше квантовыми числами — п, I, т и 5. Рассмотрим порядок заполнения квантовых состояний атомов, находящихся в начале периодической таблицы элементов. Это заполнение происходит так, чтобы соблюдалось требование минимума энергии. Поэтому очевидно, что электрон атома водорода (2=1) занимает состояние 15. У Не (2=2) в то же состояние можно поместить еще один электрон без нарушения принципа Паули из-за насыщенности (антипараллельности) их спинов, т.е. Не (15) . Однако у (2=3) третий электрон уже вынужден из-за принципа Паули занимать другое состояние, а именно Ы(1з)2(25). Таким образом, в первом периоде, соответствующем п = 1, помещается лишь два элемента, а литий начинает второй период. Этот элемент, как и водород, является одновалентным, следующий элемент (2=4) — бериллий — имеет на уровне 25 два электрона, т.е. Ве(15)2(25)2. [c.314]

    Спасательные пояса. Входят в комплект ПШ-1 и ПШ-2. Отличительная черта этих поясов — наплечные ремни, в месте пересечения которых (приходящемся на область спины по низу лопаток) расположено стальное кольцо или треугольник для крепления веревки. Наплечные ремни по своей конструкции должны допускать возможность их регулировки по высоте грудной клетки человека. К материалу поясов, их конструкции и качеству исполнения предъявляются требования, аналогичные тем, которые предъявляются к поясам монтажников-высот-ников (исключая детали крепления пояса к внешним конструкциям). При проверке пояса перед началом работы [c.59]

    Ч (Г1,Г2)= ф1(Г2)ф2(Г1), отвечающая тому же самому собственному значению ) + ег, что и функция 1р(г,, Г2). Из этих двух решений для системы двух электронов необходимо в конечном итоге построить функцию, антисимметричную относительно перестановок символов электронов, т.е. меняющую знак при всех нечетных перестановках, в данном случае при транспозиции Р 2- При этом требование антисимметричности должно выполняться только при учете и спиновых индексов электронов (см. детальнее п. <) 5 гл. II). Обозначив поэтому одноэлектронные функции с учетом спинового множителя, т.е. спин-орбитали, через г1) (г , а,), а всю совокупность пространственных переменных и спинового индекса для каждого электрона одной цифрой (например, (г , 01 = 1), получим выражение для антисимметричного решения  [c.255]

    Выше было отмечено, что требование к однодетерминантной функции быть собственной для операторов спина является достаточно жестким. Оно приводит, в частности, при условии S = О к тому, что все оболочки, встречающиеся в выражении для Ф, должны быть обязательно полностью заполненными. При этом каждая орбиталь ф, встречается в детерминанте дважды со спин-функцией а и со спин-функцией р, Коль скоро в уравнениях Хартри-Фока операторы не зависят от спиновых индексов, или от спиновых переменных (по крайней мере в том приближении, в котором мы пока работаем), то по этим переменным можно провести интегрирование и исключить их из уравнений. Выполнение этой процедуры приводит к системе уравнений Хартри-Фока для орбиталей фДг = 1, 2,..., М2 N-четно)  [c.283]

    Рассмотрим теперь более подробно распределение электронов по орбиталям в конфигурации Пара электронов на 15-орбиталн, согласно принципу Паули, должна иметь противоположные спины, и поэтому возможно лишь одно-единственное пространственное и спиновое описание этих электронов. То же верно и для двух электронов на 25-орбитали. В противоположность этому имеется 15 способов распределения двух электронов на 2р-орбиталях, удовлетворяющих требованиям принципа Паули они перечислены в табл. 11.2. Три 2р-орбитали охарактеризованы своими квантовыми числами т [определяемыми формулами (3.26) и (3,27)], а их спиновые компоненты обозначены противоположно направленными стрелками =(т5 = У2), (т. = 72)- [c.247]

    Эти орбитали обладают свойством ортонормированности Какие бы в дальнейшем пути решения задачи ни избрали, если только будем стремиться все время каждому электрону приписывать свою спин-орбиталь или каждой паре элекгронов свою пространственную орбиталь, все равно должны выдержать требование, чтобы получающиеся при этом функ- [c.287]

    При проектировании установок для механического съема шкур крупного рогатого скота необходимо учитывать следующие требования перед съемом шкуры туша должна быть зафиксирована с предварительным натяжением 20... 100 % от натяжения при отделении шкур. Съем ведут в определенной последовательности. Сначала шкуру снимают с лопаток, шеи, грудной клетки, боков и частично со спины со скоростью 8... 10 м/мин, а затем отделяют остальную часть шкуры, чтобы исключить ее загрязнение в процессе съема. При отвесной фиксации угол наклона туши к горизонту принимают 70°. Съем шкур с мелкого рогатого скота осуществляют в той же последовательности, что и для крупного рогатого скота. Съем шкур свиней проводят с использованием электрического тельфера или лебедки. [c.346]

    Топологическая структура. Концентрация сшивок и средняя ММ межузловых цепей являются простейшими характеристиками топологической структуры. Концентрация сшивок связана со временем спин-спиновой релаксации Тг средняя длина цепи между сшивками связана с шириной линии ЯМР. Принципиальная возможность определения густоты поперечных связей из ЯМР-измерений заключается в чувствительности параметров ЯМР ( времени затухания поперечной и продольной намагниченности) к различным типам движения молекулярных цепей. Несомненными преимуществами метода ЯМР по сравнению с традиционными методами исследования вулканизационных сеток резин являются быстрота получения информации и отсутствие жестких требований к количеству и форме образца. [c.274]


    Суммарный результат заключается в том, что ось спина может занимать только некоторые определенные ориентации 0 по отношению к направлению поля, а именно те ориентации, которые соответствуют требованиям, выраженным уравнениями (2.2) — (2.4). [c.24]

    Такое разделение всегда возможно. Нетрудно теперь проверить, что соотношение (3.3.12) требует, чтобы и коммутировали. Это приводит к обшему требованию, согласно которому введение среднего гамильтониана для описания спин-эхо экспериментов возможно только при условии, что симметричная и антисимметричная части гамильтониана коммутируют. [c.117]

    Никакие два электрона в одном и том же атоме не могут находиться в одинаковом квантовом состоянии. Это требование известно под названием принципа запрета Паули, Оно означает, что никакие два электрона в одном атоме не могут характеризоваться одинаковым набором значений всех четырех квантовых чисел п, I. т и 5. Следовательно, на одной атомной орбитали, описываемой квантовыми числами н, I и ш, может находиться максимум два электрона один со спиновым квантовым числом (спином) -I- 2 и один со спином - 2. Приняго схематически обозначать произвольную атомную орбиталь кружком, а находящийся на орбитали электрон-стрелкой внутри кружка  [c.386]

    Уравнение Шредингера описывает состояния электрона, движущегося в трехмерном пространстве. При этом требования теории относительности никак не учитываются. Если же их учесть, то уравнение Шредингера следует заменить другим, релятивистским уравнением Дирака, из которого непосредственно вытекает существование у электрона собственного момента импульса, а следовательно, и собственного магнитного момента. Собственный момент электрона (S) называют также спиновым (от английского глагола to spin — прясть, плести, крутить(ся), вертеть(ся)) или просто спином. [c.57]

    При ручном перемещении грузов необходимо соб. юдать специфические требования техники безопасности, вытекающие из условий работы и характера грузов. Химические вещества, упакованные в ящики, бидоны, банки или другую тару, осторожно выгружают на специально отведенные места. Запрещается бросать гру. )Ы II ударять по ним какими-либо предметами. Грузы в мешках или кулях обычно укладывают впере-вязку , с прокладкой из досок. Бочки, заполненные жидкостями, устанавливают пробкой вверх и прочно заклинивают, чтобы предотвратить раскатывание. Особую осторожность надлежит соблюдать при перемещении кислот, щелочей и других едких веществ, упакованных в стеклянные бутыли. Бутыли переносят вдвоем, взявшись за обрешетку если бутыли упакованы в кор ииы, пользуются специальными захватами. Не доп/скается переноска бутылей с едкими веществами без обрешетки (корзины) или в неисправной таре. Категорически запрещается одному человеку переносит . бутыли с кислотами, щелочами и другими едкими веи.ествами на руках или на спине. [c.125]

    Обширные эргономические исследования, выполненные на объектах нефтяной и газовой промышленности [55—71], показали, что не все эти основополагаюш.ие требования реализуются на практике. Установлено, например, что расположение панелей пультов управления, конструкция рабочего места оператора по добыче нефти и газа в операторских помещениях ГНСП выполнены нерационально. Так, во многих ГНСП оператор в нормальном положении сидит спиной к панели пульта. Для снятия показаний с измерительных приборов он вынужден поворачиваться на 180—200°. Многократное повторение этой операции в течение смены чрезмерно нагружает отдельные группы мышц (шеи, спины), способствует развитию утомления. [c.88]

    При использовании этих условий получают уравнения наиболее простого вида. Во многих случаях (но не всегда) требование ортогональности спин-орбиталей облегчает и решение уравнений. Для того чтобы вывести уравнения Хартри - Фока, сначала преобразуем функционал энергии, а затем проварьируем его. [c.76]

    Главное требование состоит в том, чтобы молекулы образца обладали неспаренными спинами. Следовательно, ЭПР можно использовать для изучения свободных радикалов, которые имеют один неспаренный электрон. Свободные радикалы образуются в ходе химических реакций, при билогических процессах, при фотолизе и т. д. Метод неприменим к обычным моле- Рис. 14.5. Спектр ЭПР (а - рассгояние кулам со спаренными спинами. между пиками) [c.249]

    В течение последнего десятилетия Леннард-Джонс, Попл, Лин-нетт, Уолш и др. рассматривали проблемы геометрических форм молекул, пользуясь новым теоретическим подходом. Их метод, хотя и использует в некоторой мере тот же математический аппарат и те же основные идеи, что и в теориях валентной связи и локализованных молекулярных орбиталей, но обращает основное внимание на число электронов в валентном уровне и на свойства этих электронов. Все электронные системы (атомы, молекулы или твердые тела) обладают одним свойством — электроны с одним и тем же спином не могут одновременно находиться % одной и той же области пространства. Так как все электроны заряжены отрицательно, они будут взаимно отталкиваться в соответствии с законом Кулона. Однако даже более важным в определении форм и свойств молекул является то, что электроны с одним и тем же спином, как оказалось, имеют очень малую вероятность нахождения близко один от другого из-за жестких требований принципа запрета Паули . Вообще говоря, только из рассмотрения спинового взаимодействия, не принимая во внимание возмущения, возникающего из-за электронного отталкивания, стало возможным установление геометрического расположения электронов, которое было выше описано для 2, 3, 4, 5 и 6 электронных пар. [c.199]

    Ядерный магнитный резонанс можно применить для исследования любого изотопа, у которого спин ядра не равен нулю. Однако в силу методических сложностей большинство изотопов, удовлетворяющих этому требованию, не были изучены методами ЯМР-спектроскопии высокого разрепшния. Чтобы наблюдение ЯМР было достаточно эффективным, желательно иметь ядро со следующими свойствами  [c.78]

    Заметим, что сложность возникла из-за того, что нам требуются измерения с высоким разрешением . Если мы смягчим требования по разрешению, то сможем быстрее выполнить измерение. Это соотношение между скоростью регистрации nei rpa и разрешением необходимо учитывать не только для спектроскопии ЯМР, но и для всех видов спектроскопии. Просто для ЯМР эта проблема встает наиболее остро. При регистрации спектров ЯМР ядер со спином 1/2 в жидкостях или в растворах режим с непрерывной разверткой, как будет показано ниже, оказывается, заметно уступает импульсному методу. Прн регистращш широких линий, например, в спектрах твердых тел, недостатки метода непрерывной развертки не столь существенны, но в этой книге мы не рассматриваем такие спектры. Для регнения наиболее важных химических задач нам нужно найти такой быстрый способ регистрации спектра, который бы позволил более эффективно использовать накопление и усреднение сигналов. Однако сначала обратимся к проблеме колоколов, хотя она и кажется здесь не относящейся к делу. [c.26]

    Если мы измерили все ЯЭО в такой системе и зпаем некоторые межъядерные расстояния, это уравнение позволяет нам вычис шть неизвестные межъядерные расстояния. Например, положение геминальных протонов у 5/ -гибридизованного углерода почти не меняется при переходе от молекулы к молекуле. Если эти протоны составляют АМ-часть системы АМХ, то по измеренным ЯЭО мы можем определить положение ядра X. Применение формулы возможно только при условии жесткой связи между тремя ядрами (одинаковые т . для двух межъядерных векторов) и в отсутствие посторонних источников кросс-релаксации (т.е. в отсутствие поблизости других ядер со спином 1/2). Последнее требование надежно выполняется только в случае очень небольших молекул, однако убедиться в отсутствии других источников кросс-релак-сации можно и с помощью изотопного замещения водорода иа дейтерий, Кроме того, даже присутствующие в молекуле посторонние источники кросс-релаксации могут не оказывать существенного влияния на эксперимент, если они достатотао удалены от интересующих нас ядер. Проверить это условие можно с помощью ЯЭО облучение посторонних ядер не должно давать заметного ЯЭО на исследуемых ядрах. [c.162]

    Релятивистская К.м. рассматривает квантовые законы движения микрочастиц, удовлетворяющие требованиям теории относительности. Осн. ур-ния релятивистской К. м. строго сформулированы только для одной частицы, напр, ур-ние Дирака для электрона либо любой др. микрочастицы со спином /2 ур-ние Клейна - Гордона - Фока для частицы со спином 0. Релятивистские эффекты велики при энергиях частицы, сравнимых с ее энергией покоя, когда становится необходимым рассматривать частицу, создаваемое ею поле н внеш. поле как единое целое (квантовое поле), в к-ром могут возникать (рождаться) и исчезать (уничтожаться) др. частицы. Последоват. описание таких систем возможно только в рамках квантовой теории поля. Тем не менее в большинстве атомных и мол. задач достаточно ограничиться приближенным учетом требований теории относительности, что позволяет для их решения либо построить систему одноэлектронных ур-ний типа ур-ния Дирака, либо перейти к феноменологич. обобщению одноэлектронного релятивистского подхода на многоэлектронные системы. В таких обобщениях к обычному (нерелятивистскому) гамильтониану добавляются поправочные члены, учитывающие, напр., спин-орбитальное взаимодействие, зависимость массы электрона от его скорости (масс-поляризац. поправка), зависимость кулоновского закона взаимод. от скоростей заряженных частиц (дарвиновский член), электрон-ядерное контактное сверхтонкое взаимодействие и др. [c.365]

    ОБМЕННОЕ ВЗАИМОДЁЙСТВИЕ, специфич. квантовомех. взаимодействие тождественных частиц, в частности электронов. Является следствием принципа неразличимости частиц в квантовой механике и не имеет аналога в классич. физшж. Суть принципа неразличимости сводится к требованию определенной перестановочной симметрии волновой функции системы тождественных частиц для частиц с целочисленным спином (бозонов) волновая ф-ция должна быть симметричной, т.е. она не должна меняться при перестановке индексов частиц (координат и проекций спинов), а для частиц с полуцелым спином (фермионов) при такой перестановке волновая ф-ция должна менять знак, т. е. быть антисимметричной (см. Паули принцип). Наличие перестановочной симметрии налагает ограничения на взаимное пространств. расположение частиц, что приводит к изменению энергии квантовой системы по сравнению с аналогичной классич. системой часгиц. Это изменение энергии обычно рассматривается как вызванное неким дополнительным квантовомеханическим взаимодействием, оно получило назв. О. в. , поскольку определяется членами в выражении для энергии системы, отвечающими перестановкам частиц (обмену частицами). [c.318]

    Методы отнесения сигналов. Сейчас для отнесения резонансных сигналов экспериментатор имеет большой выбор методов. Большинство из них использует определенные типы развязки от протонов. Например, после записи обычного спектра с широкополосным подавлением Н обычно измеряют спектр неполного двойного резонанса. Как уже обсуждалось в разд. 2.8 гл. IX и как показано на рис. IX. 20, так можно различить в спектре первичные, вторичные, третичные и четвертичные атомы углерода. Кроме того, возможность импульсной развязки открывает путь для наблюдения констант Н, С. По крайней мере прямые константы через одну связь обычно находятся с точностью, достаточной для использования при отнесении, даже если совершенно корректное определение этих параметров и невозможно без проведения полного анализа спектра (см. гл. V). Это требование в особенности необходимо выполнять при определении меньших констант спин-спинового взаимодействия более чем через одну связь, даже несмотря на то, что многие неразвязанные спектры кажутся спектрами первого порядка. Тем не менее данные об изменениях /( С, Н) в зависимости от строения, которые позднее мы обсудим детально, представляют большую ценность для целей отнесения. Например, в циклопропане /( С, Н) составляет 161 Гц, а в метане — только 125 Гц. Поэтому метиленовые группы трехчленных циклов легко распознать по большому триплетному расщеплению их сигнала С. [c.392]

    Под действием гауссова импульса не возникает никаких других когерентностей, отличающихся от возбуждаемых в 2М-экспериментах. Например, в 1М OSY-эксперименте перенос только антифазных когерентностей к связанному спину относительно одиночной связи является единственным эффектом 90°-го смешивающего импульса. Характеристики возбуждающего импульса при условии, что он воздействует лишь на переходы спина / , не оказьшают какого-либо влияния на интенсивности и фазы других линий результирующих мультиплетов. Однако их общая интенсивность зависит от эффективности возбуждения соответствующих когерентностей. В этом отношении гауссов импульс удовлетворяет всем необходимым требованиям, которые были рассмотрены выше, так как его амплитудно-частотная характеристика имеет широкое плато, а затем круто спадает до нуля. Простое рассмотрение уравнения (33) достаточно для выбора оптимальной величины  [c.62]

    На рис. 35 изображена фазовая характеристика, которая не удовлетворяет нашим требованиям. Хванг и Шака [72] показали простым матричным вычислением, что дублирование импульсной последовательности (см. рис. 35) не только обеспечивает подавление, но и улучшает фазовый режим, однако это улучшение достигается ценой общей релаксации в течение двух сэндвичей (рис. 36). Градиенты в DPFGSE (двойной импульсный полевой градиент спин-эха) последовательности не должны быть связаны друг с другом отношения 40 40 7 7 были определены опытным путем. [c.80]

    Поскольку градиент магнитного поля создается обычно вдоль одной оси ЛСК (в нашем случае это ось г), то В = Az 2t , где — среднеквадратичное смещение центра масс молекулы вдоль оси г, а td — время диффузии. В эксперименте с постоянным градиентом время диффузии — величина переменная и равна 2т. Максимальное время диффузии зависит от скорости затухания поперечной намагниченности из-за спин-спиновой релаксации. Поскольку в растворах и расплавах полимеров коэффициенты самодиффузии составляют 10 "—10 м /с, а 2 10 —10 с, то для обнаружения диффузионного затухания необходимы значительные градиенты магнитного поля. Создание сильных постоянных градиентов магнитного поля сопряжено с преодолением ряда серьезных экспериментальных трудностей и, кроме того, ведет к значительному сокращению длительности спинового эха (из-за сильного расфазирующего действия неоднородного поля), что предъявляет высокие требования к приемной и регистрирующей аппаратуре, сильно за-268 [c.268]

    Он привел доводы в пользу того, что синглетные карбены присоединяются путем синхронного образования обоих новых о-связей, давая только (74) и сохраняя таким образом стереохимию исходного алкена, в то время как триплетные карбены присоединяются по радикальному двухстадийному механизму с образованием в первую очередь бнрадикала (75), в котором может происходить вращение вокруг связи до инверсии спина и замыкания кольца, что приводит к обоим диастереомерам (74) и (76). Несмотря на широкое обсуждение справедливости теоретических предпосылок, правило Скелла исключительно успешно объясняет многие экспериментальные данные, полученные для этих реакций присоединения. Однако при использовании правила следует соблюдать определенную осторожность, так как в его основе лежат некоторые предположения об относительных скоростях стадий схемы (48), которые могут соблюдаться не во всех случаях [38]. Таким образом, прежде чем однозначно приписать определенную реакционную способность одному из спиновых состояний карбена, следует выяснить свойства обоих состояний. В ряде случаев, когда это требование было точно соблюдено, например в случае метилена, бисметоксикарбонилкарбена, флуоренилидена и др., результаты всегда соответствовали предсказаниям Скелла. Расчет поверхности потенциальной энергии присоединения синглетного метилена к этилену [40, 70] подтверждает синхронность реакции и свидетельствует, что она осуществляется по принципу наименьшего движения через разрешенный орбитальной симметрией подход (77), при котором вакантная р-орбиталь (НСМО) карбена взаимодействует с занятой я-молекулярной орбиталью алкена, причем карбен расположен так, чтобы перекрывание было максимальным, а пространственные взаимодействия минимальны. Более симметричный подход (78), когда занятая о-орбиталь карбена взаимодействует с я-системой, запрещен орбитальной симметрией и по расчету обладает более высокой энергией, чем (77). Расчеты (77) указывают на наличие я р-переноса заряда в переходном состоянии (79), что согласуется с экспериментально наблюдаемым ускорением присоединения большинства карбенов к алкенам, содержащим электронодонорные заместители, и свидетельствует об электрофильной атаке карбена. Многочисленные исследования относительной реакционной способности карбенов с целью выяснения влияния пространственных и электронных эффектов различных заместителей в алкенах и карбенах критически оценены Моссом [48], который показал недавно, что селективность многих карбенов типа СХУ при реакции с олефинами коррелирует как с резонансными, так и с индуктивными параметрами X и V [71]. Большинство карбенов, в том числе сильно я-стабилизованный Ср2 (49), ведут себя как типичные электрофилы, однако ароматические карбены, такие как (80) и (47), проявляют нуклеофильные свойства, например (80) присоединяется через переходное состояние, поляризованное противоположно (79) [72]. Полагают, что это обусловлено [c.596]

    Эксперименты Хартманна — Хана требуют весьма сложной аппаратуры. С целью получения необходимого спин-локинга нужны сильные РЧ-поля, которые в твердых телах должны превышать локальные и В[ь поля, задаваемые соответствующими дипольными полями, а в жидкостях должно быть больше максимальных расстроек (химических сдвигов). Обычно индукция магнитного поля должна быть порядка 10 — 20 Гс, для чего требуются передатчики мощностью 200 — 1000 Вт. Времена кросс-поляризации могут быть порядка 20 мс, что предъявляет особые требования к датчику спектрометра. [c.237]

    В изотропных жидкостях для адиабатического переноса можно использовать скалярные спин-спиновые взаимодействия [4.180, 4.181]. После спин-локинга спинов / РЧ-поле Вц этих спинов уменьшается до нуля, одновременно с этим РЧ-поле Bis спинов S увеличивается таким образом, что в середине этого процесса выполняется условие Хартманна — Хана. Такой метод лучше всего интерпретировать как эксперимент с антипересечением уровней, приводящий к обмену населенностями состояний la/S) и l/Sa) в двухспиновой системе IS. Это эквивалентно полному переносу поляризации от спинов I к спинам S. Критичности к согласованию РЧ-полей можно опять избежать, и общая эффективность процесса оказывается неплохой, хотя достичь полного переноса энтропии в системах с эквивалентными спинами / невозможно. Вместе с тем эксперименты по адиабатическому переносу предъявляют особые требования к величине мощности РЧ-поля. Применение импульсных методов, рассматриваемых в двух последующих разделах, позволяет полностью избежать этой проблемы. [c.238]


Смотреть страницы где упоминается термин Требования к спину: [c.82]    [c.304]    [c.349]    [c.412]    [c.318]    [c.30]    [c.239]    [c.120]    [c.120]    [c.315]   
Смотреть главы в:

Молекулярная фотохимия -> Требования к спину




ПОИСК





Смотрите так же термины и статьи:

Спин-эхо

Спины



© 2025 chem21.info Реклама на сайте