Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкилирование сернистых соединений

    Широкий спрос существует также на нормальный и изобутан первый применяется в производстве бутадиена и других химических продуктов, второй — для алкилирования олефинов с целью получения компонентов бензина. В силу последних обстоятельств в настоящее время жидкие газы, выпускаемые на рынок, в основном состоят из пропана. В соответствии со спецификацией Национальной американской ассоциации по производству газового бензина [404] не исключается присутствие пропиленов в товарном пропане и бутиленов — в товарном бутане впрочем, эти олефины в нефтепереработке используются в качестве источника получения моторных топлив или химических продуктов. Спецификации включают требования по составу, содержанию воды и сернистых соединений и по упругости паров. [c.450]


    Сырьем для процесса алкилирования является изобутан и бутиленовая фракция с нефтеперерабатывающего завода [150]. Бутиленовую фракцию очищают от сернистых соединений, после чего смешивают с изобутаном. Охлажденная до 7° смесь изобутана и бутиленовой фракции освобождается от воды отстаиванием и поступает в реактор, где интенсивно перемешивается с серной кислотой, имеющей концентрацию 98—99%. Продукты реакции вместе с серной кислотой из реактора поступают в кислотный отстойник, в котором отделяется серная кислота, направляемая снова в реактор. [c.133]

    Существенное значение в процессе алкилирования имеет очистка алкилата. При щелочной промывке удаляются только кислоты и кислые эфиры, однако при этом в алкилате остаются сернистые соединения и сложные эфиры, которые частично разлагаются при фракционировании и образуют шлам. Кроме того, они вызывают сильную коррозию перегонной аппаратуры. Часть эфиров, оставшихся после фракционирования в алкилате, снижает его качество. [c.136]

    Примеси органических соединений серы. Перед поступлением на алкилирование олефиновое сырье обычно подвергают очистке от органических соединений серы. Способ обработки в значительной мере зависит от количества и вида этих соединений. Обычно количество сернистых соединений колеблется от десятитысячных до тысячных долей процента. По заводским данным, концентрация [c.217]

    Наиболее эффективным методом, обеспечивающим полное обезвоживание, является применение молекулярных сит. Их широко используют на установках фтористоводородного алкилирования, но на установках сернокислотного алкилирования встретились некоторые трудности. Молекулярные сита можно использовать также для доизвлечения некоторых сернистых соединений, остающихся после предварительного обессеривания сырья [2]. В условиях продолжающегося роста цен на серную кислоту становится, однако, оправданным применение молекулярных сит и на установках сернокислотного алкилирования. [c.218]

    Данный метод, рекомендуемый для определения присутствия присадок в бензинах, был использован авторами для реактивных топлив. Однако анализ различных образцов реактивных топлив с присадками показал, что для качественной оценки содержания в них алкилированных фенолов такой метод непригоден. При встряхивании топлив, не содержащих присадку, с метанолом или с изопропиловым спиртом последние также дают голубоватую окраску. Особенно это относится к топливу, содержащему сернистые соединения. При анализе индивидуальных углеводородов, не содержащих присадки, окрашивания не наблюдается. [c.200]


    Побочными процессами являются сульфирование и алкилирование ароматических углеводородов, ведущее к потерям последних, а также образование средних эфиров серной кислоты. В результате сернокислотной очистки основные примеси сырого бензола (непредельные и сернистые соединения) превращаются либо в вещества, растворимые в воде и серной кислоте и легко отделяющиеся от углеводородного слоя, либо вещества, хотя и растворимые в- углеводородном слое, но отличающиеся от основных компонентов сырого бензола температурой кипения и поэтому отделяемые ректификацией. [c.157]

    Нежелательно присутствие сернистых соединений и при алкилировании арома- [c.304]

    Разные сорта бензола и толуола различаются содержанием сернистых соединений, которые нередко являются каталитическими ядами. Поэтому в бензоле, используемом для алкилирования олефинами в присутствии хлорида алюминия, ограничивается содержание тио-фена и общей серы, не должны содержаться сероводород и меркаптаны (табл. И). Ксилольные фракции, выделенные из продуктов коксования и нефтепереработки, различаются также рядом показателей (табл. 12). [c.104]

    Как известно, в нефтеперерабатывающей и нефтехимической промышленности большинство технологических процессов осуществляется в присутствии катализаторов. К ним относятся каталитический крекинг, каталитическая ароматизация, каталитическая очистка от сернистых соединений, полимеризация, алкилирование, окисление парафинов, гидратация олефинов, деструктивная гидрогенизация, селективное гидрирование, синтезы на базе окиси углерода и водорода и многие другие процессы. [c.304]

    При крекинге циклических алкилированных углеводородов с алкильными цепями, содержащими три атома углерода и более, происходит распад — отрыв боковой цепи от кольца, а при термическом крекинге в большинстве случаев получается разрыв цепи. Для би- и полициклических нафтеновых углеводородов параллельно реакции распада — разрыва кольца в присутствии алюмосиликатных катализаторов — интенсивно течет реакция дегидрирования с образованием ароматических углеводородов. Выделяющийся водород при реакции дегидрогенизации нафтеновых углеводородов и конденсации ароматических и непредельных с образованием кокса в значительной мере перераспределяется и обеспечивает образование предельных углеводородов в продуктах крекинга. Особенно интенсивно протекают превращения ненредельных соединений, образовавшихся в результате распада. Реакции изомеризации, полимеризации, дегидроциклизации, насыщения водородом олефиновых углеводородов в значительной мере предопределяют состав получаемых продуктов крекинга. Характерной реакцией для каталитического крекинга является глубокий распад сернистых соединений, за счет реакции перераспределения водорода происходит интенсивное образование сероводорода. С газами процесса удаляется до 50% серы, содержащейся в сырье. [c.82]

    Недостатком сернокислотного алкилировання является довольно значительный расход серной кислоты вследствие разбавления ее побочными продуктами реакции. Наименьший расход кислоты наблюдается, если в качестве олефинового сырья применяют чистые бутилены при использовании пропилена расход кислоты увеличивается примерно втрое. Как было показано выше, расход кислоты связан также с интенсивностью перемешивания реакционной смеси и с температурой, повышение которой увеличивает степень разбавления кислоты. Увеличивается расход кислоты и при наличии в сырье таких примесей, как сернистые соединения и влага. Затраты на катализатор можно снизить при использовании отработанной кислоты для иных целей (например, для очистки масел и других нефтепродуктов), а также при ее регенерации. [c.299]

    Диены, содержащиеся в сырье, образуют сложные продукты взаимодействия с серной кислотой и остаются в кислотной фазе, разбавляя кислоту, что увеличивает его расход. Поэтому диеновые углеводороды не должны содержаться в сырье. К сырью С-алкилиро-вания предъявляются также повышенные требования по содержанию влаги и сернистых соединений. Если сырье каталитического крекинга не подвергалось предварительной гидроочистке, тогда бутан-бутиленовую фракцию крекинга - сырье С-алкилирования - обычно очищают щелочью или в процессах типа Мерокс от сернистых соединений. [c.485]

    По схеме исходное сырье, идущее на алкилирование, преД варительно очищают от сернистых соединений путем обработки 10%-ным раствором едкого натра. Для этого сырье / насосом 1 подается в диафрагмовый смеситель 2, куда насосом 29 подается щелочь, циркулирующая по схеме насос 25-> смеситель 2 —> отстойник 3 —> насос 29. Из отстойника 3 очищенное сырье поступает в вертикальные аккумуляторы 4. До поступления в аккумуляторы к сырью добавляется рециркулирующий избыток изобутана II. Смесь сырья с изобутаном насосом 30 прокачивается через теплообменник 5 и аммиачный холодильник 6 в отстойник 7 для отделения воды, далее сырье поступает в нижнюю часть реакторов 8. В верхнюю часть реакторов насосом 31 подается катализатор (крепкая серная кислота). Для отвода тепла реактор снабжается змеевиками с циркулирующим по трубкам испаряющимся аммиаком. По выходе из реакционной системы продукты алкилирования поступают в сепаратор 9, где происходит отделение серной кислоты от углеводородов. Серная кислота насосом 31 возвращается в реакционную зону реактора 8, а углеводородная смесь, пройдя теплообменник 5, смешивается в смесителе/О с щелочью для нейтрализации и поступает в отстойник //. В отстойнике щелочь отделяется и возвращается насосом 32 на циркуляцию. Продукты реакции из отстойника И поступают в приемник 12, откуда насосом 33 прокачиваются на фракционирующую часть установки. [c.234]


    Схема и технологический поток (рис. 84). Бензол и пропилен (фракция пропан пропилен), предварительно хорошо очищенные от сернистых соединений, смешивают с серной кислотой концентрацией, соответствующей температуре реакции смешение происходит в насосе образовавшаяся эмульсия проходит один или несколько последовательных реакторов в течение 15—30 мин при температуре алкилирования. Молярное соотношение бензол пропилен выбирается [c.174]

    В СССР кумол синтезируют главным образом на хлористом алюминии (по реакции Фриделя — Крафтса) при температуре около 80 °С и давлении до б ат. Требования к углеводородному сырью сводятся в основном к ограничению содержания сернистых соединений, воды и высших олефинов. В промышленных условиях вместо чистого пропилена применяют пропан-пропиленовую фракцию и процесс ведут с рециркуляцией бензола, пропилена и некоторой части побочно образующихся хлорбензолов. Характерной особенностью этого процесса является одновременное протекание реакций алкилирования бензола и деалкилирования полиалкилбензолов, что позволяет путем подбора соотношения бензол пропилен свести к минимуму образование побочных продуктов. Выход [c.238]

    Парафиновые газообразные углеводороды, водород, азот и пары воды не оказывают существенного влияния на процесс алкилирования. Из сырья необходимо удалять ацетилен и сернистые соединения, так как последние могут вызвать коррозию аппаратуры. [c.16]

    Алкилирование сернистых соединений. Эта реакция применяется только при получении фенилтиогликоль-о-карбоновой кислоты— полупродукта для 11екоторых тиоиндигоидных красителей. Процесс состоит во взаимодействии динатриевой соли тиосалицило-вой кислоты с натриевой солью монохлоруксусной кислоты, которая служит алкилирующим средством. [c.288]

    При алкилировании ароматического сырья, содержащего тиофен и его производные, в присутствии хлористого алюминия осуществляется полное алкилирование сернистых соединений. Поэтому представляло интерес изучение процесса, при котором наряду с синтезом алкиларилсульфонатов осуществляется очистка ароматических углеводородов, применяющихся в большом количестве, тем более что алкилтиофенсульфонаты являются удовлетворительными моющими веществами. Так же, как и в алкил-арилсульфонатах, на моющую способность их влияют длина цепи, расположение и число алкильных групп в молекуле алкилтио-фена. Алкилирование тиофена в присутствии хлористого алюминия происходит преимущественно в положениях 2 и 5. [c.253]

    Как известно, наибольший расход каустической соды приходится на очистку сырья для процесса алкилирования (бутан-бутиленовой и пропан-пропиленовой фракций), где щёлочь расходуется на удаление меркаптановых соединений. В среднем для очистки одной тонны бутан-бутиленовой фракции расходуется 1,06 кг щёлочи. Однако и это не обеспечивает полного удаления сернистых соединений. Обычно после очистки остаётся до 0,0155 % мае. меркаптановой серы. Эти меркаптаны обуславливают повышенный расход серной кислоты в процессе алкилирования. При использовании процесса демеркаптанизации для очистки бутан-бутиленовой фракции за счёт регенерации расход щёлочи снижается до 0,06 кг/т сырья, а содержание меркаптанов уменьшается до 0,0005 % мае. Это даст следующую годовую экономию реагентов для типовой алкилирующей установки производительностью 82 тыс. т/год  [c.41]

    Во избежание медленного катализа твердым хлористым алю-миние этот активный каталитический ком1Плеке целесообразно готовить предварительно и потом подавать на реакцию. Кроме НС1 его образованию способствуют иебольшне добавки воды или соответствующего хлорироизводного, роль которых состоит в генерации НС1. Более приемлемо использовать НС1 или R 1, так как вода дезактивирует часть катализатора, разлагая его. По этой же причине необходимо хорошо осушать реагенты и следить, чтобы в реакционную смесь пе попадала вода, способная вызвать бурное разложение комплекса. Другими катализаторными ядами являются многие сернистые соединения и аммиак, в меньшей степени — диены и ацетилен. Следовательно, жидкая реакционная масса при алкилировании с хлористым алюминием состоит из двух фаз каталитического комплекса и углеводородного слоя. [c.243]

    Недостатком сернокислотного алкилирования является довольно значительный расход серной кислоты вследствие разбавления ее побочными продуктами реакции. Наименьший расход кислоты наблюдается при применении в качестве олефинового сырья чистых бутиленов при использовании пропилена расход кислоты увеличивается примерно втрое. Так, средний расход кислоты при алкили-рова1ши бутиленами составляет 36 кг/м алкилата (примерно 50 кг/т), а при алкилировании пропиленом 110—120 кг/м (около 157— 170 кг/т) . Эти данные позволяют приближенно судить о расходе кислоты при использовании смешанного олефинового сырья. Расход кислоты связан также с интенсивностью перемешивания реакционной смеси и температурой реакции, повышение которой увеличивает степень разбавления кислоты. Увеличивается расход кислоты также при наличии в сырье таких примесей, как сернистые соединения, основания и др. [c.342]

    Неблагоприятное влияние примесей сернистых соединений было не очень заметным при алкилировании с твердым хлоридом алюминия, когда для алкилирования использовали технические фракции [13]. Переход к катализаторному комплексу или к гомогенному алкилированию хлоридом алюминия, а также применение очищенных олефинов резко сократило расход катализатора [14] и повысило требования к качеству ароматических углёводородов. Суждения по этому вопросу противоречивы. По данным [15], при содержании тиофена в бензоле до 0,1% нет заметного ухудшения процесса алкилирования и качества получаемого изопропилбензола. По другим сведениям [16]1, уже при содержании тиофена в бензоле 0,06% получаемый из него изопропилбензол содержит серы более 0,0003%, что считается недопустимым для производства фенола высшего качества. Окисление изопропилбеизола ингибируется даже небольшими количествами диоксида серы [17, с. 187]. [c.118]

    Удаление тиофена взаимодействием с непредельными углеводородами. При сернокислотной очистке фракций сырого бензола, содержащих наряду с тиофеном различные непредельные соединения, почти весь тиофен (80—90%) выводится в виде продуктов взаимодействия с непредельными углеводородами [31]. В отработанной кислоте не обнаружено ни тиофена, ни его сульфокислоты, в то же время найдены продукты алкилирования тиофена (например, гептилтиофен). Оставшиеся 10—20% тиофена при ректификации переходят в чистый бензол, где концентрация тиофена в зависимости от содержания сернистых соединений в сырье составляет еще 0,03—0,12%. [c.216]

    Гидрирование олефинов играло важную роль в производстве высокооктановых бензинов, устойчивых к автоокислению. До того как были освоены процессы алкилирования изопарафипов алефинами, гидрирование олефинов использовали на большом количестве заводов для получения изооктана (2,2,4-триметилнентана) из диизобутилепа. В США для этой цели применяли никелевые катализаторы, например никель на необожженом фарфоре [159], а в Германии предпочитали катализаторы на основе сульфидов никеля и вольфрама, которые были устойчивы к отравлению сернистыми соединениями. [c.495]

    В указанных процессах ( Цеоформинг и др.) протекают реакции превращения низкооктановых компонентов сырья (н-парафиновые углеводороды) в высокооктановые (изопарафиновые и ароматические углеводороды). Превращение углеводородов происходит в две основные стадии на первой — путем разрыва связей С-С парафиновых углеводородов с образованием промежуточных олефиновых фрагментов, на второй — путем перераспределения водорода в олефинах с образованием парафиновых и ароматических углеводородов. Попутно протекают реакции алкилирования промежуточными олефинами изопарафиновых и ароматических углеводородов, реакции диспропорционирования и изомеризации ароматических углеводородов и реакции изомеризации парафиновых и нафтеновых углеводородов. Реакции дегидрирования идут в незначительной степени [362, 363]. Одновременно происходит гидрогенолиз сернистых соединений с образованием сероводорода и соответствующих углеводородов. [c.357]

    Наличие влаги в сырье, поступающем в контактор, является одной из причин высокого расхода кислоты. Существующая система отстоя не обеспечивает полного освобождения сырья от влаги. Очевидно, оставшаяся после отстоя вода содержится в бутан-бутилеповой фракции в виде тончайшей взвеси и раствора и, так как освободиться механическим путем от нее очень трудно, требуются химические водопоглотители. Работой, проведенной лабораторией в 1952 г., показано, что пригодным и технически просто осуществимым в этом случае может быть метод осушки твердой технической щелочью. Расход твердого едкого натра составляет при этом около 0,3—0,4% на свежую бутан-бутилено-вую фракцию. Образующийся в процессе осушки 45—50%-ный раствор щелочи после соответствующего разделения может быть использован для защелачивания нефтепродуктов. Следует также отметить, что при таком способе осушки бутан-бутиленовая фракция одновременно дополнительно очищается от сернистых соединений, отрицательно влияющих на катализатор алкилирования. Возможны и другие, известные из литературы методы осушки жидких газов (силикагель, активированная окись алюминия, боксит и другие твердые вещества). [c.50]

    Исходная углеводородная смесь после очистки от сернистых соединений и обезвоживания охлаждается испаряющимся изобутаном в холодильнике и поступает пятью параллельными потоками в смесительные секции реактора-алкилатора Р в первую секцию вводятся циркулирующая и свежая серная кислота и жидкий изобутан. Из отстойной секции алкилатора выводятся продукты алкилирования, которые после нейтрализации щелочью и промывки водой направляются в колонну К-2 для отделения циркулируемого изобутана. При некотором избытке в исходном сырье предусмотрен его вывод с установки. Испаривщиеся в реакторе изобутан и пропан через сепаратор Р-рессивер компрессором через холодильник подаются в колонну-депропаниза-тор К-1. Нижний продукт этой колонны - изобутан - через кипятильник и теплообменник присоединяется к циркулирующему потоку изобутана из К-2. Нижний продукт колонны К-2 поступает в колонну дебутанизатор К-3, а остаток К-3 - в колонну К- 4 для перегонки суммарного алкилата. С верха этой колонны отбирается целевой продукт - легкий алкилат, а с низа - тяжелый алкилат, используемый обычно как компонент дизельного топлива. [c.490]

    Исходную углеводородную смесь после очистки от сернистых соединений и обезвоживания охлаждают испаряющимся изобутаном в холодильнике и подают пятью параллельными потоками в смесительные секции реактора-алкилатора Р в первую секцию вводят циркулирующую и свежую серную кислоту и жидкий изобутан. Из отстойной секции алкилатора выводят продукты алкилирования, которые после нейтрализации щелочью и промывки водой направляют в колонну К-2 для отделения циркулируещего изобутана. При некотором избытке в исходном сырье предусмотрен его вывод с установки. Испарившиеся [c.255]

    Наконец, и это очень важно учесть технологу, при эксплуатации нефтеперерабатывающих установок огромную роль играет нахождение и выдерживание оптимального (наилучшего) технологического режима при любом процессе при различных реншмах переработки сырья одного и того же происхождения получаются различные но составу продукты переработки. Нанример, отбензи-нивание сернистой нефти путем ее прямой перегонки можно произвести, если не превысить определенную для данной нефти температуру процесса так, чтобы в отогнанном бензине не повы-сплось по сравнению с исходным содержание сероводорода и низкомолекулярных меркаптанов, которые дополнительно образуются вследствие термического разложения высокомолекулярных сернистых соединений. О том, какое важное значение для состава продуктов крекинга или алкилирования имеет технологический режим, достаточно известно из предыдущих глав. [c.273]

    С углублением переработки нефти возрастает выход углеводородных газов. Часть этих газов - бутан-бутиленовая фракция (ББФ) - служит сырьём сернокислотного алкилирования. Качество сырья оказывает существенное влияние на техникоэкономические показатели процесса. Сернистые соединения, полимеры, бутадиен, содержащиеся в приводят к повышено-му расходу катализатора и увеличивают себестоишсть продукции. Известно, что содеркание дивинила в сырье не должно прешшать 0,1-0,2 мае. Для очистки бутан- тиленовой фракции применяется селективное гидрирование бутадиена. [c.21]

    Полимеры бензольных отделений представляют собой сме( высококипящих компонентов поглотительного масла и смол Исто ником образования последних являются различные непр дельные и сернистые соединения, попадающие в ia io из газа—ст рол, инден, кумарон и их гомологи, циклопентадиен, тиофен и п При нагреве масла протекают процессы полимеризации непредел ных соединений, их алкилирование с тиофеном, сополимеризаш с бензольными углеводородами [c.326]

    К бензолу, применяемому для алкилирования, также предъявляются жесткие требования по чистоте, особено по содержанию сернистых соединений (их должно быть менее 0,1%)- Каменноугольный бензол очищают серной кислотой, после чего подвергают четкому фракционированию. При фракционировании он освобождается от сероуглерода и легких компонентов, последнего подвергается сушке. Сушка в промышленности осуществляется методом азеотропной перегонки, основанной на свойстве бензола образовывать с водой азеотропную смесь с оо аержанием 8,9% воды, кипящую при 69,25 °С. При конденсировании смесь расслаивается на водный и бензольный слой. Содержание влаги в бензоле снижается до 0,006—0,003%. Такой бензол вполне пригоден для алкилирования. [c.112]

    Для целей фракционирования алкилированный продукт можно рассматривать как четырехкомнонентную смесь бензола, этилбензола, полиэтилбензола и высококипящих компонентов, обычно называемых смолой. Для разделения этих четырех компонентов применяются три последовательных фракционирующих колонны непрерывного действия (рис. 2). Головным продуктом первой колонны является бензол высокой чистоты, не содержащий сернистых соединений, образующих смолы с хлористым алюминием в ал-килаторах. Из второй колонны получают чистый этилбензол, из третьей колонны — сверху смесь, содержащую от ди- до гекса-этилбензолов и смолу в виде кубового остатка. Эффективность колонны 1-й примерно 20 фактических тарелок колонна работает при атмосферном давлении. Колонна 2-я должна иметь 60 фактических тарелок ж давление в головной части 200 мм рт. ст. для 3-й колонны требуется 40 —50 тарелок и давление в головной [c.146]

    Научные исследования охватывают многие области органической химии. Первые работы были посвящены исследованию азокрасителей, сернистых и ализариновых красителей и полупродуктов для них. Изучал алкилирование органических соединений с целью получения удобным и дешевым способом алкалоидов, красителей, душистых веществ и фармацевтических препаратов. Г]редложенный им (1923) синтез солей диазония действием на фенолы азотистой кислоты нашел широкое про.мыш-ленное применение. Открыл (1926) общий метод синтеза р-аминокис-лот конденсацией альдегидов с малоновой кислотой и аммиаком в спиртовом растворе (реакция Родионова) и нашел пути превращения Р-аминокислот в гетероциклические соединения. Исследовал механизм и модернизировал реакцию Гофмана (образование третичных аминов), что открыло возможность синтеза соединений, близких по строению биологически активным аналогам витамина Н — а-биотина. [c.435]

    Книга является третьим томом энциклопедии, охватывающей наиболее актуальные вопросы и важнейтие достижения в области переработки нефти и нефтехимии. Данный том посвящен экономике и тенденциям развития нефтехимической промышленности, процессам и аппаратам нефтепереработки и нефтехимии (термодиффузионное фракционирование, нефте-ваводские печи), технологии нефтепереработки (фтористоводородное алкилирование, изомеризация, гидрогенизация), основам нефтехимичес1шх процессов (окисление углеводородов, сернистые соединения в нефтях, производство ацетилена из нефтегазового сырья). [c.4]

    При алкилировании олефинами хлористый водород, содержащийся в каталитическом комплексе, постепенно уносится с отходящими газами или выводится с углеводородным слоем. Его потери возмещаются за счет влаги, содержащейся в исходных реагентах и гидролизующей катализатор с образованием НС1. Однако подача слишком влажных реагентов невыгодна из-за повышения расхода AI I3. Поэтому бензол подвергают специальной сушке путем азеотропной ректификации. Сухим должен быть и исходный олефин. Расход AI I3 увеличивается также при недостаточно чистых реагентах, особенно при наличии в них диенов и сернистых соединений. Обычно расход AI I3 составляет 0,01— 0,05 мол. % но алкилирующему агенту. [c.357]

    Как и для прочих радикально-цепных реакций, при окислении алкилбензола вначале наблюдается индукционный период, который можно значительно сократить путем добавления гидроперекиси того же углеводорода или частично окисленной реакционной массы. ТГнгиШггоры, в том числе сернистые соединения, фенол, стирол и их гомологи, которые могут находиться в исходном углеводороде или образоваться во время реакции, способствуют обрыву цепи и тормозят процесс. Поэтому нужно применять достаточно чистые исходные вещества (непригоден, например, изопропилбензол, полученный алкилированием с фоофорнокислот-ным катализатором), а условия реакции не должны способствовать распаду гидроперекисей с образованием веществ, обладающих свойствами ингибиторов. Обычные катализаторы жидкофаз- [c.575]

    Дальнейшее использование никеля Ренея для изучения органических сульфидов, содержащихся в минеральных маслах. Берч и сотрудники [66] опубликовали ценный обзор своих работ по сернистым соединениям, содержащимся в керосиновой фракции иранской нефти смешанного происхождения. В этом обзоре приведено много новых сведений, а также дана схема, показывающая, какой обработке подвергалась смесь сульфидов, выделяющаяся при разбавлении водой сернокислотного гудрона . Обработке ацетатом окиси ртути предшествовала тщательная разгонка на очень эффективной колонке. Кроме того, в специальной таблице дан полный список насыщенных циклических сульфидов и алкилированных тиофенов, которые были выделены или обнаружены, а также указаны методы их идентификации. В этой работе Берч с сотрудниками отмечают, что метод, основанный на применении ацетата окиси ртути, не только позволяет осуществлять частичное разделение сульфидов с открытой цепью углеродных атомов и циклических сульфидов, но и оказывается очень полезным при концентрировании моно- и бициклическихсульфидов в различных фракциях. По легкости своей экстракции водным раствором ацетата окиси ртути сульфиды располагаются в следующий ряд трициклические > бициклические > [c.130]

    Бензол, поступающий на алкилирование, необходимо очистить от сернистых соединений и освободить от влаги. Очистка бензола осуществляется путем обработки серной кислотой, а осушка — азеотропной дистилляцией. Осушенный бензол направляется на алкилирование этиленом. В качестве катализатора алкилирования используется хлористый алюминий. Алкилат подвергается ректификации с целью выделения этилбензола. Непрореагировавший бензол и полиалкилбензолы возвращаются в процесс (полиалкилбензолы подвергаются деалкилированию). Этилбензол поступает на дегидрирование с целью получения из него стирола. Жидкие углеводороды после дегидрирования, освобожденные от газа, поступают на ректификацию. После ректификации получаются товарный стирол, бензол-толуольная фракция и смола. Непрореаги-ровавЩий этилбензол возвращается на дегидрирование. [c.196]

    Сырье для алкилирования должно быть очищено от сернистых соединений — сероводорода, меркаптанов — которые взаимодействуют с хлоридом алюмииня. Поскольку вода разлагает катализатор, необходима осушка бензола и олефина. Желательна также [c.80]


Смотреть страницы где упоминается термин Алкилирование сернистых соединений: [c.370]    [c.118]    [c.93]    [c.50]    [c.112]    [c.241]    [c.105]   
Смотреть главы в:

Полупродукты анилинокрасочной промышленности -> Алкилирование сернистых соединений




ПОИСК







© 2025 chem21.info Реклама на сайте