Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние электронного спина

    Так например, уровень триплетного состояния молекулы под влиянием электронного спин-спинового взаимодействия расщепляется в зависимости от симметрии электронной волновой функции, т.е. симметрии ядерного остова, на две или три компоненты. Чтобы убедиться в этом, достаточно рассмотреть матрицы гамильтониана (11) для [c.398]

    Влияние электронного спина [c.21]

    В первом приближении можно считать, что различные формы внутренней энергии независимы друг от друга. В таком случае, если пренебречь влиянием электронной энергии и спинами ядер, вычисление термодинамических функций для линейных молекул можно осуществлять при помощи следующих уравнений  [c.184]


    Это взаимодействие электронного и ядерного спинов рассматривалось в гл. 9 в разделе, посвященном контактному взаимодействию Ферми, там же дается объяснение всем принятым обозначениям. Этот эффект связан с влиянием плотности неспаренного спина, который делокализован непосредственно на ядре, исследуемом методом ЯМР. Подставляя среднюю поляризацию электронных спинов в уравнение (12.9), получаем [c.169]

    Выше рассматривалось только взаимодействие ядер с внешним магнитным полем и полностью игнорировалось влияние электронного окружения и взаимодействие спинов ядер между собой. Для химии метод ЯМР важен прежде всего именно потому, что резонансные частоты ядер зависят от тонких магнитных взаимодействий, т. е. в конечном счете от особенностей строения и распределения электронной плотности в молекулах. [c.17]

    Электрон в атоме водорода занимает определенный энергетический уровень, который является наинизшим, если атом не возбужден и находится в изолированном состоянии. При сближении двух атомов их электроны испытывают притяжение со стороны обоих ядер, которое возрастает по мере уменьшения расстояния между ними, и в пространстве между ядрами уровень потенциальной энергии электрона понижается. Вследствие этого объединение двух ядер и одного электрона в единую систему — энергетически выгодный процесс. Присутствие второго электрона усложняет картину вследствие взаимного влияния электронов. Как известно, обладая отрицательным зарядом, электроны отталкиваются друг от друга. Этот эффект называется корреляцией зарядов. Но кроме этого у электрона имеется собственное электромагнитное поле, характеризуемое его спином. Электроны с параллельными (одинаково направленными) спинами отталкиваются друг от друга, а электроны с антипараллельными спинами сближаются, стягиваясь в электронную пару. Этот эффект называется корреляцией спинов ив совокупности с корреляцией зарядов определяет суммарный эффект взаимного влияния электронов — корреляцию электронов. [c.46]

    Электронный спин обусловливает мультиплетность электронных состояний, равную 25+1. Если спин-орбитальное взаимодействие мало, то влияние спина можно учесть почти таким же образом, как это делалось в случае связи Ь по Гунду для двухатомных и линейных многоатомных молекул (стр. 47 и сл.)- Так обычно можно поступать в случае нелинейных молекул, состоящих только из легких атомов. При сильном спин-орбитальном взаимодействии рассмотрение оказывается значительно более сложным. В частности, при четной мультиплетности необходимо пользоваться так называемыми двойными группами. Более подробное обсуждение таких случаев можно найти в [1П]. [c.122]


    В результате в сильных полях влияние СТВ сводится к изменению частоты прецессии электронных спинов. Это означает, что в сильных полях СТВ вызывает 8-Тд переходы. В органических радикалах константа СТВ с протонами порядка 1 мТл, отсюда вызванные СТВ З-Т переходы происходят на временах порядка 10 наносекунд. [c.25]

    Здесь а тл b - константы СТВ, т - проекция ядерного спина, суммирование ведется по всем магнитным ядрам радикалов А и В, соответственно. В каждом подансамбле мы имеем два электронных спина с резонансными частотами Уд и и влияние переменного магнитного поля на спиновую динамику такой пары описывается теми формулами, которые были приведены выше. В результате можно заключить, что при наличии СТС спектра ЭПР радикалов эффективность S-T переходов должна резонансным образом изменяться при совпадении частоты поля с положением СТС компонент спектра ЭПР. [c.128]

    Недавно открыт новый тип изотопного эффекта - магнитный изотопный эффект. В основе теории влияния магнитного поля на скорость протекания химических реакций лежит фундаментальный закон сохранения момента количества движения. Этот закон, естественно, распространяется и на собственный момент количества движения электронов и ядер (спин). Поэтому в системах, в которых отсутствуют взаимодействия электронных спинов с орбитальными моментами или со спинами ядер, любые изменения суммарного спина запрещены. Этот запрет частично снимается при наличии упомянутых выше взаимодействий, поскольку открываются каналы передачи количества движения на другие электроны и ядра. [c.483]

    Существует еще один вид процессов, сопровождающихся поглощением или излучением квантованной, но еще меньшей энергии, которые связаны со спиновым моментом электронов и ядра. Известно, что под влиянием внешнего магнитного поля спины этих частиц могут ориентироваться параллельно или противоположно внешнему полю. Оба этих состояния отличаются, хотя и мало, по энергии, мз-за чего переход между ними связан с поглощением фотона очень малой частотой, т. е. с большой длиной волны. Изменение в ориентации электронных спинов соответствует поглощению или излучению в микроволновой области, а изменения, связанные с ядерными спинами — с еще более длинноволновой, радиочастотной областью. [c.154]

    В общем случае величина химического сдвига определяется электронной плотностью у ядра, влиянием вторичных магнитных полей, вызванных циркуляцией электронов в соседних атомах и межатомными токами (т. е. магнитной анизотропией соседних атомов и связей), влиянием внутримолекулярных реакционных полей, неспаренного электронного спина, а также и внешними факторами температурой, концентрацией раствора и типом растворителя, в котором растворен образец. [c.251]

    При еще большем разрешении наблюдается сверхтонкая структура пиков ЯМР. У этанола (рис. П4,б) пик СН3 расщепляется на три, причем средний вдвое больше остальных, тогда как пик СН2 расщепляется на четыре пика с отношением площадей 1 3 3 1. Эта сверхтонкая структура обусловлена влиянием спинов соседних ядер, но она на несколько порядков слабее, чем соответствующее расщепление в кристаллических твердых телах, поскольку оно передается с помощью совершенно иного механизма. Это не обусловлено непосредственным магнитным влиянием, а, наоборот, зависит от влияния, которое передается через связывающие электроны, спины которых слабо взаимодействуют со спинами ядер и тем самым действуют как переносчики между соседними ядрами. Так, для двух протонов имеются четыре равновероятные комбинации спинов двух протонов метиленовой группы (+7г, —V2). +7г). [c.354]

    Научные работы посвящены физикохимии флотационных процессов и исследованию комплексооб-)азования парамагнитных ионов. Исследовал продукты взаимодействия реагентов с минералами с применением методов радиоспектроскопии. Установил влияние электронно-дырочных центров минералов на изменение их флотационных свойств. Разработал синтез спин-меченых флотореагентов и нашел пути их широкого использования для изучения механизма взаимодействия реагентов с поверхностью минералов. Разработал технологию комплексной переработки руд ряда месторождений. Изучал комнлексообразование парамагнитных ионов с лигандами, содержащими атомы серы, кислорода, азота, селена, фосфора и мышьяка. Установил строение и параметры химической связи ряда комплексов. Разработал способ [c.472]

    Выполнение условия (11.31) не исключает, конечно, изменения формы спектра с частотой за счет иных возможных причин, основной из которых является влияние на форму спектра анизотропного сверхтонкого взаимодействия электронного спина со спинами протонов радикала (подробнее об этом см. раздел II.9). [c.39]

    В естественных условиях наибольшее влияние на форму спектра ЭПР органических нитроксильных радикалов имеет сверхтонкое взаимодействие электронного спина с протонами радикала, которое приводит к усложнению сверхтонкой структуры спектра (СТС), обусловленной сверхтонким взаимодействием с атомом азота (см. рис. 11.32, 11.33, III.1, III.2, П1.9). [c.108]


    Для многих систем мы еще не понимаем полностью, какие факторы определяют величины констант взаимодействия. Было показано, что в гамильтониане, описывающем взаимодействие между ядром и непосредственно связанным с ним протоном, доминирует так называемый контактный член Ферми. Качественно этот член определяет вероятность того, что связывающая пара электронов находится у обоих ядер. Такое положение можно представить себе, когда взаимодействие происходит в основном по механизму поляризации спинов электронов под влиянием ядер. Чем больше электронная плотность у обоих ядер, тем сильнее должно быть взаимодействие ядерных моментов со связывающими электронами и, следовательно, друг с другом через поляризацию электронных спинов. Поскольку у электрона на х-орбитали имеется конечная вероятность нахождения у ядра, а р-, -орбитали и т. д. имеют узлы (нулевую вероятность нахождения электрона) у ядра, контактный член Ферми служит мерой -характера связи между двумя ядрами. [c.294]

Рис. 10-2. Энергетические уровни электрона в магнитном поле (а) и влияние ядерного спина, равного на эти уровни (б). Рис. 10-2. <a href="/info/1351396">Энергетические уровни электрона</a> в <a href="/info/18863">магнитном поле</a> (а) и <a href="/info/161700">влияние ядерного</a> спина, равного на эти уровни (б).
    Спиновое взаимодействие между протонами обусловливает магнитную поляризацию промежуточного электронного облака, как это указывалось на стр. 289. Взаимодействие между протонами и электронами может происходить по различным механизмам (Рамзей [52]) с участием магнитных моментов, связанных как с орбитальным движением электронов, так и с электронным спином, но, по-видимому, только один из этих факторов является достаточно существенным для объяснения наблюдаемой величины взаимодействия. Речь идет о влиянии электронного спина, известного под названием фермиевского или контактного взаимодействия, поскольку оно зависит от плотностей электронных спинов у про.тонов. Величина константы связи может быть вычислена методом возмущений второго порядка [52], согласно которому возбужденные триплетные состояния вводятся в волновую функцию молекулярных электронов, или путем дальнейщего приближения, для чего средняя величина энергии возбуждения берется непосредственно из волновой функции основного состояния. Именно так сделал Рамзей в случае молекулярного водорода, использовав функцию Джемса — Кулиджа. Было использовано произведение атомных орбит по Гейтлер-Лондону [33] Карплус и сотр. [61, 62, 119] рассчитали приближенным методом величины ряда валентных связей. Эти данные позволили получить теоретическое значение константы связи в метане, равное 10,4 1,0 гц константа связи, определенная по расщеплению спектра H3D, составляет 12,4 1,6 гц. Кроме того, предсказано, что константа связи J между протонами внутри метиленовой группировки [61]является чувствительной функцией угла связи Н—С—Н зависимость такова, что J уменьшается от величины примерно 20 гц при валентном угле 105° до нуля с расщирением угла примерно до 125° при более щироких углах можно ожидать появления небольших отрицательных значений J. Число молекул, для которых точно известен валентный угол Н—С—Н, весьма ограниченно в тех случаях, когда эти углы известны, экспериментальные данные согласуются с вычисленной кривой. В частности, в отнощении двух геминальных водородов в винилиденовой груп--пе>С = СН2 можно предсказать, что они взаимодействуют очень слабо (7 S1 гц), так как центральный атом углерода является- хр -гибридизованным, а угол Н—С—Н велик константы связи поэтому малы, что согласуется с экспериментальными данными. [c.307]

    Ядерный магнитный резонанс атома водорода и всех парамагнитных молекул осложняется влиянием электронного спина. Это связано с тем, что время спиновой релаксации электрона в некоторых случаях весьма мало. Сверхтонкое взаимодействие не только аномально сильно сдвигает частоту ЯМР по сравнению с частотой свободного протона, но также может и сильно уширить линию ЯМР. В результате свертонкого взаимодействия энергии уровней ядерного спина изменяются во времени и линии ЯМР в спектрах жидких и твердых тел часто становятся настолько широкими, что их трудно или вообще невозможно обнаружить. Несколько более подробно этот вопрос рассмотрен в гл. 12, а теперь вернемся к рассмотрению атома гелия, спектр ЯМР которого гораздо более типичен. [c.39]

    Интересное влияние электронного спина на эффект ориентации в радикальных реакциях показано в работе [109]. В реакции фотоперегруппировки Кляйзена (фотолиз /г-метнлаллилового эфира ) авторы обнаружили образование продукта замещения ал-лильной группы не только в орто- и пара-, но и в мета-положении ароматического кольца. В термической перегруппировке метапродукты не образуются. Возможность образования метапродуктов в реакции фотоперегруппировки становится понятной [c.155]

    Из этих методов метод парамагнитного резонансного поглощения является наиболее прямым и разработанным позднее других. Если атом, обладающий магнитным моментом, обусловленным орбитальным движением электронов, помещается в однородное магнитное поле в 1000 гс, возникает группа уровней энергии с расстоянием между ними в 1000 Ру. Эи) расщепление эквивалентно энергии фотона с длиной волны 10,70 см, т. е. расщепление происходит в микроволновой области. Таким образом, если на такой атом падают микроволны с длиной 10700 Н см, то возбуждаются переходы между уровнями и происходит поглощение энергии излучения. Это явление называется парамагнитным резонансным поглощением. В действительности поглощение (очень слабое и требующее для своего обнаружения специальных точных устройств) обычно происходит при длинах волн, заметно отличающихся от приведенной расхождение обусловлено влиянием электронного спина и будет рассмотрено в гл. 9. (Явлению парамагнитного резонанса посвящены обзоры Блини и Стивенса [4], Горди, Смита и Трамбаруло [5] и Уэрца [61.) [c.200]

    Влияние электронного спина на вращательные уровни спиновое расщепление) совершенно такое же, как и для двухатомных молекул (стр. 45 и сл.) то же самое относится и к взаимодействию электронного орбйтального момента Л с вращением, что приводит, как и прежде, к удвоению А-типа. [c.90]

    Непрямое электронное спин-спиновое взаимодействие. При достаточно высокой разрешаюи1,ей способности спектрометра ЯМР становится заметным влияние на спектр других локальных полей. Последние возникают вследствие ферми-контактного взаимодействия ядерного спина, ориентированного во внешнем поле Н , со спином электрона. Это приводит к возникновению электронной поляризации, которая вновь воздействует на соседние ядра (сверхтонкое взаимодействие). Вследствие существования 2/ + 1 различных возможностей ориентирования спина ядра А 8 поле (см. стр. 249) по этому механизму расщепления, в м сте нахождения соседнего ядра X возникают точно такие же многочисленные локальные ПОЛЯ вызывающие расщепление сигнала. Это сверхтонкое расщепление характеризуется константой сверхтонкого взаимодействии J, величину которой измеряют в герцах. В простых случаях она соответствует расстоянию между соседними линиями в мультиплете сигнала (рис. 5.23, б). Если п эквивалентных ядер А взаимодействуют с ядром X, то на ядро А оказывают воздействие 9.nJ + 1 различных дополнительных полей и мультиплетность расщепления сигнала оказывается равной [c.258]

    По непрямому электронному спин-спиновому взаимодействию можно сделать ряд общих выводов, которые следует учитывать при интерпретации спектров. В отличие от расщепления, вызванного химическим сдвигом, расщепление за счет взаимодействия спинов ядер не зависит от величины внешнего поля Н . Влияние непрямого спин-спинового взаимодействия может сказаться на нескольких связях. Однако с увеличением числа связей между взаимодействующими ядрами оно быстро уменьшается. Если взаимодействующие ядра связаны более чем тремя о-связями, то расщепления чаще всего не наблюдается. Напротив, до девяти связей дальнего порядка можно обнаружить в том случае, если их взаимодействие происходит по п-связям. При взаимодействии ядер, характеризующихся равными химическими сдви гами, расщепления в спектре не наблюдается (например, при взаимодействии протонов СНа-группы). Вне пределов этого условия величины констант взаимодействия зависят от порядка связей и их геометрии в молекуле. Отметим, что они занисят и от длины связей, величины валентного угла, типа гибридизации в атоме, осуществляющем связь, и от электроотрицательности имеющихся заместителей. [c.259]

    Первые работы по ЯМР в парамагнитных средах были осуществлены еще в 1949 г., однако плодотворные исследования в этой области относятся к последнему десятилетию. Исследования на основе этого метода основываются на особенностях спектров ЯМР парамагнитных соединений. Если ядро (протон) находится в парамагнитной молекуле, то оно подвергается дополнительному влиянию некомпенсированного электронного спина молекулы, что приводит к уширению, парамагнитному сдвигу ядра в ЯМР-спектре. Величина парамагнитного сдвига пропорциональна плотности неспареиного электрона на данном ядре и определяется выражением  [c.85]

    В мультиплетных П- и Д-состояниях влияние электронно-колебательного взаимодействия сложнее. Рассмотрим кратко только случай состояний типа П. При слабой спин-орбитальной связи (случай связи Ь по Гунду) все остается, по существу, таким же, как в случае синглетных состояний. Это показано справа на рис. 60 в колонке с Л = 0. В левой части рисунка в колонке с е = О приводятся электронно-колебательные уровни, обусловленные лишь спин-орбитальным взаимодействием в предположении, что оно довольно сильное. Если же как спин-орбитальное, так и электронно-колебательное взаимодействия сравнимы по Ееличине, т. е. когда Л и 0)2 6 являются величинами одного порядка, то результат не будет просто наложением этих двух эффектов возникающая картина значительно сложнее, как это показано в центре рис. 60. Например, в некоторых случаях дублетное расщепление будет больше, чем при одном только спин-орбитальном взаимодействии. Подробные формулы, полученные Поплом [1П] и Хоугеном [731, можно нaйтJi в [П1], стр.. 42. [c.97]

    В качестве простого примера сверхтонкого расщепления рассмотрим свободный радикал с двумя протонами, в различной степени влияющими на электронные уровни энергии в магнитном поле. На рис. 16.9 показано влияние двух протонов на возможные уровни энергии электрона. В присутствии магнитного поля неспаренный электрон имеет два уровня энергии с/Пй== + 72 и /Из=— /г- Два протона расщепляют эти уровни так, что в результате неспаренный электрон имеет восемь уровней энергии. В электронном парамагнитном резонансе происходит переворачивание электронного спина, однако направление ядреных спинов не изменяется. Таким образом, в ЭПР электрон, поглощая энергию, переходит с энергетического состояния в нижней группе гпе= 42) на соответствующий уровень в верхней группе (тз= + 7г)- При увеличении напряженности магнитного поля последовательно выполняются условия резонанса для четырех переходов. Соответственно наблюдаются четыре линии в ЭПР-спектре. Поскольку четыре ядерно-спиновых состояния (а а2, Рг, 1З1С12 и Р1Р2) равновероятны, эти четыре линии имеют одинаковую интенсивность. Сверхтонкие расщепления а и Сг могут быть определены из спектра, как это показано на рисунке. [c.512]

    На химический сдвиг в первую очередь оказывает влияние электронная плотность на щютоне, которая зависит от электроотрицательности соседнего с ним атома А, и ряд других факторов, в частности индуктивный эффект атома В, соседнего с А, циркуляция электронов других связей в молекуле и т. д. Сигналы щютонов могут также расщепляться на несколько компоненг за счет взаимодействия спинов щютонов со спина-ьш электронов химической связи и атомных остовов (снин-спиновое взаимодействие). [c.355]

    Суммируя выражения для термодинамических величин, определяемых поступательным, вращательным и колебательным движением молекул формы палочки (53), (54), (55), (30), (33), (34), (35), (40), (41), (42), (43), (61), (62), (63) и (64) мы найдем следующие приближённые выражения для нахождения термодинамических величин этого вида молекул, справедливых для случаев, когда можно пренебречь влиянием электронной энергии и спином ядер, что как раз и имеет место в случае рассмотрения реакций углеводородов  [c.121]

    Для молекул с атомными связями выполняется в общем правило Льюса при четном общем числе электронов общий магнитный момент молекулы равен нулю, при нечетном числе электронов момент равен 1,73 магнетона, т. е. соответствует магнитному спиновому моменту электрона. (Исключение из этого правила представляют молекулы О2 и N0). В кристаллических решетках, построенных из атомов или сильно деформированных ионов, соотношения оказываются болев сложными. Обнаруживающиеся в них влияния на парамагнетизм еще не выяснены окончательно. Предположение о том, что явления ферромагнетизма и антиферромагнетизма определяются взаимным магнитным сопряжением атомов, обусловленным атомными связями, простирающимися через всю кристаллическую решетку, кажется хорошо обоснованным. Ферромагнетизм проявляется, если существуют атомные связи с параллельными электронными спинами (в противоположность обычному случаю ). Проходящие через весь кристалл атомные связи с антипараллельными спинами обусловливают антиферромагнетизм. Во многих случаях на основании изучения магнитных свойств оказывается возможным сделать однозначное заключение о строении. Это следует показать на нескольких примерах. [c.341]

    Поскольку взаимодействие Ферми проявляется часто в спектрах ЭПР в виде сверхтонкой структуры (например, в спектрах свободных радикалов), то иногда его еще называют сверхтонким (СТ) взаимодействием. Наблюдение и анализ его могут быть очень важны для выяснения электронной структуры различных молекул и комплексов, для исследования характера химической связи в соединениях, так как константа А позволяет оценить спиновую плотность Qj, а следовательно, и в различных частях соединения [180]. Например, если в соединении имеется магнитный электрон (за счет входящего в соединение парамагнитного иона — наиболее интересный для нас случай), то ни химические сдвиги, характерные ддя данных функциальных групп, ни спин-сшшовые мультипйеты наблюдать не удается. Это обусловлено влиянием электронно-ядерных релаксационных механизмов, которое приводит к уширению линий спектра, к их размазыванию . Часто в таких случаях наблюдается просто одна широкая линия. Мак-Конелл указывает, что если тГ > и тГ > то изотропный сверхтонкий сдвиг перекроет величину обычного химического сдвига. При выполнении одного из этих условий тот сдвиг, обусловленный усредненным во времени изотропным взаимодействием, дается следующим выражением [181, 182]  [c.246]

    Возникающие в жидкостях флуктуирующие локальные магнитные поля усредняются из-за относительно свободного движени я молекул. Поэтому непосредственное взаимодействие магнитных моментов ядер в жидкости невозможно (хотя в кристаллах, где усредненные повремени локальные поля велики, этот процесс доминирует в формировании спектра ЯМР). Следовательно, в жидкостях или растворах влияние мгновенных спиновых состояний передается от одного ядра к другому через систему валентных электронов, образующих химическую связь. У данной ковалентной связи суммарный спиновый магнитный момент электронов равен нулю, так как электронные спины спарены. Однако ядерный магнитный момент вызывает небольшую магнитную поляризацию электронов, образующих связь, кото- [c.79]

    В связи с отсутствием протонов у неорганического нитроксильного радикала — соли Фреми, проблема исследования суперсверхтонкой структуры спектра для него не стоит столь остро, как в случае органических нитроксильных радикалов, содержапц1х в своем составе но менее десятка протонов. В случае соли Фреми наибольшее влияние на суперСТС должно иметь взаимодействие электронного спина радикала с протонами растворителя, которое преимущественно проявляется в замороженных растворителях. [c.108]

    Расщепление сигналов ПМР было обнаружено в 1950 г, (Хан и Мэксуел, Проктор и Ю). В 1950 г. и последующих годах Рэмси объяснил появление химических сдвигов влиянием электронного окружения ядер данного изотопа, а расщепление сигналов —> спин-спиновым взаимодействием между ядрами. Протоны, так же как и другие ядра со спином, не равным нулю, сами являются слабыми магнитами, создающими вокруг себя магнитные поля, которые могут взаимодействовать либо непосредственно черев пространство (прямое спин-спиновое взаимодействие), либо вдоль цепи химических связей (непрямое спин-спиновое взаимодействие). Очевидно, что константы непрямого спин-спинового взаимодействия, зависящие от характера связей и геометрии молекулы, могут быть использованы для изучения последних. Таким образом, в самом начале 50-х годов были созданы теоретические основы для применения ПМР-спектро-скопии в органической химии. [c.263]


Смотреть страницы где упоминается термин Влияние электронного спина: [c.276]    [c.354]    [c.276]    [c.166]    [c.177]    [c.183]    [c.57]    [c.271]    [c.132]    [c.334]    [c.63]    [c.71]    [c.40]    [c.49]   
Смотреть главы в:

Квантовая механика молекул -> Влияние электронного спина




ПОИСК





Смотрите так же термины и статьи:

Спин электрона

Спин-эхо

Спины

Спины электронные



© 2025 chem21.info Реклама на сайте